
“Talk to me!”: Enabling Communication between Robotic
Architectures and their Implementing Infrastructures

James Kramer
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556, USA
jkramer3@cse.nd.edu

Matthias Scheutz and Paul Schermerhorn
Cognitive Science

Indiana University
Bloomington, IN 47401, USA

{mscheutz,pscherme}@indiana.edu

Abstract— Complex, autonomous robots integrate a large set
of sometimes very diverse algorithms across at least three
levels of system organization: the agent architecture, the imple-
mentation environment, and the hardware devices. Insofar as a
distinction is maintained between them, the levels serve different
purposes and thus exhibit different characteristic strengths
and weaknesses. Exchanging information among organizational
levels can be used to mitigate the shortcomings of one level by
making use of the strengths of another.

In this paper, we highlight the roles, characteristics, and
relations between the infrastructure and the architecture of
complex robots, describing a novel form of integration that
results from enabling the exchange of information between
these two levels, which otherwise is maintained internally. The
information from the infrastructure is especially amenable for
use by the architecture to achieve a higher level of robustness
and system awareness. We demonstrate the functionality and
utility of the proposed mechanisms in a set of experiments in
which failures of architectural components are induced on an
actual robot engaged in a joint human-robot team task.

I. INTRODUCTION

Complex autonomous robots, especially those interacting
naturally with humans, rely on a large number of different
functional modules and capabilities that need to operate
concurrently in a coordinated fashion. There are three levels
at which coordination is required: (1) the agent architecture,
where the information and control flow among components,
as well as each component’s functionality, is specified; (2)
the infrastructure, which provides the implementation envi-
ronment (often a virtual machine) for an architecture; and
(3) the hardware environment, on which the virtual machine
runs, providing both computing capabilities and access to the
various devices that operate the robot’s sensors and effectors.

Coordination among components at each of the levels is
targeted at different purposes: the architecture aims at making
an agent perform a set of specified tasks as well as possi-
ble; the infrastructure provides the computational resources
required by the architectural components’ algorithms while
interacting with the hardware devices; and the hardware
devices provide the sensor information and perform the
effector operations required by the architecture. As a result,
both the information available to each level and how it is used
to adjust to real-world events are also different. For example,
an architecture might have knowledge about how to cope
with failures in vision processing due to bad lighting, while

the infrastructure might have mechanisms that monitor the
CPU load to guarantee the vision component will get enough
CPU time to function properly. The hardware level, finally,
might have mechanisms to recover from communication
errors between the framegrabber and the main computer.

In many cases, the information generated, processed, and
stored at a level is relevant only to that level. For example,
the choice of one particular CPU among many will likely not
matter to the architecture, so long as the required computa-
tion completes. Similarly, the type of knowledge structure
used by the architecture does not concern the infrastructure,
so long as adequate memory is available. However, there
are cases where information is relevant across organizational
levels. For instance, the architecture might switch to sonar
readings if informed by the infrastructure that the laser range-
finder has failed. Similarly, the infrastructure might reduce
system load by shutting down non-essential components.
Communication between levels in such cases can be be
highly beneficial, if not necessary, for task success.

In this paper, we explicitly distinguish between a robotic
architecture and its implementing infrastructure, resulting in
a novel view of information exchange between them that
grants a higher level of system awareness to the architecture
that can lead to significantly improved handling of resource
allocation, component failures, etc. The rest of the paper
is organized as follows: we start with a summary of the
architecture and infrastructure levels, isolating their salient
properties from a systems perspective. We then discuss the
sharing of information across levels that would positively
impact both performance and robustness. The subsequent
experimental evaluation focuses on failure detection and
recovery, showing the benefits of information exchange be-
tween the infrastructure and the architecture.

II. THE DISTINCTION BETWEEN
ARCHITECTURES AND INFRASTRUCTURES

As presented here, an infrastructure is not part of an
architecture, but rather provides functionality and tools that
aid implementation. This separation permits different agent
architectures–even cognitive architectures [1]–to use the
same framework. We first describe the differing purposes of
infrastructure and architecture, then list some characteristics
of each, and finish with a brief comparison to related work.



