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ABSTRACT
Humans expect interlocutors both human and robot to re-
solve spoken references to visually-perceivable objects incre-
mentally as the referents are verbally described. For this
reason, tight integration of visual search with natural lan-
guage processing, and real-time operation of both are re-
quirements for natural interactions between humans and
robots. In this paper, we present an integrated robotic archi-
tecture with novel incremental vision and natural language
processing. We demonstrate that incrementally refining at-
tentional focus using linguistic constraints achieves signifi-
cantly better performance of the vision system compared to
non-incremental visual processing.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Processing—
Discourse, Language parsing and understanding; I.2.10 [Vision
and Scene Understanding]: 3D/stereo scene analysis;
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Color, Depth cues

General Terms
Performance, Human Factors

Keywords
incremental natural language processing, visual search, ob-
ject detection and recognition

1. INTRODUCTION
Converging evidence in psycholinguistics has demonstrated
that humans rapidly and incrementally integrate linguistic
and perceptual information in situated contexts, using per-
ceptual information to constrain the syntactic and semantic
interpretation of linguistic expressions (e.g., [5]). For ex-
ample, referential natural language expressions can trigger
and guide visual search to determine the intended referent.
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Conversely, visual analysis of a scene can help disambiguate
otherwise ambiguous referential expressions (e.g., referen-
tial expressions containing prepositional phrases). Not sur-
prisingly, human speakers have the same expectations of
their co-located interlocutors in social interactions (c.f. [4]).
Hence, for robots interacting with co-located humans in nat-
ural language this means they must respect the human mode
of processing. Failing to do so will result in awkward and
frustrating interactions at best, but can easily lead to com-
plete interaction break-down.

Respecting human natural language capabilities, however,
requires a computational architecture that integrates visual
and linguistic information in human-like ways. In this paper,
we introduce a tight integration of vision and natural lan-
guage processing, where linguistic processing incrementally
constrains vision. The incremental constraint-based mecha-
nisms are integrated into the DIARC architecture for HRI,
which provides an architectural framework for the evalua-
tion of computational mechanisms. We evaluate the effec-
tiveness of incrementality by comparing the operation of two
vision processing modes: in the first, a complete description
of an object is first generated from natural language input,
followed by a single visual search through all existing candi-
dates (i.e., every object in the environment) for the referent;
in the second, information gleaned incrementally from nat-
ural language input is used to constrain vision’s search by
progressively narrowing the field of possible candidates, in
effect focusing the robot’s attention on an increasingly re-
strictive set of criteria. We show that by so constraining
vision, references are resolved significantly faster.

The structure of the paper is as follows. In Section 2, we
lay out the overall problem in more detail and review pre-
vious work in both natural language processing and vision
processing. Then, in Section 3, we introduce our approach
to accomplishing the integration of the two types of pro-
cessing. In Section 4, we describe an experiment that serves
to evaluate our approach. We then discuss the results and
some limitations of the system as currently implemented in
Section 5, closing in Section 6 with a summary of our ac-
complishments and proposals for future work.

2. MOTIVATION
Imagine a “room cleaning” scenario, where a human in-

structs a robot to put objects in their proper places in a



living room. The instructions will likely include object de-
scriptions meant to enable the robot to identify, out of all
possible candidate objects, one specific object or set of ob-
jects. When instructing a robot, humans will naturally look
towards an intended object or point to it, gazing back at the
robot to check whether it is attending to the object [22]. If
the robot is able to follow the human eye gaze to the target
object, both human and robot will establish joint attention
which will allow the human instructor to check quickly (and
often subconsciously) that the robot understood the request
correctly. In addition to looking at the object, humans will
typically also expect a robot to verbally acknowledge un-
derstanding by saying “OK” or “got it”. Feedback is often
required even for partial utterances, through eye gaze, verbal
acknowledgements, or the immediate initiation of an action
such as the robot reaching for a book after hearing “put the
red book...” while the utterance is ongoing.

In such an interactive setting, vision and natural language
processing can mutually and incrementally constrain each
other. For example, visually observing a scene that is being
talked about can support understanding of ambiguous or un-
derspecified utterances while they are being processed –“the
red book on the floor” will most likely refer to a book visible
to the instructor, not the one behind her back. Similarly, a
syntactically ambiguous sentence like “put the book on the
box on the shelf” will become clear as soon as the robot de-
tects a book on the box, thus using visually observed spatial
relations to constrain parsing and semantic analysis.

