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Models of Cross-Situational and Crossmodal Word
Learning in Task-Oriented Scenarios

Brigitte Krenn , Sepideh Sadeghi, Friedrich Neubarth, Stephanie Gross, Martin Trapp, and Matthias Scheutz

Abstract—We present two related but different cross-
situational and crossmodal models of incremental word learning.
Model 1 is a Bayesian approach for co-learning object-word
mappings and referential intention which allows for incremen-
tal learning from only a few situations where the display of
referents to the learning system is systematically varied. We
demonstrate the robustness of the model with respect to sen-
sory noise, including errors in the visual (object recognition) and
auditory (recognition of words) systems. The model is then inte-
grated with a cognitive robotic architecture in order to realize
cross-situational word learning on a robot. A different approach
to word learning is demonstrated with Model 2, an information-
theoretic model for the object- and action-word learning from
modality rich input data based on pointwise mutual information.
The approach is inspired by insights from language development
and learning where the caregiver/teacher typically shows objects
and performs actions to the infant while naming what the teacher
is doing. We demonstrate the word learning capabilities of the
model, feeding it with crossmodal input data from two German
multimodal corpora which comprise visual scenes of performed
actions and related utterances.

Index Terms—Artificial intelligence, cognitive robotics, intelli-
gent robots, intelligent systems, multimodal word learning.

I. INTRODUCTION

IF ROBOTS are to interact naturally and learn from humans
in the future, mechanisms are needed to enable robots

to learn new activities based on observations and linguistic
instructions. Two questions regarding early word learning in
infants are of particular interest for this article on grounded
word learning for artificial agents: 1) the multimodal nature
of early infant language acquisition where visual activity and
linguistic cues are processed in parallel and 2) the types of
words that are learned first and why. Regarding the former,
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see Gogate [1] who discussed the multisensory nature of com-
munication where speech, visual, and motor stimuli concur.
Suanda et al. [2] showed that parent–toddler communication
is rich in the multisensory input where parent discourse is
closely tied to visual stimuli, including what the parent has
in her/his hands, and the child currently grabs and has in
her/his focus of visual attention (see also [3]–[6]). Recent
work by Nomikou et al. [7] showed evidence for the relation
between caretakers’ action-language synchrony in the input
to six-month-old infants and the infants’ later production of
verbs.

Regarding the latter question in which words are learned
first, there is a broad discussion in the literature about the
acquisition of nouns and verbs in young infants. Recent
evidence suggests that very young infants across languages
are already able to learn word–action mappings. Gogate and
Maganti [8] showed that preverbal infants (8 and 9 months)
of a noun-friendly language background such as English map
novel words onto actions long before they talk. This effect
temporarily diminishes in postverbal infants (12–14 months)
learning a noun-friendly language. These findings contradict
earlier work such as Gentner [9], [10] who theorized that
for English learning (a noun-friendly language) toddlers learn
nouns before verbs.

Gogate and Hollich [11] provided evidence for the following
effects in word learning during infants’ first three years: they
suggest that in the first year infants’ word mapping ability
(onto actions and objects) emerges from learning words for
referents that are most concrete or imageable. For instance,
Nomikou et al. [7] found that the verbs used by caregivers in
early interactions are tightly coordinated with ongoing actions
and frequently in response to infant actions. In addition, there
is evidence from studies on intention awareness and com-
pliance that infants from six months on are sensitive to the
intentionality of others’ actions (see [12]–[14]).

Furthermore, Gogate and Hollich explicated that in the sec-
ond year, the dominance hierarchy of lexical categories in the
ambient language differently constrains the developing infants’
attention to nouns or verbs. This might explain the noun bias
of English learning toddlers identified by Gentner, or findings
by Childers and Tomasello [15] which showed that it was eas-
ier for two-year-old English speaking children to recall new
nouns than new verbs and they also produced three times more
nouns than verbs. Evidence for the effects of the ambient lan-
guage on word learning also comes from earlier work. See,
for instance, Brown [16] for early verb learning in the Mayan
language Tzeltal, or Choi [17] for Korean.
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In the third year, according to Gogate and Hollich, chil-
dren use what they have learned about their native language to
make guesses about new words. Children from noun-friendly
languages overcome their noun bias. Understanding of linguis-
tic cues leads them to flexibly learn the correct referents for
verbs.

