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Abstract

Being able to quickly and naturally teach robots new knowl-
edge is critical for many future open-world human-robot in-
teraction scenarios. In this paper we present a novel approach
to using natural language context for one-shot learning of vi-
sual objects, where the robot is immediately able to recognize
the described object. We describe the architectural compo-
nents and demonstrate the proposed approach on a robotic
platform in a proof-of-concept evaluation.

Introduction
Data-driven techniques have made rapid advances in auto-
matic knowledge acquisition in various areas in robotics,
in particular, machine vision, where new objects, scenes
and activities can be learned from large image and movie
databases (Fergus et al. 2005; Leibe, Leonardis, and Schiele
2008; Wohlkinger et al. 2012). Two core assumptions of
data-driven methods are that (1) data sets are available for
training (Fergus, Weiss, and Torralba 2009) and that (2)
training is not time-critical. However, neither assumption
is typically met in “open-world” scenarios such as Urban
Search and Rescue missions, where robots must be able to
acquire new knowledge quickly, on the fly, during task per-
formance. Hence, we need to augment data-driven methods
with other methods that allow for online learning from pos-
sibly only a few examplars.

One-shot learning is a special case of such a method
where an agent can learn something new from just one expo-
sure. For example, a typical version of visual one-shot learn-
ing would entail seeing a new object (maybe together with
a linguistic label) and then being able to recognize novel in-
stances of the same object type (e.g., from different angles
and in different poses). Unfortunately, most approaches to
one-short object learning are very limited with respect to the
allowable teaching inputs (e.g., they are typically unimodal)
and often require multiple trials (e.g., (Fei-Fei, Fergus, and
Perona 2006; Lake, Salakhutdinov, and Tenenbaum 2012)).
Recent integrated approaches to one-shot learning, however,
are starting to address these problems by utilizing contex-
tual information available in a cognitive architecture (e.g.,
(Mohan et al. 2012; Cantrell et al. 2012)).
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In this paper, we will build on the successes of these re-
cent integrated approaches and show how deep interactions
between vision and natural language processing algorithms
can enable one-shot object learning from natural language
descriptions. By “one-shot object learning” we intend that
the robot needs to hear a “sufficiently specified object de-
scription” (which we will make more precise below) only
once before it is able to recognize the object in its environ-
ment in different contexts and poses. The key idea is to ex-
ploit structured representations in object descriptions to first
infer intended objects, their parts and structured mereologi-
cal relationships and to then build structured visual represen-
tations together with visual processing schemes that allow
for object recognition in different contexts and poses.

Motivation and Background
The human visual system seems to use multiple representa-
tions and processing schemes to detect and recognize per-
ceivable objects (e.g., (Logothetis and Sheinberg 1996)). At
the very least, there seem to be two major systems that differ
significantly in both their representations and the processes
operating on them: (1) a system that represents objects by
combining multiple views or aspects of the object, and (2)
another system seems to represent objects in a compositional
way, in terms of objects parts and their spatial, mereolog-
ical relationships. The differences in representation have
important consequences for how perceptions are processed.
In the first system, representations of different object views
are matched directly against parts of a scene, whereas in the
second different object parts have to be recognized together
with their spatial relationships. Thus, while the former does
not require notions of “primitive object” and “spatial rela-
tionship” as object views or aspects are processed in a holis-
tic fashion, the lack of a distinction between object parts
and how they are composed to form composite objects also
prevents it from being able to recognize the compositional
structure of objects and their parts. As a result, unless two
objects are similar in their appearance, the process cannot
detect structural similarities (e.g., that two objects are con-
tainers with handles on them). The latter approach allows
for object specifications in terms of structural features (parts
and their relationships) and can exploit deep structural sim-
ilarities among objects that differ in their visual appearance.