Conversely, incremental processing of a verbal description
of a scene can direct visual processing to the relevant ele-
ments, e.g., “Put the red [now prioritizing the processing of
red image regions] book on [now prioritizing horizontal sur-
faces on which an object can be placed] the box”, or “Take
the book on your left [now prioritizing the lower left field
of view] ...”. In addition, non-linguistic cues such as point-
ing and gaze direction can be incrementally integrated with
partial meanings to steer attention to those elements of the
scene relevant to the current discourse situation.

As a robot is carrying out some designated task, it will
likely have prior knowledge (e.g., what types of objects and
utterances are to be expected in the current scenario and
what the roles of objects are) which can effectively constrain
visual and language understanding. Situatedness allows the
robot to plan actions to get the right perspective and per-
form active visual search, as well as allowing it to interact
with the human (e.g. confirming understanding or asking
for more specific object descriptions). Against this back-
ground, visual scene and language understanding are tightly
coupled, forming the vision-language loop. In this loop, lan-
guage primes vision by modulating attention and visually
reconstructed scene elements are fed back as referents for
language understanding. These processes are interleaved at
a fine temporal granularity to make best use of partial in-
terpretation in both directions.

2.1 Incremental NLP
As described above, human speakers expect co-located lis-

teners to (1) rapidly and incrementally integrate perceptual
context (e.g. for reference resolution) (c.f. [4]); and (2) pro-
duce backchannel feedback (e.g. eye gaze, verbal acknowl-
edgements such as “okay” and “mhm”, and actions like head
nodding) that indicates the listener’s level of understanding
during an ongoing utterance (c.f. [17]). Any robotic NLU

system that allows for natural HRI must meet at least these
two essential human expectations. In this section, we de-
scribe current systems that attempt to handle these require-
ments to some degree.

While no current robotic NLU systems yet approach the
ability to handle natural unrestricted spoken input, several
efforts have advanced the state-of-the-art in natural lan-
guage interactions with artificial entities by tackling differ-
ent aspects of these challenges. Several robotic systems add
genuine NLU components to the robotic architecture (c.f.
Michalowski et al.’s GRACE uses a combination of speech
and a touch screen [11]; Müller et al.’s semi-autonomous
wheelchair responds to coarse route descriptions [14]; Moratz
et al. use goal-based or direction-based spoken commands
to guide a robot through an environment [13]; Firby’s Re-
active Action Packages tightly integrate natural language
and action execution [6]; and Kruijff et al. [10] are pursing
directions in incremental NLU for HRI similar to ours).

However, only a few complete NLU systems operate in
real-time. Allen et al. [1] use a manually-designed bottom-up
chart parser with preferences and manually-defined weights
rather than more standard probabilities. Syntactic anal-
ysis is complemented by semantic analysis that returns a
logical form as a semantic network. One drawback of this
architecture in an HRI setting is its standard pipeline archi-
tecture (i.e., syntactic analysis is completed before semantic
analysis can begin) which prevents an embodied agent from
timely backchanneling. Still more integrated is the system
by Schuler et al. [18] which processes phonological, syntac-
tic, and referential semantic information incrementally; how-
ever, the system has not been used on a robot.

2.2 Incremental Vision Processing
Visual processing in the presented system serves to iden-

tify objects in the scene that are referred to in the dialogue,
where we assume that these objects are not known to the
system beforehand. So vision has to segment objects rele-
vant to the current discourse from the scene. Several lines
of research have addressed the problem of modulated object
search and interactive or incremental visual processing.

Unconstrained object segmentation is a notoriously hard
and ill-defined problem. Mishra et al. [12] show how a seed
point, obtained from user input or attention, together with a
log-polar image representation, improves segmentation of 2D
and depth images; Johnson-Roberson et al. [8] use a similar
technique to segment point clouds in grasping scenarios.