In addition, Chen et al. [18] found 6–8 month olds from
English and Mandarin language environments could discrim-
inate action changes but not object changes, whereas 17–19
months olds were able to discriminate both. Based on cross-
linguistic comparisons of Chinese-, English-, and Japanese-
speaking children, Imai et al. [19] provided evidence that
both universally shared cognitive factors and language-specific
linguistic factors matter for early word learning.

Various computational models of word learning have
recently been proposed to demonstrate the acquisition of
word-to-meaning mappings. They typically either rely on co-
occurrence statistics of words and meaning elements, see,
for instance, Yu and Ballard [20] and Frank et al. [21],
or use information-theoretic measures to model the asso-
ciation between words and referents. See, for instance,
Kachergis et al. [22] who used entropy as the core measure to
model familiarity and uncertainty for learning word–referent
pairings, or Roy [23] who used mutual information for ground-
ing objects. While these works concentrate on noun-referent
learning, our Model 2 demonstrates both noun and verb-
referent learning. Another approach is presented in Alishahi
and Fazly [24] who used the knowledge about lexical cate-
gories (a combination of semantic information derived from
WordNet and morphosyntactic category, such as verb and
noun) in cross-situational word learning.

The approaches to word–referent mapping presented in this
article differ from the above-mentioned research in several
ways. While [20] and [21] are based on batch learning, both
approaches presented in Section III of this article focus on
incremental learning where the lexicon is constantly updated,
when the system is provided with new input. Thus, they are
comparable to [22] who also presents an incremental model.

Model 1, the word–object mapping model described in
Section III-A builds upon [21], in particular, the joint acquisi-
tion of the speaker’s referential intention and word meanings,
and transforms their approach into a mechanism for incre-
mental learning where only a few scenes need to be seen in
order to learn word–object mappings. Model 2 (described in
Section III-B), in contrast, focuses on the modality rich input,
comparable to what Yu and Ballard [20] and Frank et al. [21]
called social cues or Suanda et al. [2] addressed as the cross-
modal input. While Yu and Ballard employed a statistical
machine translation model [25] for mapping between words
and meaning, and Frank et al. focused on a Bayesian approach
to co-learning words and referential intentions, an information-
theoretic approach to word–referent learning is realized in
Model 2 utilizing normalized pointwise mutual information
as a key measure and some additional weighting mechanisms
in order to decide which word–object or word–action link
enters and remains in the lexicon. In this respect, Model 2 is
closer to Roy [23] or Kachergis et al. [22] demonstrated audio-
visual mappings between object classes and segments from

spontaneous speech in child–caregiver interactions. In contrast,
Model 2 goes beyond noun-object learning, however, using
data from adult teaching situations. Kachergis et al. tuned
their model toward replicating the learning effects resulting
from word learning experiments with adult humans presented
with pictures of unusual objects while hearing spoken pseu-
dowords (in each trial two pictures and two pseudowords were
presented). In contrast, both our models are geared to learn-
ing word–referent mappings from full-blown natural language
utterances related to visual situations. While Alishahi and
Fazly assumed that children have already formed some lexical
categories each of which contain a set of word forms before
word learning starts, we do not assume any prior categorical
knowledge in either of our word learning approaches. In the
object-word learning experiments using Model 1 (described in
Section IV-A), a word learning situation comprises an utter-
ance and a scene represented by the list of visual objects.
In the action-word mapping experiments employing Model 2
(described in Section IV-B), each learning situation consists of
an utterance, an action label, and labels for those objects which
are under visual attention. These are objects the speaker holds
in her/his hands, objects (A) which are moved, and objects
(B) next to which object A is moved.

While the input data for the learning experiments presented
in Section IV-A2 are obtained from real-world perceptual
inputs to a robot’s vision and speech recognition systems, the
input data used in Section IV-B stem from two multimodal
task corpora, the action verb corpus (AVC) (Section II-A),
and the MMTD corpus (Section II-B). We consider situated
task-oriented communication in an teacher–learner setting as
well suited for modeling natural language learning in robots.
This is motivated by evidence showing that this kind of com-
munication is rich in multimodal cues and thus comparable to
parent–young infant communication [1], [2].

II. MULTIMODAL TASK CORPORA

We start by introducing two corpora: 1) the AVC [26] and
2) Data set 1 of the OFAI multimodal task description cor-
pus (MMTD [27]),1 which are used by Model 2 (described in
Section III-B) for learning word–action and word–object map-
pings. The data sets are geared toward modeling natural lan-
guage learning in robots and inspired by early human language
learning research, in particular, by evidence for modality rich-
ness of the input to the infant’s learning system [1]–[6]. Our
data comprise situated task-oriented communication where
adult human teachers show and describe in natural language
simple tasks, such as moving a bottle next to a box and uttering
something like I take the bottle and put it next to the box. This
way, modality rich and highly redundant input to developing
and testing our artificial learning systems was produced.