The difference in functional capability comes at a price:



direct matching is faster and requires fewer computational
resources compared to structural processing. On the other
hand, structural processing can lead to more compact repre-
sentations of objects (in terms of structural features that are
more abstract and succinctly represented than different ob-
ject views). Most importantly for our purposes here, struc-
tural processing allows for natural language descriptions of
object representations as long as there are corresponding
natural language words for the involved primitive objects
and their relationships, while view-based object processing
only allows for “atomic” natural language labels (which do
not reveal the structure of the object). Moreover, humans
are very good at learning new object types based on a sin-
gle natural language description, especially when the item to
be learned can be broken down into previously known parts
(Lake, Salakhutdinov, and Tenenbaum 2012).

Both approaches to object representation and recognition
have been pursued in the machine vision communities, each
with varying success. Most methods for recognizing object
categories rely on sufficiently large sets of training views
or training exemplars to support robust statistical inference
methods. In fully supervised learning schemes these exem-
plars are provided as manually labeled images, e.g., (Leibe,
Leonardis, and Schiele 2008), which quickly becomes un-
manageable with an increasing number of categories.

Using prior information that is common to many cate-
gories (Miller, Matsakis, and Viola 2000) reduces the num-
ber of required training exemplars. Moreover, describing
objects by their attributes allows for a much richer descrip-
tion of a scene than just naming objects. (Ferrari and Zis-
serman 2007) present a system for learning object attributes,
such as “striped” in a semi-supervised manner from large
sets of training data. (Farhadi et al. 2009) then use com-
binations of attributes to describe objects, such as “furry
with four legs”, or identify unusual attributes such as “spotty
dog”. This allows for learning new object classes with few
examples, as objects share attributes, but learning attributes
still requires large amounts of labeled training data. In a re-
lated approach (Hwang, Sha, and Grauman 2011) train their
classifier jointly over attributes and objects classes for im-
proved robustness in the attribute naming as well as classifi-
cation task, again learning from large datasets of thousands
of labeled images. All the above approaches treat objects as
bounding boxes in 2D images, not taking into account spa-
tial composition of objects (except in some cases implicitly
within some learned features).

These statistical learning approaches require large
amounts of training data. To this end, some authors use
very large databases available on the internet, e.g., for 2D
images (Fergus et al. 2005; Fergus, Weiss, and Torralba
2009) or 3D models (Wohlkinger et al. 2012). These ap-
proaches are semi-supervised. Only labels (search queries)
are given, and care has to be taken when taking the often
noisy search results for training. Moving from batch to in-
cremental learning schemes (Fei-Fei, Fergus, and Perona
2007) makes such approaches more suitable for robotics ap-
plications. Also, by using the robot as an active observer,
able to obtain its own training examples, automatic object
discovery approaches can search the environment for recur-

ring object-like structures (Kang, Hebert, and Kanade 2011;
Herbst, Ren, and Fox 2011; Karpathy, Miller, and Fei-Fei
2013). Interactions then individuates single objects (Fitz-
patrick et al. 2003) and in-hand rotation allows to obtain a
large set of different object views (Krainin et al. 2011).

But what if a robot has to learn a new object quickly dur-
ing task performance? This one-shot learning is compara-
tively easy for specific object instances (Özuysal et al. 2009;
Collet et al. 2009), but considerably more challenging for
categories (Bart and Ullman 2005; Fei-Fei, Fergus, and Per-
ona 2006; Salakhutdinov, Tenenbaum, and Torralba 2012).
User interaction and dialogue are used in (Skocaj et al. 2011)
to learn about objects, but the setting is limited to table tops.

Describing objects explicitly in terms of structural fea-
tures and their relations requires identifying and model-
ing object parts and their attributes. The approach by
(Varadarajan and Vincze 2012) uses Geons to model ob-
ject parts such as handles, and relations between them to
describe common affordances, such as support or graspabil-
ity. Approaches like (Ückermann, Haschke, and Ritter 2012;
Katz et al. 2013; Richtsfeld et al. 2014) perform scene seg-
mentation from RGB-D data at a slightly lower level, lead-
ing to objects defined in terms of groups of parametric sur-
faces, and allow a broader range of objects to be modeled.
What makes these structural approaches appealing is that
they abstract visual data to a level where meaningful at-
tributes in terms of language (“the top side”) as well as robot
tasks and capabilities (“grasp the handle”) can be defined.

