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I derive from natural language top-down constraints on vision;

I allow vision to use easy tasks to help with hard tasks.
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Previous Research

I Recent work on constraining vision with top-down cues has
not drawn these cues from natural language (c.f., Choi et
al. [CBL+04], Frintrop et al. [FBR05], Navalpakkam et
al. [NI06]).

I More recent work Bergström et al. [BBK11] and
Johnson-Roberson et al. [JRBS+11] use dialogue to bias
object segmentation; however they explicitly require
bidirectional interaction in order to refine segmentation.

I We want to collect attentional cues from natural language to
reduce the complexity of vision tasks.
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value for a color term such as “red”

I height - distance between a point and a supporting surface
below

I location - saliency decreases in the form of a Gaussian from
the selected image border or image center
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Four saliency operator configurations and their relative
times to completion
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Attention

I A mechanism that describes object detection modes

I Checks all objects for saliency in some order until the entire
space has been searched

I With attention: Begins with objects containing the most
salient points
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Coordinating a visual search using spoken input

1. We begin a visual search whenever we spot a noun phrase
(signaled by a determiner, adjective or noun).

2. Once a visual search has begun, we send all descriptors to
vision immediately.

3. We end the visual search when we find some word that cannot
be part of it.
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Incremental Processing of Linguistic Input

can you see a tall red object at left
(constraint: left)
(results returned)



Experimental results.

“The short green top object”
Left to Right: SN, SI, PN, PI
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Experimental results.

Color and location saliency operator runtime vs. np.



Experimental Design

I Seven scenes each contained 11 objects for each of which a
uniquely-identifying verbal description containing one to four
descriptive or locational constraints (e.g., red, tall, right,
front) was formulated.

I This method resulted in 77 separate description/scene pairs.

I As each scene was viewed, each associated description was
presented incrementally (as in spoken natural language) 10
times.
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Experimental results.

Average object detector runtime across scenes.



Future Work

I Work on human subjects (Chiu and Spivey [CS12]) has shown
that in some cases parallel processing is faster than serial, but
in other cases the reverse is true; additional experiments are
needed to show whether our model accounts for this as well.

I A threshold value is used to decide whether a detected object
meets the description. Future work will employ probabilistic
models of object properties (such as the incrementally learned
KDE based representations of Skocaj et al. [SJK+10]).

I Development is also needed to fuse confidence measures from
natural language with such probabilistic measures from the
vision system.

I The reverse direction, using visually-acquired information to
constrain natural language interpretation, needs to be
explored.
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Thanks for your attention!
...Questions?