AVC consists of multimodal data from 12 humans (eight
males and four females) performing in total 500 simple actions
(TAKE, PUT, and PUSH). MMTD is a collection of tasks where
a human teacher arranges and rearranges pieces of fruit on
a table, and explains what (s)he is doing to a camera for an

1The corpora can be downloaded from http://www.ofai.at/research/interact/
MMTD.html and http://www.ofai.at/research/interact/avc.html.
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Fig. 1. AVC: experimental setup (left-hand side). View through the Oculus
including the instructions (right-hand side).

anonymous learner to replicate the task. The corpus comprises
scenes from 22 teachers resulting in 196 actions combined
with related utterances serving as input to the learning model.

Both corpora comprise audio and video data. In addition,
AVC also contains motion data, including the 3-D coordi-
nates of hand, wrist, and elbow joints, and object positions.
While the video recordings for the MMTD corpus combine
the perspectives of the teacher and the learner, and a view
of the whole scene, the visual data in the AVC corpus are
restricted to the first person perspective, which is compara-
ble to a robot setting where the scene is perceived through
the robot’s eyes. Moreover, the corpora are annotated for
information, such as transliterations of the utterances, part-
of-speech tags, related lemmas (base forms of words without
inflectional information), location of the teacher looks (eye–
head gaze), specific object being moved, whether a hand
touches an object, whether an object touches the ground/table.
The object-related information is used for determining which
objects in the visual scene are in focus while an action is
performed. All annotation tiers are time aligned using Praat2

for the transcription of the audio and using Elan3 for aligning
audio, video, and annotation tiers. In the following sections,
the setups for data collection and the annotations for the two
corpora are described.

A. Action Verb Corpus

1) Setup for Collecting Data: Three objects were posi-
tioned on a table: 1) a bottle; 2) a can; and 3) a box. The
user sat (or stood) in front of the table wearing an Oculus
Rift DK2 Virtual-Reality headset4 with a Leap Motion sen-
sor5 for hand tracking mounted (see Fig. 1 left-hand side). A
camera (Microsoft Kinect) was positioned opposite the user
and directed at the table for object tracking. The user per-
formed different actions defined by visual instructions and
verbally described what he/she was doing. The user’s speech
and performed actions were recorded.

The Leap Motion is a stereo infrared camera which is
specialized on hand tracking. The software development kit
(SDK) provided detailed information of the position of the
various joints of the user’s arm down to the separate finger
bones. We used the Leap Motion mounted on a VR headset
to obtain the best available tracking performance. The Oculus
Rift DK2 was worn by the user and provided the head pose of
the user. The head pose was used to transfer the tracking data

2http://www.fon.hum.uva.nl/praat/
3https://tla.mpi.nl/tools/tla-tools/elan/
4https://www.oculus.com/dk2/
5https://www.leapmotion.com

of the Leap Motion to a fixed coordinate system. In addition,
the instructions for the current task were also displayed in the
Oculus Rift above the camera images (see Fig. 1 right-hand
side). In this manner, the user was able to look at the instruc-
tions without moving his/her head, e.g., to look at printout
versions of the instructions. Additionally, the setup forced the
user to direct the Leap Motion to his/her hands because oth-
erwise he/she would not have been able to see what he/she
was doing. This behavior was necessary for satisfying hand
tracking performance.

For object tracking, the red, green, blue (RGB) as well as
depth (D) data of the Kinect camera were recorded as a robot
operating system (ROS) bag6 on a separate machine running
Ubuntu. The object tracker from the V4R Library was used on
the recorded data.7 Models of the objects were created before-
hand with the RTM Toolbox.8 The offline tracking enables
the best possible tracking results because the object tracker
can be tuned for a specific recording. Besides the position and
orientation of the object, two Boolean variables were saved:
1) object is in contact with the table and 2) object is in contact
with a hand. The former is set automatically depending on the
object’s position, the latter is currently annotated manually.