Requirements for Language-Guided Visual
One-Shot Learning

Visually perceivable objects can be described in natural lan-
guage in a variety of ways that capture object categories, ob-
ject parts, surface patterns and symbols, object characteris-
tics, spatial and mereological relations, and others. For ex-
ample, using adjectives and nouns to refer to objects and ob-
ject parts, and using prepositions to refer to spatial and mere-
ological relations among objects and object parts, a mug
might be described as “cylindrical container with a round
handle attached on one side”. “Cylindrical” and “round” are
adjectives that refer to visually perceivable properties of ob-
jects while “container” and “handle” are nouns referring to
object parts (that also have certain properties such as “be-
ing able to contain items” and “affording to be grasped for
pick-up”). Moreover, “attached” indicates that the parts are
connected and “on” refers to a spatial relationship further
specifying the attachment. Another description using verbs
might get at the same content: “cylindrical container that can
be picked up by its handle” where the handle’s attachment
to the object is implied via the action specification “can be
picked up”. Clearly, the latter example provides richer in-
formation about mugs, but also requires more reasoning ca-
pabilities for explicating the implied properties and is much
more complex to realize computationally. Thus, to make
the project feasible, we restrict the natural language side to
simple noun phrase descriptions of objects that do not in-
volve complex embedded clauses or stretch over multiple
sentences (proving incremental descriptions), even though



the ultimate goal is to allow for that kind of variety.
To be able make sense of object descriptions, the vision

system must be able to effect a general mapping from struc-
tured linguistic descriptions to hierarchical object descrip-
tions that capture the types and relationships of object parts
referred to in the natural language description. The vision
system can then utilize this mapping to build new internal
representations of previously unknown objects and will be
able to recognize them as long as it has the capabilities to
recognize object parts and their mereological relationships.
I.e., whatever hierarchical representation the vision system
developed based on the natural language description, it even-
tually has to “ground out” in perceptual categories for which
the vision system has detectors and in spatial and mereolog-
ical relationships among those categories which the system
can determine. These perceptual categories can either be al-
ready learned complex objects, or they might be “primitive
objects” that are recognized in their entirety (e.g., either us-
ing built-in geometric models as is common for basic shapes
like “cylinders” or using statistical models trained on a large
data set as could be done for “handle”). Note that often even
basic shapes do not fit exactly into a primitive shape cate-
gory (e.g., an orange is roughly spherical, cups are roughly
cylindrical), it is critical for vision processes to be flexible
enough to account for “approximate fitting” of primitive ob-
jects (e.g., object shapes).

Beyond the 3-D nature of objects, a variety of 2-D sur-
face patterns and textures can also be described in natural
language. These range from simple patterns such as crosses,
to complex patterns like product labels (e.g., the label on
a Coke can) or special symbols (such as the symbol for
biohazards), and also include textures such as checkered or
plaid. Surface pattern descriptors can be used in combina-
tion with object categories and object parts to further specify
the details of an object (from a visual processing perspective,
a Coke can is a can with the Coke label texture on it).

Notice that many object descriptions are also true of
textures. The expression “red cross”, for example, could
equally refer to a 3-D object and a 2-D surface pattern.
Hence, the intended meaning (object vs. surface pattern) has
to be determined either through explicit instruction or from
instruction together with perceivable context; and if it cannot
be determined, the robot might have to use additional strate-
gies to disambiguate the meaning (e.g., through discourse
with the interlocutor). Conversely, it is also the case that
multiple natural language descriptions can be used to refer
to a single object property. Hence, the natural language and
vision systems need to be able to handle this many-to-one
mapping from descriptions to visual representations.

In addition to nouns referring to atomic or complex object
types, descriptions of object characteristics are used to refer
to visually perceivable properties such as color, size, sym-
metry, height, and rigidity, just to name a few. Such descrip-
tions are often expressed via adjectives in noun phrases to
further specify object categories, parts, and surface patterns.
Moreover, spatial relations referring to constituent parts of
an object are often used in noun phrases to describe the rela-
tionship among parts (including mereological relationships
among parts and subparts), as in the example “cylindrical

container with a round handle attached on one side”. Being
able to use spatial relations among object parts allows great
flexibility in object descriptions; in particular, it enables the
linguistic description of a decomposition of the object which
can be directly used in the vision system for hierarchical ob-
ject representations. These spatial relationships can hold be-
tween object categories, object parts, and surface patterns.