A. Distinct Purposes

An agent architecture is the blueprint of a system’s func-
tional organization, specifying its functional break-down,
component operations, and the interactions among compo-
nents. Traditionally, architectures for complex deliberative
agents, particularly cognitive architectures, have not been
designed with physical implementations (e.g., on a robot) in
mind (e.g., [2], [3], but see [4]). Consequently, they do not
provide mechanisms for distributed, fault-tolerant computing
under real-time constraints with limited resources. Rather,
the implicit assumption is that computational resources are
always sufficiently available and that the speed of execu-
tion is secondary (oftentimes, architectural updates occur in
“logical-time”, entirely decoupled from real-time).

While it has always been necessary in robotics to be sensi-
tive to the computing environment’s limitations, only recently
have there been efforts to provide a computing infrastructure
that is decoupled from and independent of the actual architec-
ture.1 Such infrastructures provide a “run-time” implemen-
tation environment for an architecture–that is, a framework
for connecting and executing architectural components–that
handles the real-time, real-world constraints of the robotic
hardware. In such frameworks, e.g., [6], [7], [8], [9], partic-
ular attention is given to appropriate hardware abstractions,
sensory processing routines, simulators, networking proto-
cols, and various other tools that facilitate the design and
implementation of robotic architectures.

B. Distinct Characteristics

Considerations for distinguishing between an infrastruc-
ture and an architecture include: hardware knowledge (i.e.,
the types of sensors, effectors, platforms, operating systems,
etc., supported by the system, in addition to their abstractions
and programming interface), the operational time frame
(e.g., obstacle avoidance must be immediately responsive,
but planning a path to a goal location can be delayed),
update frequency (e.g., sensor readings are taken periodically,
while planning is sporadic), and the degree of task-specific
knowledge (e.g., direct motor control versus spatial relations
involved in navigation). While these issues are a concern at
each level to some degree, their expressions (generally) take
on divergent characteristics, as shown in Table I.

TABLE I
INFRASTRUCTURE AND ARCHITECTURE CHARACTERISTICS

Property Infrastructure Architecture
Operation principles low-level high-level
Task knowledge none detailed
Hardware knowledge detailed minimal
Timing immediate delayed
Control frequency periodic sporadic

1In Brook’s subsumption architecture [5]–the first “behavior-based”
architecture–the infrastructure assumptions about asynchronously executing
components with unreliable communication links were effectively part of
the “architectural design.”

First, consider agent architectures: they often utilize ab-
stract representations of the world (i.e., entities and their
properties), have detailed knowledge of high-level tasks (i.e.,
goals and how to achieve them), are able to formulate plans
(i.e., make use of pre- and post-conditions), learn from
experience, and may incorporate sophisticated techniques for
choosing one task over another. Planning to achieve goals
generally encompasses a relatively long time frame, perhaps
on the order of seconds or minutes for a single, concrete step
in pursuit of a goal (e.g., “move to a location” or “ask for
more information”), but potentially ranging from minutes to
hours for a high-level and possibly open-ended task (e.g.,
“give a tour” or “monitor the hallway”). As a result, action
control is sporadic, occurring on an as-needed basis.

On the other hand, an infrastructure necessarily has low-
level access to the execution environment, with detailed
knowledge of the available hardware, communication chan-
nels between components, and possible distribution over
multiple CPUs. It may also be responsible for coordinating
system operation, often including management of parallel
and asynchronous process execution, monitoring of hardware
and software components, and detecting and recovering from
errors. Maintaining system operation is a continuous process
requiring immediate reaction to changing conditions, often
on the scale of fractions of a second.

C. Architecture Versus Infrastructure

The divergent characteristics given in the previous section
result from decoupling the infrastructure from an agent
architecture. Doing so is not necessary; an architecture may
entirely address any or all of them. For instance, a single,
monolithic system would encompass all of them and achieve
the highest possible degree of integration.

The primary motivations for separating the infrastructure
from an architecture are to make robot programming faster,
easier, and more efficient. For instance, Vaughan et al
[10] describes the use of “device abstractions” to increase
portability and reusability. An infrastructure not only reduces
complexity, but also removes the programming effort other-
wise required to implement all the processes and activities
provided to an architecture. Furthermore, an infrastructure
eliminates, to the extent possible, an architecture’s need for
“hardware-awareness.” That is, a concern at the architecture
level is that components are able to communicate, not how
they do so; resources must be allocated, but their locations
are likely unimportant; components must provide data in a
timely fashion, but their functional roles do not dictate the
specific details of internal operation.