While bottom-up attentional processes are well known,
more recent work addresses how top-down cues could bias
visual search in a task-dependent manner. Choi et al. [3]
train an adaptive resonance theory (ART) network from hu-
man labelling to inhibit bottom up saliency for non-relevant
image regions. The VOCUS system by Frintrop et al. [7]
employs bottom-up (scene-dependent) as well as top-down
(target-specific) cues, which are learned from training im-
ages, leading to increased search performance. Navalpakkam
et al. [15] maximize search speed by incorporating prior sta-
tistical knowledge of target and distractor features to mod-
ulate the response gains of neurons encoding features.

The concept of incremental visual processing has not re-
ceived much attention. Typically the aim is simply to make
vision methods “as fast as possible”. However often not all
results are needed immediately or there is a trade-off be-
tween speed and accuracy. In one early attempt, Toyama



et al. [20] layer so-called “selectors” and “trackers” such that
selectors at lower (coarser) levels reduce the set of object
candidates for higher levels, with trackers at the top gen-
erating output sets of size one. Failure at level i lets the
system fall back on layer i− 1, with a broader search space
but smaller accuracy. The system can thus robustly main-
tain track, adjusting search space and accordingly tracking
accuracy to changing conditions. Zillich [23] shows how an
incremental approach in the perceptual grouping of edge seg-
ments removes the necessity of tuning parameters, which are
often difficult to select and tend to lead to brittle systems.

Most related to our work is the work on interaction be-
tween vision and language by Bergström et al. [2] and Johnson-
Roberson et al. [9] who perform interactive segmentation of
2D images and 3D point clouds based on real-time MRF
graph partitioning. Dialogue such as robot : “I think there
are two objects” human: “No there are three objects” or
robot : “So, should I split the green segment?” human: “No,
the yellow one!” is used to bias graph partitioning to form
the most likely objects. However their work explicitly re-
quires interaction in both ways to refine segmentation, rather
than just collecting attentional cues from the human.

While these and related research efforts tackle various as-
pects of natural language understanding and vision, there is
currently no framework that allows for a deep integration of
these different algorithms with a complex vision system into
a unified integrated robotic architecture for natural HRI.

3. INTEGRATING INCREMENTAL NL AND
VISION PROCESSING

The context of situated natural language interactions be-
tween humans and robots provides several unique challenges
for integrated robotic architectures, in particular, for visual
scene and natural language understanding. We focus on two:

Challenge 1: Human timing. All visual, natural lan-
guage and action processing must be performed and com-
pleted within human-acceptable timing, ranging from frac-
tions of a second for eye movements and other motor actions,
to at most one second for verbal responses.

Challenge 2: Incremental multi-modal constraint
integration. All processing must be incremental for the
robot to be able to determine the meanings of partial in-
structions, perform any required perception actions includ-
ing the establishment of joint attention, and either acknowl-
edge understanding or ask for clarification.

We address these challenges through incremental natu-
ral language and vision processing. The former gradually
builds a hierarchical semantic representation, requesting a
new vision search for each new discourse entity. The latter
then allows for the continual refinement of the search by the
addition of new filters as additional description is given.

3.1 Incremental NL
The overall incremental natural language system uses a

shift-reduce dependency parser (a reimplementation of Malt-
Parser) trained on approximately 2500 sentences comprising
the training set (sections 02–21) of the Wall Street Journal
(WSJ) corpus. The parser identifies labelled head/argument
pairings (e.g., subject/predicate) and identifies, for each word,
a manually-created dictionary definition.

These definitions are used to map verbal elements to us-
able concepts. For example, “red,” being a filter that can be

used by vision to select certain objects in the real world, is
a usable concept. “Scarlet,” not being a known filter name,
is not. In order for any word to be useful to a perceptual
component, the definition must include the perceptual com-
ponent to which it is useful (in the case of colors, this is
vision, as opposed to, say a laser range finder) and whatever
the component needs to access the concept (in this case, of
course, the filter name “red”). Multiple definitions can point
to the same filter, so for example, the word “scarlet” could
be given a definition pointing to the red filter.

Similarly, nouns have definitions including what percep-
tual component can be used to find them. For example,
if doors are detected using a laser-range finder rather than
with vision, then the vision search is stopped as soon as it is
determined that the head of the noun phrase is a non-vision
noun. (In this study, the generic noun “object” was used
in all cases.) Some nouns have no perceptual attachment
and are thus not processed perceptually. Plural and their
corresponding singular nouns use the same definitions.