2) Annotation: Apart from the (low-level) representations
resulting from the hand–arm and object trackers including per
frame the 3-D positions of the joints in the elbow, wrist,
and knuckles of the teacher’s left and right hand as well
as the object positions, the data were further annotated for:
1) Two Kinds of Transliteration: the one as close as possible
to speech preserving speech-related signals in the utterance,
such as hesitations, interruptions, and corrections; the other
one close to written text in order to apply computational lin-
guistic tools, such as part-of-speech taggers, stemmers, phrase
chunkers, and parsers, which are typically trained on the writ-
ten text; 2) part-of-speech tags; 3) canonical forms of inflected
words (lemmas); 4) hand touches object; 5) object touches sur-
face/ground; and 6) object A moves next to object B. Except
for the transliterations and whether a hand touches an object,
all tiers were automatically annotated and manually corrected.

B. OFAI Multimodal Task Description Corpus (MMTD)

1) Setup for Collecting Data: The teacher stood in front of
a table with the following objects placed on it: an empty sheet
of paper and a plate with three pieces of fruit: 1) a banana;
2) a pear; and 3) a strawberry (see Fig. 2). The task for the
teachers was to take the pieces of fruit one after the other from
the plate and arrange them on the piece of paper, and describe
what they were doing to the camera (cam 1) for a prospec-
tive listener/learner. As regards, examples for action-related
utterances see: ich nehme dann die Erdbeere (“I take then the
strawberry,” sample utterance related to a TAKE-action) und
lege sie vor mir auf die rechte Seite neben die Banane (“and
put it in front of me on the right-hand side next to the banana,”
sample utterance related to a PUT-action).

6A bag is a file format in ROS for storing ROS message data. See
http://wiki.ros.org/Bags. The ROS is a flexible framework for writing robot
software. See https://www.ros.org/about-ros/.

7http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/v4r-library/
8http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/rtm/
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Fig. 2. Schematic setup of Task 1 of the MMTD corpus.

2) Annotation: The data had been originally annotated for
transcriptions and transliterations of the teacher’s utterances,
parts of speech, eye gaze and gestures of the teacher, and
for the specific objects present on the scene referenced in
the teacher’s utterance. For the present word learning exper-
iments, additional information was manually annotated, i.e.,
whether the left or right hand of the teacher touched an object
(touchRightHand, touchLeftHand); whether an object touched
the ground/table (touchGround); and whether object A was
moved next to object B (moveObject). The data were man-
ually annotated based on the synchronized input streams of
the video cameras (cam 1 to cam 3) and the recordings of the
utterances. As illustrated in Fig. 3, mentioning an object in a
speech almost always correlated with an action that involves
the object. Furthermore, if we identify an action, such as
TAKE as involving touch by hand and loss of connection to
the ground, and PUT as movement and gain of connection
to ground with a potential placement near another object, we
observed that these feature combinations representing basic
actions co-occur with the corresponding verbs in the linguistic
description.

The present data related to the stimuli used in develop-
mental psychology for studying word–referent learning in
early childhood. See, for instance, Gogate and Maganti [8],
Chen et al. [18], and Gogate et al. [28] who paired ver-
bal stimuli with situated action to investigate noun and verb
learning. Whereas these studies work with nonsense words in
highly controlled laboratory settings, Nomikou et al. [7] used a
more naturalistic setting of mothers interacting with their child
while changing diapers in order to investigate the relation-
ship between action-language synchrony and verb learning.
Analyzing the multimodal data, they found amongst others
that the verbs the mothers used in the interaction with their
child were tightly coordinated with the ongoing action. These
findings, in turn, strengthen our decision to use in our learning
experiments the kind of task description data available from
MMTD and AVC where action and action-related utterance
are tightly coupled.

III. MODELS OF OBJECT AND ACTION LEARNING

In this section, we present two models of object-word learn-
ing and action-word learning, focusing on different aspects of
the learning models and the input being processed.

First, we present an incremental model for cross-situational
word–referent learning for words with concrete object

Fig. 3. MMTD: sample annotation and crossmodal relations; circles and
lines indicate relations between modalities.

TABLE I
WORD–OBJECT LEARNING FROM VARYING OBSERVATIONS OF

INTENTIONAL LANGUAGE USE

references (Model 1). The specialty of the model is that it dis-
tinguishes between referential and nonreferential use of words.
A word is referential, when it refers to an object present in
the current situation and nonreferential otherwise. For illus-
tration, see the sequence of situations in Table I which allow
the model to incrementally learn mappings between the word
knife and the object KNIFE, and the word cup and the object
CUP from only a few varying situations (henceforth scenes).
In Section III-A, the model details are presented. The model
is then examined with respect to its robustness to noisy input
from speech recognition and computer vision (Section IV-A1),
embedded in a robot architecture and run on a PR2 robot
(Section IV-A2).