Descriptions of objects can also contain modifiers that are
not inherent descriptions of the object itself, but serve to dis-
ambiguate a particular object from similar ones in the scene
(e.g., “the cup on the left”), or provide attention cues to
speed up detection (e.g., “the book on the top shelf”). The
vision system must ignore these additional descriptions as
they are not constitutive of the object, but are used to single
out an object in the current context. Since the general prob-
lem of distinguishing what parts of a referential expression
belong to the object description proper vs. serve the purpose
of object identification is extremely difficult (as it might re-
quire significant background knowledge about object types,
uses, context, etc.), we restrict our investigation to object
descriptions without additional identifying information.

Natural Language and Vision Integration
To enable one-shot natural language-guided object learning,
the natural language and vision systems of the robotic ar-
chitecture have to be deeply integrated, allowing for the
exchange of information about objects, objects parts, and
spatial relations that may not have an established meaning
yet. For example, the natural language understanding (NLU)
system might attempt to resolve a noun phrase (e.g., “a red
cross”) to an object in the visual scene whose meaning is
ambiguous from the vision system’s perspective, because it
could denote a 3-D object and a 2-D texture, both of which
are present in the visual scene. The vision system, in turn,
might provide the candidate referents back to the NLU sys-
tem, which can then attempt to interpret subsequent expres-
sions as further specifications of the referent (“on it”). If ref-
erence resolution fails, then the dialogue system can attempt
to ask for further specification. It is this kind of internal dia-
logue between the natural language and vision systems that
enable one-shot visual object learning. We will, thus, briefly
describe those systems next.

The Natural Language System
Several components are needed for spoken natural
language-dialogue interactions, including a speech rec-
ognizer, a syntactic and semantic parser, a pragmatic
reasoner, a dialogue manager, a goal manager, a sentence
generator, and a speech synthesizer. After the speech recog-
nizer has recognized a word, the recognized word is passed
on to the syntactic and semantic parsers for integration
into the current parse. The goal of the parser is to utilize
syntactic structure to form meaning representations that
the robot can further process. For example, the query “Do
you see a medkit?” will be represented as an interrogatory
utterance with semantics represented in predicate form as
see(self,medkit). Note that asking whether the robot
can see an object is not only a request for information, it



is an instruction to look around for the object in question
(represented as goal(self, found(self,medkit))), as the
robot must first try to find the object in question. The
dialogue manager uses the pragmatic reasoner to carry
out the pragmatic analysis necessary to generate these
deeper semantics from the sentence’s surface semantics.
Pragmatic analysis is accomplished by comparing the
incoming utterance (which is received in a form that
contains utterance type, interlocutor information and
adverbial modifiers in addition to surface semantics)
against sets of pragmatic rules which map utterances (e.g.,
AskY N(Speaker, Listener, see(Listener,medkit)))
to deeper semantics under certain contexts (e.g.,
goal(Listener, found(Speaker,medkit))).

Goals generated through pragmatic analysis are sent
to the goal manager, which attempts to find appro-
priate actions to achieve those goals. In the case
of goal(self, found(self,medkit)), the goal manager
searches for and identifies the “find” action, which attempts
to find the desired object in the robot’s immediate environ-
ment. This action first tries to find an acceptable means to
search for the object in question by requesting a typeID from
the vision system (e.g., for the type “medkit”) to ensure that
the type of object in question is already known to the vision
system. If the vision system knows of the object type, the
goal manager instructs the vision system to perform a visual
search using the identifier to locate objects of that type, and
the results of the search will be reported back to the natural
language system. If an acceptable visual search cannot be
initiated because the object type is unknown, the goal man-
ager will submit a natural language generation request to the
dialogue manager to indicate that the robot does not know
what the object looks like.