Many existing architectures include infrastructural func-
tionality in their descriptions. For instance, the typical three-
layer architecture found in [11] includes defining char-
acteristics of the “controller” layer: algorithmic time and
space bounds, bandwidth, failure detection, and internal
state. More recently, various model-based architectures ([12],
[13]) have been proposed that construct a monolithic system
representation to mediate between reactive and deliberative
layers, monitoring system operation, allocating resources,



and validating the exchanged commands/data. The impact of
accounting for these items can be greatly reduced (similar
to using “device abstractions”) by moving implementation
details from the architecture into an infrastructure.

III. BENEFITS OF INTEGRATION

Once the benefit of using an infrastructure to implement
architectures is accepted, a natural reaction might be to move
to the opposite extreme, from monolithic control systems
to strictly separate infrastructure and architecture. Yet, the
monolithic approach does have its own advantages, primary
among which is the availability of information that may be
masked by strict separation. The ideal approach will strike a
balance between the two extremes, taking advantage of the
strengths of each. This gives rise to the questions: what are
the potential types of exchange between infrastructure and
architecture? How can they be integrated? More specifically,
in what areas can their different characteristics be utilized?

A. Two Examples

One area that can benefit from architecture/infrastructure
integration is system configuration. The architecture has
specific information about the goals it is attempting to
achieve, including what low-level capabilities are required,
the time-frame in which results are required, and the impor-
tance of particular tasks, potentially with alternatives. The
infrastructure has information about the resources required
to fulfill those needs, including hardware availability, host
configuration, and status of components.

System configuration can be viewed as the matching of
capabilities required for a task (or set of tasks) with those
available. A particular architecture (e.g., a robot receptionist)
might need speech recognition and production, visual pro-
cessing, and affect recognition and expression capabilities,
while another (e.g., for autonomous exploration) might need
mobility, localization, and other sensors. The same infras-
tructure can be used for both, where the architecture requests
a particular configuration. If the request cannot be satisfied,
the infrastructure can relay why (i.e., what part of the request
cannot be met), allowing an alternate choice.

An ability to change system configurations allows resource
optimization. The architecture has information about task
requirements, their order, and potentially their duration; in
short, a specific plan over some length of time. In addition
to its knowledge of hardware devices, the infrastructure can
determine their connectivity, response time, and status.

At a coarse-grained level, exchanging information permits
components to be started or stopped as needed. The addition
of a rudimentary scheduler can allow the infrastructure
to autonomously configure the system in a dynamic way,
ensuring that components are available for the architecture
when needed. Furthermore, if the infrastructure is able to
maintain information about system resources (e.g., CPU load,
available memory, or battery level), finer-grained control
is possible, dynamically changing the configuration to best
manage resources to still meet the requirements. Finally,

the infrastructure may be able to determine whether any
configuration exists that can meet the real-time deadlines.

B. Failure Recovery

Many scenarios require autonomous robots operate for
extended periods of time. The need for fault-tolerance in
robotic applications is demonstrated by a simple observation:
given a long enough time-frame, any system will inevitably
fail. Failures at the infrastructure and architecture levels
exhibit different characteristics that result in different types
of recovery, if recovery is possible.

Some example failures that may occur at the infrastruc-
ture level include: hardware breakage (e.g., sensor/effector
malfunction, faulty wiring, unseated card), operating system
halts, software component crashes (e.g., uncaught exception,
illegal state), unresponsive software components (e.g., due
to an infinite loop or deadlock), and network failure (e.g.,
broken sockets, out-of-range wireless). The characteristics
of these failures fit those listed for infrastructures in Table I:
to consistently detect arbitrary failures, monitoring must
be continuously active and span the entire lifetime of the
application; detection is possible shortly after the failure; an
abrupt and immediate disruption in system operation occurs.