The commonly-used dependency grammar with which WSJ
is annotated is not by itself suitable for incremental process-
ing of noun phrases (NPs). This is because dependency arcs
exist only between the noun head and its dependants (e.g.,
determiners and adjectives). Thus in the NP “the tall red
object”, the first three words are not known to be connected
in any way — and thus cannot be added to a single search —
until “object” is heard. Thus a dependency parser trained on
this grammar must be augmented to increase incrementality
processing of these phrases.

In order to process visual descriptions, our incremental
natural language system identifies NPs as beginning with
determiners and adjectives1. When such a phrase is iden-
tified, the system begins a visual search, adding filters as
their associated descriptive words are recognized. The sys-
tem also begins scanning for the end of the phrase. “De-
scriptive” words are those with a definition that includes a
type (e.g., “color”) and a filter name (e.g, “red” or “blue”).
When the end of the NP is identified (i.e., when a word is
found that does not belong to the NP, such as a verb), vision
is notified to expect no further constraints, and the results
of the search are returned to NLP.

Depending on the number of entities returned and the
determiner (or lack of a determiner) that began the noun
phrase, one of the following cases occurs: (1) The robot is
able to identify one or more objects that meet the descrip-
tion, and it assents, “yes”; (2) the robot is not able to iden-
tify any object meeting the description, and it announces, “I
could not find any”; or (3) the robot is expecting to find one
and only one such object (e.g., “there is the [or one] blue
object”), but it finds multiple such objects, and announces,
“I was not able to identify a single referent. Please rephrase
the input with a uniquely-identifying set of constraints.”

This verification process is used in the case of all types
of utterances. Given a situation in which two blue objects
are before the robot, if the robot is asked, “Do you see the
blue object?” or if it is directed “Pick up the blue object,”
the robot, being unable to find a single uniquely-identified

1NPs beginning with bare nouns, e.g., “objects,” do not typ-
ically require immediate visual processing and thus are not
currently handled this way. For example, the command “get
objects,” rather than triggering an immediate visual search,
institutes an open-world quantified goal [] which takes the
search out of NLP’s purview.



Figure 1: Incremental Processing of Linguistic Input

can you see ...see a ...a tall ...tall red ...red object ...object at left
(vision waiting) (search started) (constraint: tall) (constraint: red) (constraint: left)

(results returned)

object meeting the description in either case, will request
additional constraints to narrow the reference down.

Given a situation in which no blue objects are before the
robot, if the robot is told “there is a blue object,” the robot
will respond that it cannot find any blue object. It is the
determiners that communicate how many objects meeting
the description the robot is to expect. The robot is able to
distinguish between three types of determiners: existentials
(a, an, any, some) which require at least one such object;
referentials (the) which require exactly one object; and uni-
versals (all, every, each) that allow any number of objects.

Figure 1 shows an example of incremental processing. The
determiner is the first sign of a coming noun phrase and the
trigger to start a visual search. As vision-relevant words are
heard, they are sent as constraints to the vision search.

3.2 Incremental Vision
As described above, vision’s goal is to identify the ob-

ject(s) referred to using natural language. We tackle the
problem of segmenting these objects from the overall visual
scene by making use of an attention mechanism that relies
on cues incrementally obtained from natural language in-
put. The visual input is color images overlaid with 3D point
clouds obtained with an RGB-D sensor (a Microsoft Kinect)
and organized into a rectangular array (depth image).

The relevant types of vision processors are saliency oper-
ators, object detectors and object trackers (see Figure 2). In
general, saliency operators detect the amount that a modi-
fier such as a color or a location applies to a particular area
of space, while object detectors typically search for specific
nouns, such as “faces,” “persons,” and “objects,” which are
then tracked by object trackers. An utterance such as “Do
you see the blue object?” starts a visual search process com-
posed of a number of saliency operators and one detector
and its associated tracker. Several such visual searches can
run in parallel. Within a single visual search, visual pro-
cessors are registered to one another so that the completion
of a processing iteration in one processor notifies the other
processors that are related to the same search.