The dialogue manager can then keep track of the dialogue
context and interpret subsequent utterances (based on their
dialogue context and syntactic form) to be explanations of
the object type in question. The explanation, once parsed, is
then sent back to the vision system which can use it to form a
new object representation together with a configuration of its
subsystems that will allow it to recognize the object. Details
of the employed natural language system are described in
(Cantrell et al. 2010; 2012; Briggs and Scheutz 2013).

The Vision System
The vision system is a highly parallelized and modular set
of Saliency Operators, Detectors, Validators, and Trackers,
responsible for detecting, identifying, and tracking objects
that can be described in natural language (see Figure 1).
It supports multiple asynchronous visual searches that can
be initiated dynamically and incrementally through interac-
tions with the natural language system. Each visual search
is controlled by a Search Manager which is instantiated by a
natural language description and responsible for assembling
and managing the requisite processes that are necessary for
performing the particular visual search. Search managers
can range in complexity from simple searches consisting of
only one Detector and one Tracker (with no Saliency Oper-
ators and no Validators), to hierarchical searches consisting
of several layered Search Managers.

Search ManagerSearch Manager

Available Trackers

Available Detectors

Vision Component Interface

Search Manager

Available Validatiors

Detector

Image ProcessorImage Processor

DetectorDetectorDetector

TrackerTrackerTracker

AdvertisementsImage ProcessorImage ProcessorValidator

Advertisements

Tracked
Objects

Tracker

Language Input

Available Saliency Operators
AdvertisementsImage ProcessorImage ProcessorSaliency Operator

Image ProcessorImage ProcessorValidator

Saliency Operator

Detected/Tracked Object(s)

Figure 1: An overview of the vision system.

Saliency Operators are attentional mechanisms that op-
erate on entire images to locate the most salient regions of
an image with respect their associated property (e.g., color,
orientation, size, etc.). Each operator produces a probabil-
ity map where each pixel of the map is assigned a value in
the range [0, 1]. The resulting maps from multiple saliency
operators are fused together by a special purpose “Master
Saliency Operator” in order to locate the overall most salient
image region (cp. to (Itti and Koch 2001)).

Detectors are responsible for segmenting target object
candidates and can be specialized detectors (e.g., face detec-
tor) or generic segmentation processes that attempt to clus-
ter the scene into constituent parts. Generic segmenters can
consume saliency maps to guide the segmentation process to
particular parts of the scene (Krause et al. 2013).

Validators check segmented objects for a particular visual
property (e.g., color, shape, etc.), operating in parallel or
chained together sequentially. If an object candidate is found
to have the required visual property, it is tagged as such and
a confidence level between [0, 1] is assigned for that prop-
erty. Successfully validated objects are passed on through
the chain of Validators, being tagged by each Validator along
the way. If a candidate object fails to meet the requirements
of any Validator, it is dropped from further consideration.

Trackers receive fully validated objects which they then
track from image to image. Various tracking options are
available, and can range from simple matching based track-
ers to more heavy-weight trackers such as OpenTLD (Kalal,
Mikolajczyk, and Matas 2012). Tracked objects are then
available to other components in the system (e.g., the dia-
logue system, the manipulation system, etc.).

The particular generic detector used in the experiments
below segments RGB-D point clouds of possibly cluttered
scenes into a set of object candidates (Richtsfeld et al. 2014),
by grouping locally smooth surface patches using learned
3D perceptual grouping principles. Each object candidate,
in turn, consists of a set of surface patches and their neigh-
borhood relations. Using a mixture of planar patches and
NURBS patches allows for accurate modeling of a wide va-



riety of typical indoor objects.
Furthermore, the segmented surfaces are inspected by

validators for color, texture, and shape properties. The
shape validator checks planarity and relative orientation of
patches. And the texture validator checks individual surfaces
for known textures based on 2D shape contexts (Belongie,
Malik, and Puzicha 2002). Shape contexts are particularly
suited to one shot learning of textures in dialogue contexts.
Symbols and patterns marking objects for specific uses, such
as a red cross or a biohazard sign, are more likely to be ex-
plicitly referred to in a dialogue than, for example, the tex-
ture of a cereal box (note that people will refer to the cereal
box itself, not its texture). Such “simple” textures are better
described by an edge based descriptor (such as shape con-
texts) than by distinctive feature descriptors (such as SIFT),
which work best with rich, dense textures. Shape contexts
are at the same time very descriptive and robust against var-
ious distortions (we want to recognize any cross, not just
a specific instance). A shape context descriptor is learned
from a single object view, adding several artificially warped
versions of the training image for improved robustness.