Within an infrastructure, failure recovery can be handled
in two ways: propagation, with the expectation that it will be
resolved elsewhere, or direct intervention, either taking steps
to reconnect components that are still operational, substitut-
ing redundant or replicated components for those that failed,
or restarting the failed components, potentially requiring mi-
gration. While specific mechanisms (e.g., message-passing,
thrown exceptions, heartbeats, etc.) may yield slightly better
or worse performance relative to one another, infrastructural
recovery will retain its fundamental nature; that is, recovery
is limited: to the extent the infrastructure’s knowledge is
limited to the execution environment (i.e., the computational
infrastructure and the robotic hardware), it is general-purpose
and uninformed. Even if failed components can be recovered,
it might not be enough to bring the system back into an
operational state.

Failures at the architecture level are of a different na-
ture; some examples include: user input error, pursuit of
an unachievable goal, and interruption due to cascading
infrastructure-level failures. These types of failures match the
architecture characteristics found in Table I: failures tend to
be task-specific; an individual task usually spans an extended
time-frame (especially relative to lower level failures); as a
consequence of the time-frame, failures are event-driven and
thus sporadic.

Architecture-only failure recovery amounts to task refor-
mulation, either by meeting the goals in a different way
(e.g., substituting components that provide similar data) or
by aborting the current task in lieu of one that can be
achieved. Again, however, recovery is limited: the high-
level and task-oriented knowledge involved likely avoids the
general mechanisms necessary to identify and resolve low-
level problems. With architecture-only recovery, the process
is oriented at achieving the specific goal being pursued, not



Recovery Mode at Time Component Completion
Type of Failure Recovered? State

1. Infra. Autonomous × Failure
2. Infra. Autonomous

√
Success

3. Infra. Interactive × Failure
4. Infra. Interactive

√
Failure

5. Arch. Autonomous × /
√

Abort
6. Arch. Interactive × /

√
Abort

7. Both Autonomous × Abort
8. Both Autonomous

√
Success

9. Both Interactive × Abort
10. Both Interactive

√
Success

Fig. 1. The “Explore, transmit, return to base” task. Left: A map of the area, showing the task phases and one possible trajectory. Right: Experimental
conditions and resultant task completion state.

at the overall system state; failure is detected only when the
current task is interrupted; recovery is initiated on an as-
needed basis, potentially continuing an unachievable task,
identified only when an unavailable dependency is finally
encountered. The architecture may be able to adapt its task
in some way (e.g., backtrack to a point where the goal is once
again achievable) or it may have to simply abort; although
the latter is undesirable, the former may lead to unacceptable
penalties in terms of time and resource consumption.

A system with both types of recovery can use the strengths
of each to mitigate the other’s shortcomings: infrastructural
recovery maintains general system health, while architectural
recovery resolves task-specific issues; infrastructural recov-
ery continuously monitors for failure, while architectural
recovery resolves issues as required; infrastructural recovery
attempts to resolve any and all failures in an uninformed way,
while architectural recovery alters plan or goal achievement
to adjust to specific failures.

A further improvement can be had over simply enabling
recovery at both levels by allowing communication of recov-
ery status between levels. Communication may be “lazy”;
for instance, the architecture, only when attempting to use
a component and subsequently detecting its failure, might
query the infrastructure for the status of the component’s
recovery process. The infrastructure might respond that the
component is unrecoverable, in which case the architecture
would proceed with its goal modification. Alternately, the
infrastructure might respond that recovery has been initiated
but is not yet complete, allowing the architecture to delay
its goal pursuit until low-level recovery finishes. However,
exchanges can also be proactive; a level may be notified of
recovery status as it changes, in effect giving a warning that
a failure condition may be impending.

An important point to recognize is that the information’s
utility is contingent upon a level’s properties: because the
infrastructure’s recovery mechanisms are always active and
occur in a short time-frame, in most cases no benefit is gained
by architecture notification. But the converse is not true;
depending on the goal, it may be the case that the architecture
would not detect the failure until some point far in the future.
Proactive failure notification by the infrastructure allows the

architecture to introspectively examine its current task for
dependencies and alter its current plan.