3.2.1 Saliency operators
Saliency operators are computationally cheap bottom-up

processes that operate on RGB-D images, denoted I. When
a saliency operator is created as part of a visual search it
is configured using processing descriptors, which are essen-
tially the adjectives extracted from the utterance (i.e., which
specify what quality is being sought in this specific search).
Each saliency operator, S, then outputs a 2D saliency map,
M , with values between 0 (not salient) and 1 (maximally
salient) overlaid on the 3D point cloud such that S(I) = M .

Each saliency operator can be described in terms of its

cost per iteration C(S), where a single iteration refers to
the processing of an entire image frame.

C(S) = cp ∗ np + cf (1)

Here, np refers to the number of pixels (or 3D points) that
are processed by a given saliency operator, and cp is the
associated cost of processing a single point p. cf includes
additional fixed costs that do not fluctuate with respect to
np. Given this overall cost structure for saliency operators,
we notice that by reducing np we can reduce cost and thus
decrease CPU consumption and processing time. One way
to lower np is to enable saliency operators to use the results
from completed saliency operators to prune the portion of
the image that needs to be processed. Having a vision frame-
work that enables saliency operators to process data in this
fashion presents the opportunity to leverage partial search
results in a natural and incremental way.

In addition to incremental processing, another critical as-
pect of the vision framework is that saliency operators are
able to run in parallel. This allows saliency operators to
interact in four different ways: serial without incremental
influence (SN), serial with incremental influence (SI), par-
allel without incremental influence (PN), and parallel with
incremental influence (PI) (see Figure 3). Take, for example,
the search for a “tall red object,” which requires both height
(Sh) and color (Sc) saliency operators. In SN, Sh processes
the entire image, assigning a saliency value to every pixel
in the resulting saliency map Mh, followed by Sc also pro-
cessing the entire image. In SI, the second saliency operator
Sc uses Mh to only search for “red” in the region(s) of the
image corresponding to “tall.”

By contrast, in PN, Sh and Sc process the image simul-
taneously in independent threads. PI is similar, except that
saliency operators are also able to notify and interrupt other
operators when they have completed an iteration. If, for ex-

Search ManagerSearch Manager

Vision Component Interface

Search Manager
Available Saliency Operators

Detector

Image Processor

Available Detectors

Available Trackers

Image ProcessorSaliency Operator

DetectorDetectorDetector

TrackerTrackerTracker

AdvertisementsImage ProcessorImage ProcessorSaliency Operator

Advertisements

Tracked
Objects

Tracker

Other System Components

Figure 2: A high-level view of the vision framework.
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their relative times to completion

ample, Sh and Sc are running in parallel and Sc is a much
faster processor, it can notify Sh of its completion poten-
tially speeding up the remaining portion of the Sh iteration.

For a given visual search task, we would generally expect
SN to have the longest time to completion, followed by SI,
then PN, with PI being the most efficient, as shown in Fig-
ure 3. It is worth noting, however, that not every saliency
operator will lend itself to performance improvements via
incremental processing. If an operator has a very cheap cp,
there’s little to be gained from incremental processing. In
the case of PI, additional constraints must be met in order
to see a performance gain over the non-incremental case.
If, for example, two operators start at the same time and
have a similar iteration time, neither can benefit from the
other because both will have completed their iteration be-
fore information from the other becomes available. Thus,
in addition to meeting constraints on cp, operators will also
need to have significantly different processing times or start
in a staggered fashion to realize performance gains in PI.

Note that each saliency operator in a visual search need
not be very distinctive, certainly not enough to in itself suf-
fice for segmentation. Furthermore, some might be ambigu-
ous (e.g., “short” could be meant as the opposite of “tall”
or refer to the small length of an elongated object). So we
do not expect each of these operators to output very precise
information. All these operators need to do in common is
to prioritize salient image regions (and thus corresponding
parts of the point cloud) in order to render the following
segmentation step computationally more tractable.

3.2.2 Object detection
Objects are detected by segmenting the 3D point cloud.

We make the simplifying assumption often used in robotics
scenarios [8, 21] that objects are located on a dominant sup-
porting plane. Segmentation then amounts to detecting the
supporting plane, subtracting it from the point cloud, and
clustering the remaining points into object candidates. Clus-
tering is based on the Euclidian clustering method provided
by the Point Cloud Library (PCL) [16] and is computation-
ally the most expensive step.