To facilitate the building of visual searches from natu-
ral language, the vision system takes simple quantifier-free
first-order predicate expressions (i.e., the meaning expres-
sions of noun phrases) and maps them onto various vi-
sion processes. Specifically, the language input is first de-
composed into constituent parts (predicate expressions), and
then an attempt is made to satisfy each descriptor with an
existing vision capability. Each vision process mentioned
above (with the exception of Trackers) provides a descrip-
tion of its capabilities so that a Search Manager can easily
assemble the necessary vision processes based on the predi-
cate description. These existing vision processes can be tra-
ditional bottom-up vision algorithms that have been trained
off-line, a composition of low-level vision algorithms that
have already been learned through one-shot learning, or
logic-guided specifications of how vision processes should
be assembled (as is the case with spatial relations).

Proof-of-Concept Evaluations
The vision and natural language systems have been fully im-
plemented in our DIARC architecture (Scheutz et al. 2007;
2013) and evaluated on a Willow Garage PR2 robot in real-
time spoken dialogue interactions. The particular scenario
we report here is one in which the robot is located in front
of a table with several objects unknown to the robot (see the
bottom in Figure 2). A human instructor then teaches the
robot what a “medkit” is through a simple natural language
dialogue (see the top of Figure 2):
H: Do you see a medkit?
R: What does a medkit looks like?

Here the request for type identifier for “medkit” failed,
hence no visual search could be performed, and the dialogue
manager was tasked with providing the appropriate feedback
to the human instructor.
H: It is a white box with a red cross on it.
R: Ok.

After receiving the definition of “medkit” and having been
able to configure a visual search, the robot now knows how

Figure 2: A human instructor teaching the robot what a
“medkit” is (top); a typical instruction scene viewed from
robot’s mounted Kinect sensor (bottom).

to recognize medkits and complete the search (despite var-
ious distractor objects). Specifically, the utterance “It is a
white box with a red cross on it” is translated by the natural
language processing system into the quantifier-free logical
form (with free variables ranging over perceivable objects)

color(X ,white)∧type(X ,box)∧
color(Y ,red)∧type(Y ,cross)∧on(Y ,X)

which then gets passed on to the vision system. Search
constraints are grouped based on their free variables, and
each collection is used to instantiate a visual search.
The fragment “color(X ,white)∧type(X ,box)” triggers a vi-
sual search for white boxes (V S1) while the fragment
“color(Y ,red)∧type(Y ,cross)” triggers a separate visual
search for red crosses (V S2). This leaves the relation
“on(Y ,X)” which initiates a third search for the “on”-
relation between two objects as given by searches that found
objects for the free variables X and Y . Note that there is an
interesting complication in this example in that the expres-
sion “red cross” is not used to indicate an object but a texture
and that the “on”-relation really can hold between two ob-
jects, two textures, and an object and a texture. Since the
vision system in this configuration does not have a validator
for cross objects, only one for cross textures, it searches for
a texture on the surface of segmented objects (had it had a
validator for cross objects, it would have had to check the
other “on” relation too).

When asked, the robot confirms that it sees a medkit:
H: Now do you see one?
R: Yes.



And when the medkit is moved to a different location in a
different pose, the robot can still recognize and point to it:
H: How about now?
R: Yes.
H: Where is it?
R: It’s over there.

A video is available at http://tinyurl.com/kjkwtos.
We also verified that the vision system could learn the

remaining two objects depicted in Figure 2: “yellow box
with a radioactive symbol on it” and “orange cylinder with
a biohazard symbol on it”, which are formally translated as
color(X ,yellow)∧type(X ,box)∧type(Y ,RA)∧on(Y ,X)
color(X ,orange)∧type(X ,cylinder)∧type(Y ,BH)∧on(Y ,X)

Note that these descriptions differ from that of the medkit
in that no color description was given for the texture (i.e.,
the colors of the radioactive and biohazard symbol were not
specified). Hence, different colors are possible for those
markers, while for the medkit the red color of the cross be-
came an essential part of the “medkit” object description.