IV. EXPERIMENTAL VALIDATION:
INTEGRATING ADE AND DIARC

For evaluation purposes, a series of experiments were
conducted that demonstrate various combinations of failure
recovery types. A primary experimental condition was to use
a task that had already been tested, inducing failures during
task execution. Specifically, we augmented the DIARC (Dis-
tributed, Integrated Affect Reflection Cognition) functional
architecture [14], [15] and the ADE (APOC Development
Environment) infrastructure [9], [16], [17].

A. Experimental Setup

Experiments consist of a joint human-robot exploration
task in which a subject works in tandem with a real robot,
simulating a hypothetical space scenario. The goal of the
team is to gather data about a nearby area, transmit it to
a remote location (an orbiting spacecraft), and return to
the starting point as quickly as possible. The possible task
completion states are: Success (both transmission and return
succeed), Failure (both transmission and return fail), and
Abort (transmission fails, but return succeeds).

The left side of Figure 1 shows a map of the experiment
environment, depicting the phases of the task and one pos-
sible robot path (the dotted line) for Success. The robot’s
initial location is in the upper left quadrant of the map;
when the task starts, the human directs the robot to the
exploration area in the upper right quadrant using natural
language (phase A). A command causes the robot to enter
an autonomous, fixed action sequence for exploration (phase
B); when operating in autonomous mode, the robot neither
listens for nor executes commands from the human. Once
phase B completes, the robot again enters interactive mode
and accepts commands from the human, who directs it along
a path towards the transmission area (phase C). Teammates
are interdependent during this phase: the human knows the
general vicinity from which to transmit, but must rely on
the robot’s sensors to find the precise location; the robot
requires direction from the human to find that location. After



Experiments ending in Success (Component Recovered)
Recovery Mode at Time Avg. Std.

Condition Type of Failure Time Dev.
0. Any/All n/a 174.62 5.44
2. Infra. Autonomous 180.15 8.11

8a. Both Autonomous 172.54 7.81
8b. Both Autonomous 178.18 6.53

10a. Both Interactive 183.95 3.34
10b. Both Interactive 186.07 3.33

Experiments ending in Abort (Component Not Recovered)
Recovery Mode at Time Avg. Std.

Condition Type of Failure Time Dev.
5. Arch. Autonomous 117.11 4.08
6. Arch. Interactive 147.21 3.66

7a. Both Autonomous 111.88 3.51
7b. Both Autonomous 93.16 2.58
9a. Both Interactive 145.31 2.26
9b. Both Interactive 146.98 8.82

 100

 120

 140

 160

 180

 200

10b10a8b8a20

A
vg

. T
im

e 
to

 C
om

pl
et

io
n 

(s
)

 100

 120

 140

 160

 180

 200

9b9a7b7a65

A
vg

. T
im

e 
to

 C
om

pl
et

io
n 

(s
)

Fig. 2. Average time to task completion. The “Condition” column reflects the line from the table in Figure 1; notification is indicated by appending an
“a” (disabled) or “b” (enabled) to the line number. Left: Tasks resulting in Success state; for comparison’s sake, condition 0 presents performance when
no component failure occurs. Right: Tasks resulting in Abort state. No results are presented for Tasks ending in the Failure state.

successful transmission, the robot again enters autonomous
mode, planning and following a path back to the starting
location (phase D).

Experiments consider catastrophic component failure; that
is, inducing an unclean failure of the “Speech Recognition”
component in either phase B or C. There are three exper-
imental variables: (1) active recovery type (infrastructure,
architecture, or both), (2) operation mode when failure oc-
curs (autonomous or interactive), and (3) whether component
recovery is possible. Failures in B occur 3 seconds after
entering autonomous mode; while the infrastructure detects
the failure when it happens, the architecture does not–
because no interaction is taking place, speech recognition
is inoperative. Only upon re-entering interactive mode will
the architecture attempt to access the speech component
and detect the failure. Failures in C occur 18 seconds
after re-entering interactive operation; both architecture and
infrastructure detect them as they occur.