To determine which object cluster(s) in the scene corre-
spond to the utterance, the detector validates each candi-
date cluster using the saliency maps. It operates in one

of two configurations: without or with attention. The first
approach, without attention, blindly iterates through the
object clusters, checking each cluster against the saliency
maps, stopping the detector iteration only after the whole
point cloud has been processed. The second approach sorts
3D points in order of decreasing saliency and uses a modifi-
cation of the PCL Euclidian clustering method to start with
the most salient point, greedily collect neighbouring points
and output the first most salient cluster, then repeat. Thus
the most salient objects pop out first and are immediately
available as referents for language, while less salient objects
follow later. This has the additional advantage of (poten-
tially) terminating the search before all clusters are checked.
This is simply done by stopping the cluster validation when
the sorted saliency map has no saliency values remaining.

In order to bind detected objects as visual referents a final
decision has to be made whether an object does indeed meet
the description, e.g., is it truly blue and is it truly tall. This
decision is based on thresholds, performed once objects have
been segmented. While the decision could have been decided
based on the saliency maps themselves, doing so was avoided
because the output of saliency operators cannot be consid-
ered very precise. Furthermore, meaningful thresholds are
difficult to define and will change from scene to scene.

3.2.3 Object tracking
Once a detector has successfully segmented objects from

a scene, a tracker is tasked with consuming the resulting
objects and tracking them from frame to frame. Object
tracking is performed by associating previously found ob-
jects with new ones based on spatial consistency. Two ob-
jects are considered to be equal if they overlap by more than
50%, otherwise a new object is added to the tracker.

These processors work in tandem with each other and
share information. A visual search for a “tall red object,”
for instance, might consist of an “object” detector using the
results from a “red” saliency operator and a “tall” saliency
operator. However, these implementation details must in-
teract transparently with outside components such as nat-
ural language without burdening them with vision-internal
details. Such transparent interaction is provided by the in-
terface described in the next subsection.

3.3 The Interface between Vision and NL
In order for a robotic system to perform naturally in the

context of human-robot interactions, a robot vision system
needs to be able to quickly respond to incremental cues from
natural language in order to dynamically instantiate and
modify visual searches. To accomplish this, a vision system
needs to expose an interface capable of naturally handling
requests from natural language components, thereby freeing
language components from requiring an intimate knowledge
of visual components and their capabilities. A common cur-
rency must exist between language and vision components to
enable this timely and natural interaction. Additionally, the
vision framework must be able to rapidly convert requests
(possibly incomplete) from natural language into meaningful
visual searches in a robust and dynamic way.

The interface between natural language and vision is han-
dled by search managers, the highest level mechanism re-
sponsible for dynamically building searches from natural
language cues, which are used to shield outside components



(a) Average runtime and confidence bars for all saliency op-
erators to complete for a given utterance. 24 utterances are
presented for a single scene, where each utterance is ran in
all four configurations (left to right: SN, SI, PN, PI). 13-20
are significantly shorter because they do not involve height
saliency, which is computationally more expensive.

(b) Runtime of color and location saliency operators plotted
against number of processed pixels/points.

(c) Average object detector runtime across scenes.

Figure 4: Experimental results.

from internal implementation details. When a new visual
search is triggered by an outside component via a call to
createNewType, a new search manager is instantiated, and a
unique search ID returned to the caller so that future visual
constraint requests can be associated with that particular
search. addDescriptor is then used to populate the search
with the appropriate combination of saliency, detector, and
tracker without the outside component being required to
know any of the details of the different processor types.

Because each processor has a unique capability depending
on its underlying implementation, processors are responsi-
ble for advertising their capabilities to the search manager
in order to allow it to populate the search with the appro-
priate vision processors2. For example, a processor capable
of generating saliency maps for various color values might
advertise “red,” “green,” and “blue.” These advertisements
are specified at runtime via a series of xml configuration
files. In keeping with the responsibilities of different types
of processors as described in the previous subsection, de-
tector advertisements are generally nouns, as opposed to
the description-based advertisements of saliency operators.
In this way the distinction between saliency operators and
detectors is hidden within the vision framework, and out-
side callers are not required to have knowledge about their
differences. Search managers automatically route incoming
predicates to the most appropriate vision component.