Second, we present a model for action learning from modal-
ity rich input data (Model 2, Section III-B). While Model 1
uses referential intention as a key concept and is geared toward
learning from only a few varying situations, Model 2 focuses
on learning from highly redundant input, whereby redundancy
comes from modality richness and repetitiveness of the data.
Fig. 3 illustrates crossmodal relations. The AVC corpus com-
prises 78 basic TAKE, PUT, and PUSH situations, and MMTD
comprises 202 basic TAKE and PUT situations, each situation
combining visual action and related utterance. See Table II for
sample input situations. As each utterance relates to an action
in the visual scene, utterance, action label, and labels for the
objects in the visual focus are input to the learning algorithm.

A. Model 1: Cross-Situational Object-Word Learning

Here, we present the details of our current word learning
model (Model 1) which is limited to learning words which
refer to concrete objects in the scene. The input to the model
is word learning situations. Each of which consists of an
utterance–scene pairing where the utterance is an unordered
set of words and the scene is a list of objects present in the
scene. Building on Frank et al. [21], the learner assumes that

Authorized licensed use limited to: TUFTS UNIV. Downloaded on February 06,2023 at 16:03:51 UTC from IEEE Xplore.  Restrictions apply. 



662 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 12, NO. 3, SEPTEMBER 2020

TABLE II
SAMPLE INPUT SITUATIONS AS DERIVED FROM AVC AND MMTD:

VISUAL SCENE AND RELATED UTTERANCE

in each situation, the teacher uses the generative process illus-
trated in Fig. 4 to produce an utterance (Ws) corresponding
to the current scene (Os) and using a context-appropriate por-
tion (L) of the full lexicon to generate the referential words.
Lexicon refers to a many-to-many mapping between words and
objects, and a referential word refers to a noun with a concrete
object referent. In each situation, the model has to infer which
words are referential and what object they refer to. Referential
intentions of the teacher (Is) which refer to the objects that are
present in the scene and which the teacher is talking about,
determine the space of possible referents for each referential
word in the utterance (Ws).

In each situation, the model uniformly samples a subset
from the power set of all the objects present in the situation
(Os) representing the referential intention(s) of the teacher (Is).
Each word in the utterance is assumed to be referential with
probability γ and nonreferential with probability 1 − γ . The
probability of nonreferential use (PNR) of a referential word
(words in the model lexicon) is set to κ < 1 (to penalize the
nonreferential use of referential words), and is set to 1 for
nonreferential words. The probability of referential use of a
referential word in reference to a particular object (PR) is the
probability of the word being chosen uniformly from the set
of all words linked to that object in the lexicon.

In each situation, the model tries to reverse the generative
process described in Fig. 4 to discover a context-appropriate
portion of the full lexicon used by the speaker, where con-
text refers to the entities (words and objects) in the current
situation. In doing so, in each situation, the model infers a
mini-lexicon as a context-appropriate portion of the full lexi-
con. The model uses its current knowledge of the full lexicon
and co-occurrence statistics accumulated across situations for
hypothesis generation (generation of hypothetical mini-lexica)
and hypothesis testing (inferring the best mini-lexicon). The

Fig. 4. Graphical model describing the generation of words (Ws) from the
intention (Is) and lexicon (L), and the generation of the intention (Is) from the
objects presents in the scene (Os), where s indicates the situation. The plate
indicates multiple copies of the model for different situations (utterance–scene
pairs). Image from [21].

best mini-lexicon found in each situation then will be inte-
grated into the full lexicon inferred by the learner. These steps
will be described in more detail in Section III-A1.

Inferring the best mini-lexicon in each situation, requires
finding the MAP (maximum a posteriori) mini-lexicon by
marginalizing overall possible referential intentions, since Is is
unobserved. The model finds the MAP mini-lexicon according
to the Bayes equation and the probability distribution that it
defines over unobserved mini-lexica (L) and the relevant cor-
pus of situations (C), including the current situation as well as
the extracted ones from the lexicon (which shares some entity
with the current situation). The extracted situations are made
of the existing (in the lexicon) mappings for each word and
object in the current situation

P(L|C) ∝ P(C|L)P(L). (1)

We use P(L) ∝ e−α·|L| serving as a soft mutual exclusivity
constraint to produce a preference for one-to-one mappings
in the mini-lexicon inferred in each situation. Marginalizing
over all possible intentions in each situation, we can rewrite
the likelihood term P(C|L) as