The table on the right of Figure 1 lists the variables’
combinations and possible outcomes (the cases where neither
recovery type is active always result in Failure and are not
shown). In lines 1-4, only infrastructure recovery is activated.
A temporary failure while in autonomous mode is the only
case not resulting in Failure: the infrastructure recovers the
component before the architecture detects failure. Lines 5
and 6 reflect the cases where only architectural recovery is
active; because infrastructure recovery is inactive, failures are
always permanent. In each case, the task is aborted–although
transmission is impossible, the robot can return. Finally, lines
7-10 encompass the cases where both types of recovery are
enabled; component recoverability dictates the completion
state. When the architecture detects a failure, it obtains

information from the infrastructure about the recovery status:
permanent failures lead to Abort, while temporary failures
allow the architecture to wait for recovery, then continue.

Because it does not affect the task completion state,
the additional condition of proactive communication is not
explicitly shown in Figure 1. However, while not affecting
overall task success or failure, the notification of failure can
be exploited to improve task performance in some cases,
which are presented as part of the results section.

B. Experimental Results
Figure 2 summarizes the experimental results, which are

divided into two groups: the left shows the Success outcomes
(i.e., both transmission and return were completed), while the
right shows the Abort outcomes (i.e., the robot was able to
return, but did not complete data transmission). Data appears
in the same order as the table in Figure 1, where the values
in the first column reflect a line number from the other
table (Failure outcomes, lines 1, 3, and 4, are not shown,
as the completion time would be ∞ in each case). Because
notification is not explicitly shown in Figure 1’s table, it is
indicated by appending a letter to the line number where
necessary (an “a” or “b” represents disabled or enabled,
respectively). Below each table is a graph of average comple-
tion times of five runs and their standard deviations. While
experimental conditions were kept as uniform as possible,
some variance is inevitable when working with a real robot
(e.g., internal system timing, slight path variations that affect
travel distances, natural language pauses, etc.).

First, consider experiments resulting in Success. All ex-
hibit similar completion times, and are comparable to task
performance when no failure occurs; the distance travelled by
the robot is approximately the same for each run, and travel



time dominates other factors. However, one difference of
note is attributable to “Mode at Time of Failure”. When the
failure occurs in autonomous mode, infrastructure recovery
completes before the robot re-enters interactive mode (i.e.,
attempts to use the speech component), so task comple-
tion time depends solely on infrastructure recovery time.
However, when failure occurs during the interactive phase,
both types of recovery are engaged. The architecture queries
the infrastructure about failure status and is informed that
recovery is in progress; whereas the task would otherwise be
aborted, the system is able to wait for recovery to complete,
then finish the task.

The Abort experiments (i.e., the robot returns to its starting
location, but does not complete transmission), exhibit more
pronounced effects from different combinations of recovery
types and communication. The graph shows three distinct
horizontal “bands” of similar completion times (in descend-
ing order): (1) items 6, 9a, and 9b, (2) items 5 and 7a, and
(3) item 7b. For conditions in band (1), failure occurs during
interactive mode and is detected at approximately the same
time and position for every run; the Abort phase follows
a nearly identical trajectory each time. This is similar for
items in band (2), where failure is detected just after the
autonomous phase completes (about 18 seconds earlier than
detection in band (1), and closer to the home base).

The sole data point in band (3) would fall into band (2),
except that in this condition failure occurs in autonomous
mode with active notification. This allows a decision at the
architecture level to abort immediately (i.e., during, rather
than after, phase B), saving approximately 10 seconds of
execution time compared with band (2). In contexts where
resources are severely constrained, or for long-running tasks
where substantial time and effort would be expended before
noticing the failure, notification would be of great benefit.

V. CONCLUSION

We have introduced a novel communication methodol-
ogy between components of a robotic architecture and its
implementing software infrastructure. The information ex-
change enabled by the mechanism between the two levels
can be used for a variety of purposes to improve system
robustness and performance. Here we specifically focused
on failure recovery and experimentally demonstrated that the
achieved level of integration leads to more robust systems by
yielding high levels of reliability under a variety of failure
conditions. Specifically, we demonstrated (1) that enabling
both architectural and infrastructural failure recovery allows
the system to make “correct” choices in a wider range of
failure conditions than possible with either alone (e.g., to
avoid unnecessarily aborting task execution in some cases),
and (2) that information exchange (i.e., notification) can be
used to improve task performance under some circumstances
(e.g., when the architecture cannot immediately detect the
need to respond to a component failure). While specific
performance improvement is somewhat dependent on im-
plementation details, the demonstrated results are due to
the characteristics of infrastructure and architecture recovery.