Once objects have been detected and reach the tracking
stage, outside components (e.g., NL) can query vision to
retrieve results about the visual search (e.g., by calling get-
TokensByTypeId). Once a visual search is no longer needed,
a request to vision to stopAndRemoveType can be made,
which stops all vision components related to that particular
search, and returns the resources back to the system.

To summarize, as a search manager receives incremen-
tal constraints, the manager maps the incoming predicate
to the most appropriate vision component (i.e., detector or
saliency operator), instantiates it, and starts its processing
loop. An arbitrary number of constraints can be incremen-
tally added to a search. A fully functional visual search is
composed of a detector, tracker, and zero or more saliency
operators. Clients of vision are freed from knowing details
of the underlying vision framework, and need only provide a
search ID and predicate constraints to build visual searches
and query for results.

4. EXPERIMENTAL EVALUATION
We evaluated the effectiveness of language-modulated at-

tention by measuring the time needed to identify a specific
discourse referent. In particular, we separately measured the
processing time of saliency operators and detectors to fully
evaluate the various vision configurations. We constructed 7
scenes, each composed of eleven objects, which were subse-
quently referred to in utterances such as “Can you see a tall
red object on the left?” For the constructed scenes, only the
following three saliency operators were required to uniquely
identify each target object.

Color saliency. The color saliency operator maintains a
list of commonly used color words (“blue”, “red”, “black”)

2This does not apply to those processors that are only used
internally by other vision processors, e.g., trackers, which
are paired with object detectors and thus do not advertise
their capabilities to the system.



associated with points in color space. These associations
are currently hand-coded but could also be learned as in
[19]. Distances of pixel colors to the salient color selected
by the processing descriptor are mapped to saliency values
in [0, 1]. Note that several colors can be salient at the same
time (“the red or blue object”), in which case the minimum
distance to a salient color is used.

Location saliency. Another commonly used property when
talking about a scene containing several objects is relative
location, as in “Pick up the object on the left”. The location
saliency operator maps location in the image to saliency and
can be configured for “center”, “left”, “right”, “top” or “ bot-
tom”. Saliency decreases in the form of a Gaussian from the
selected image border or image center.

Height saliency. While operating on the raw input data
prior to segmentation does not allow specification of object
shape properties (as we have not segmented any objects yet)
object height above ground (i.e., the supporting surface) is a
simple cue to support properties such as “tall” and “short”.
Height from ground to the highest point above ground is
mapped to [0, 1] for “tall” and [1, 0] for “short” respectively.

Each scene (object configuration) was paired with a set
of eleven utterances, each uniquely identifying a different
target object within the scene. Each scene/utterance run
was repeated ten times as processing time was measured.
Four vision configurations were used: (SN,PN) without de-
tector attention, and (SI,PI) with detector attention. In
order to formally evaluate the various vision configurations,
the experimental results were collected without the natural
language components, instead using a pre-processed version
of the utterances. This allowed the precise timing of vision
processing to be analyzed without being influenced by the
timing constraints imposed by language processing.

The results are presented in Figures 4(a) to 4(c). Fig-
ure 4(a) shows the average time and confidence for all saliency
operators to complete for a given search utterance. The
times presented are for eight different utterances3, and all
permutations (e.g.,“short blue” and “blue short”), for a sin-
gle scene. Each utterance/search was performed ten times
for each of the four configurations. Our predictions about
the relative runtimes from Section 3.2.1 are met. For each
utterance, SN has the longest runtime, followed by SI. Ad-
ditionally, the parallel cases have shorter runtimes than the
serial cases. Notice, however, that tPI is not always less than
tPN. This is attributable to the fact that the saliency opera-
tors used in these experiments do not meet the criteria laid
out in Section 3.2.1, namely that operators need to end at
staggered times and also have a high enough cp. Addition-
ally, because the runtime improvements across configura-
tions greatly depends on the particular vision process, more
expensive processes can potentially benefit a great deal.

Figure 4(b) shows the runtime of the color and location
operators as a function of np. The slope of the lines cor-
responds to cp, showing that using incrementally available
results to prune the search space (decreasing np) is an effec-
tive way to reduce processing times of saliency operators.