Discussion
The above example demonstrates how the robot can learn
to recognize new objects based on a single natural language
description as long as it has a way to recognize the compo-
nent parts and their spatial relations as detailed in linguis-
tic expression (i.e., the concepts of 3-D box and 2-D cross
as well as colors and spatial relationships in the above ex-
ample). Note that the main goal was to provide a proof-
of-concept demonstration on a fully autonomous robot to
show that the proposed one-shot learning method is viable
and feasible, not not to provide a thorough evaluation of
the one-shot learning capabilities enabled by the proposed
interactions between the natural language and vision sys-
tems. For one, because the current system does not have
a large number of basic detection and natural language ca-
pabilities as the focus is on the depth of the integration, not
the breath of coverage. But more importantly, because it
is not even clear how to best evaluate such integrated ca-
pabilities (e.g., how many instruction-object pairs would it
take to convincingly demonstrate that the algorithms gener-
alize?). We believe that a thorough evaluation of one-shot
learning will ultimately have to include a careful selection
of different types of interaction scenarios and contexts that
each can each highlight important aspects of one-shot learn-
ing. For example, it would be possible for the robot to learn
how to recognize an object even without seeing it as long
as the linguistic expression is unambiguous and it already
knows all constituent concepts (in the above case, the am-
biguity between “red cross” denoting an object vs. a tex-
ture would have to be resolved linguistically, for example,
by saying “red cross symbol”). Moreover, the robot could
try to maximally exploit the visual information provided in
the instruction context to learn as many aspects as possible,
only requiring minimal knowledge to begin with. For ex-
ample, the robot could also learn what a cross was based
on its knowledge of red and a capability to form new shape
descriptors, or it could learn what “on” meant based on the
spatial relation between the box and the red cross. Moreover,

it could exploit linguistic knowledge that “red” and “white”
are color terms to even learn those colors based on its per-
ceptions. These would clearly be interesting directions to
pursue in the future.

Finally, it is important to point out that our proposed ap-
proach to one-shot learning should be viewed as a comple-
ment to existing data-driven approaches, not as a replace-
ment. For one, not all objects can easily be described in
natural language and thus learned from natural language
descriptions. In particular, natural kinds such as plants,
rock formations, and many other naturally occurring, vi-
sually perceivable phenomena are often difficult to break
down into constituent parts for which natural language de-
scriptions exist (e.g., due to their irregular shape and struc-
ture). In this case, a data-driven approach that was trained
on many instances of a category (e.g., flower) would be able
to provide a new primitive object category that could then be
used in other object descriptions that are decomposable (e.g.,
“flower bed” as “multiple flowers in a row”). Also note that
it is possible for both types of representations (“structured”
vs. “atomic”) to co-exist for the same object category, which
has the advantage of recognizing objects faster and allowing
for the recognition of potentially more instances depending
on training data, while also having access to structured rep-
resentations that allow for augmented learned models and
for NL descriptions of objects (e.g., if the robot has to de-
scribe an unknown object to a human interactant). It might
also be possible to use structured representations to bias
data-driven methods to speed up learning and achieve better
recognition performance (e.g., knowing that “handle” has to
be part of “mug” no matter what the mug looks like, might
provide an important bias to data-driven segmentation).

Conclusion
We argued that data-driven learning methods have to be
complemented by one-shot learning methods to meet the de-
mands of future human-robot interaction scenarios. We in-
troduced a method for one-shot language-guided visual ob-
ject learning that requires a deep integration between natu-
ral language and vision processing algorithms and demon-
strated the viability of the proposed approach on a robot in a
simple human-robot dialogue. Future work will extend the
current system to allow the robot to maximally exploit the
information present in both the linguistic and visual stimuli,
which should enable additional one-shot learning of shapes,
textures, and spatial relations.
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