Overall, the proposed mechanisms provide a critical enabling
technology for robust long-term interaction and sustainable
robot autonomy.

Next steps will include an even closer interaction and
tighter integration between architectural (i.e., task-specific)
and infrastructure-level (i.e., system-state) knowledge, allow-
ing for internal reasoning about resources in the infrastruc-
ture that can influence task scheduling and actions of the
architecture in a resource-sensitive way. We believe that by
actively monitoring and managing computational resources
and hardware device information, the infrastructure might be
able to provide the architecture with a rudimentary form of
“bodily awareness” that could provide important information
about the state of the robot for maintaining system health and
decision-making about task selection.

REFERENCES

[1] J. Trafton, N. Cassimatis, M. Bugajska, D. Brock, F. Mintz,
and A. Schultz, “Enabling effective human-robot interaction using
perspective-taking in robots,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 25, no. 4, pp. 460–470, 2005.

[2] J. Laird, A. Newell, and P. Rosenbloom, “SOAR: An architecture for
general intelligence,” Artificial Intelligence, vol. 33, pp. 1–64, 1987.

[3] A. Rao and M. Georgeff, “BDI-agents: from theory to practice,” in
Proceedings of the First Intl. Conference on Multiagent Systems, 1995.

[4] R. Ichise, D. Shapiro, and P. Langley, “Learning hierarchical skills
from observation,” in Proc. of the Fifth International Conference on
Discovery Science, 2002, pp. 247–258.

[5] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[6] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit,” in IROS 2003, vol. 3, 2003, pp. 2436–2441.

[7] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stage project:
Tools for multi-robot and distributed sensor systems,” in Proceedings
of the 11th International Conference on Advanced Robotics, 2003, pp.
317–323.

[8] C. Côté, D. Lètourneau, F. Michaud, J. Valin, Y. Brosseau,
C. Raievsky, M. Lemay, and V. Tran, “Programming mobile robots us-
ing RobotFlow and MARIE,” in Proceedings IEEE/RSJ International
Conference on Robots and Intelligent Systems, 2004.

[9] V. Andronache and M. Scheutz, “Integrating theory and practice: The
agent architecture framework APOC and its development environment
ADE,” in Autonomous Agents and Multi-Agent Systems, 2004, pp.
1014–1021.

[10] R. Vaughan, B. Gerkey, and A. Howard, “On device abstractions for
portable, resuable robot code,” in Proceedings of IROS 2003, Las
Vegas, Nevada, Oct 2003, pp. 2121–2427.

[11] E. Gat, “On three layer architectures,” in Artificial Intelligence and
Mobile Robots. AAAI Press, 1998.

[12] B. Williams, M. Ingham, S. Chung, and P. Elliott, “Model-based
programming of intelligent embedded systems and robotic space
explorers,” Proceedings of the IEEE, vol. 9, no. 1, pp. 212–237, 2003.

[13] B. Lussier, R. Chatila, F. Ingrand, M. Killijian, and D. Powell, “On
fault tolerance and robustness in autonomous systems,” in Proceedings
of the 3rd IARP-IEEE/RAS-EURON Joint Workshop on Technical
Challenges for Dependable Robots in Human Environments, 2004.

[14] M. Scheutz, P. Schermerhorn, C. Middendorff, J. Kramer, D. Ander-
son, and A. Dingler, “Toward affective cognitive robots for human-
robot interaction,” in AAAI 2005 Robot Workshop, 2005.

[15] M. Scheutz, P. Schermerhorn, J. Kramer, and C. Middendorff, “The
utility of affect expression in natural language interactions in joint
human-robot tasks,” in Proceedings of the 1st ACM International
Conference on Human-Robot Interaction, 2006, pp. 226–233.

[16] J. Kramer and M. Scheutz, “ADE: A framework for robust complex
robotic architectures,” in IROS 2006, Bejing, China, 2006.

[17] M. Scheutz, “ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures,” Applied
Artificial Intelligence, vol. 20, no. 4-5, 2006.