Figure 4(c) shows the average time and confidence of the
object detector for each scene, averaged over all target ob-
jects. The times for both detector configurations (i.e., with
and without attention) are compared, and it is clear that us-

3Searches involving only a single saliency operator, and
searches giving occasional incorrect search results are not
shown.

ing attention significantly speeds up detection time. Speedups
vary for different objects or positions in the image (e.g. large
objects near the top are typically found first when process-
ing the image pixel row for pixel row, so speedup for those
objects is smaller), but with attention the target object is
typically found first, while without attention it is on average
found after checking half of the objects.

Holding saliency operators constant, each dimension was
tested individually for significance. Holding ordering (se-
rial or parallel) constant and varying incrementality, incre-
mentality showed main effects in both serial and parallel
conditions (FPar(1, 238) = 112.56, p < 0.001; FSer(1, 238) =
680.97, p < 0.001). Holding incrementality constant and
varying ordering, ordering showed main effects in both in-
cremental and nonincremental conditions (FInc(1, 238) =
405.52, p < 0.001; FNon = 1130.1, p < 0.001). Hence both
dimensions were instrumental in yielding gains.

These results clearly demonstrate that the attentional cues
obtained incrementally from dialogue efficiently steer visual
processing to the relevant parts of the scene, resulting in sig-
nificantly reduced runtimes for detecting the target object.

5. DISCUSSION
While the experimental results focus on the vision compo-

nent and its ability to operate under various configurations
at varying degrees of efficiency, we have also validated our
approach using full utterances in a combined Vision and
NLP configuration. A full discussion of these results, along
with how these two components integrate within a larger
robotic architecture is beyond the scope of this paper. We
instead focus on the challenges and shortcomings encoun-
tered with these two components.

One challenge (shared by most if not all parsing systems)
is the attachment of prepositional phrases. Given a phrase
such as “Put the tall red object on the table in the other
room,” it is unclear whether the table is in this room or the
other room. In the former case, “on the table” should be
included in the description of the red object; in the latter
case it should be included in the instruction of where to
place the object. Its importance and a possible solution
are offered by the fact that people often produce as terse a
description as possible (i.e., they say only what is necessary
to uniquely identify the object in question): if no object is
found, the system should have the ability to experimentally
discard constraints one by one until a match is found.

On the vision side, the evaluation assumed that each con-
figuration was precisely achieved. In practice, the exact con-
figurations and resulting search time will depend heavily on
the timing of the search utterance (specifically the time be-
tween visual descriptors), and factors such as whether or
not the target item is in the field of view while descrip-
tors are being parsed. The distinction between serial and
parallel processing will likely be far less rigid. The con-
figuration of saliency operators and their interactions will
not be decided by a predetermined vision configuration, but
will instead be dynamically determined by the nature of the
human-robot interaction. For this reason, it is critical for
the vision framework to be able to robustly and dynami-
cally handle all these configurations and the configurations
that fall between them.

It is worth noting that in the experiments presented here,
the visual processing required was fairly simple. Once we
eliminate initial simplifying assumptions and add increas-



ingly complex vision processes, non-attentional approaches
are bound to hit performance bottlenecks. Biological vision
systems have developed attentional mechanisms to be able
to quickly react to the relevant parts of the visual scene. Ac-
cordingly, the focus in our work lies in developing principled
attentional mechanisms for the case of human robot interac-
tion to support visual processing at time frames compatible
with human language, rather than in optimising specific vi-
sion methods for certain scenarios.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we argued for integrated incremental vision

and natural language processing in order for robots to meet
the requirements posed by natural interactions with humans.
We demonstrated experimentally that constraining vision
with incrementally-acquired natural language descriptions
significantly speeds vision processing, and thus also reference
resolution. In addition, future work will explore the reverse
direction, using visually-acquired information to constrain
natural language interpretation.

Also to be addressed is the threshold value used to decide
whether a detected object meets the description. Future
work will employ probabilistic models of object properties
(such as the incrementally learned KDE based representa-
tions of Skocaj et al. [19]). An extension of the NLU system
will fuse existing confidence measures (e.g., in a parse tree)
with such probabilistic measures from the vision system.
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