P(C|L) =
∏

s∈C

∑

Is⊆Os

P(Ws|Is, L)P(Is|Os). (2)

Assuming that P(Is|Os) ∝ 1 and that the words of the utter-
ance are generated independently, we can rewrite the term
P(Ws|Is, L) as

P(Ws|Is, L) =
∏

w∈Ws

⎡

⎣ γ ·
∑

o∈Is

1

|Is|PR(w|o, L)

+ (1 − γ )PNR(w|L)

⎤

⎦. (3)

We employ the above equations in each situation, to find the
MAP mini-lexicon which describes the generation of situations
in C, including the current situation as well as the relevant
ones extracted from the full lexicon. We use “lexicon” and
“full lexicon” interchangeably in the rest of this article.

Our model departs from the previous model which is fully
Bayesian and a batch learning algorithm assuming full access
to all observations [21]. Our learning algorithm is incremental,
memory limited (memory of observations), and only locally (in
the context of single situation) Bayesian. A lack of access to
all data points is not a barrier for convergence of our learn-
ing algorithm [29]–[32]. The number of computations upon
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receiving a new situation to update the lexicon depends on
the input situation and the number of learned mappings for
the existing items (words and objects) in the current version
of the model lexicon. Since the model is memory limited, the
number of such word learning situations is limited and since
the number of items in an utterance and scene is limited too,
the number of computations remains fixed as the size of data
grows, allowing for scalability as well as online processing of
data.

1) Incremental Learning Algorithm: We use the incremen-
tal and memory-limited learning algorithm proposed in [29]
which remains tractable as the size of data grows. The learn-
ing algorithm is truly incremental as it sees each situation
only once and performs no iteration over data. Furthermore,
its memory of past observations is limited to the word–object
mappings stored in the lexicon. The algorithm uses context-
appropriate word–object mappings available in memory for
hypothesis generation (generation of hypothetical mini-lexica)
and hypothesis evaluation (inferring the MAP mini-lexicon).
This allows for quick hypothesis generation and hypothe-
sis testing while keeping the Bayesian inference tractable as
the amount of data grows. Bayesian inference to infer the
MAP mini-lexicon, is only applied locally with limited but
relevant evidence available in the memory (relevant to the
current observation). Our learning algorithm has two compo-
nents: 1) inferring the MAP mini-lexicon in each situation and
2) integrating the new mini-lexicon in the current full lexicon,
while applying mutual exclusivity constraints. The process of
inferring the MAP mini-lexicon, subsequently has two dis-
tinct components: 1) generating mini-lexicon proposals and
2) scoring the generated mini-lexica. Scoring is performed by
computing the relative posterior probability of the mini-lexicon
proposals based on (1). Generating mini-lexicon proposals is
guided by stochastic search techniques.

To summarize, in each situation, the learning algorithm
infers a mini-lexicon as an approximation to the context-
appropriate portion of the full lexicon used by the speaker.
This mini-lexicon is then integrated into the model’s current
full lexicon by adding the mappings in the best mini-lexicon
to the lexicon, and removing the existing alternative map-
pings from the lexicon, applying a strict mutual exclusivity
constraint between situations. We also apply a soft mutual
exclusivity constraint, in each situation, through the use of the
mini-lexicon prior probability function which is exponential in
the size of mini-lexicon and produces a preference for smaller
mini-lexica. For more details about the learning algorithm,
refer to Sadeghi et al. [29]. To learn more about the appli-
cation of the same learning algorithm in extended versions of
the graphical model used in this article refer to Sadeghi and
Scheutz [30], [33].

B. Model 2: Crossmodal Action-Word Learning—Actions
and Related Objects

In the following, we present a model of crossmodal word
learning (Model 2) where action verbs and words referring to
the objects involved in the actions are incrementally learned
from modality rich input.

1) Data Preparation: The input data for the action verb
and action plus object learning experiments presented in
Section IV comprise a series of situations. Each situation may
consist of one or two events with a different action (e.g.,
schieben “push” alone, or nehmen “take” with subsequent
stellen/legen “put”). Taking the situation as a multimodal per-
ceptual frame, it makes sense to use the term event for a single
occurrence of an action that can be perceptually individuated
and aligned with a unique utterance. An event comprises an
action together with all objects involved in that action. To
identify the multimodal sequences, i.e., time series on the
annotation tiers related to one action/event, the description
episodes of MMTD and AVC were automatically segmented
and aligned.

Such an alignment is not straightforward since in MMTD
teachers often start to describe the action/event before actu-
ally performing it. Segmentation in MMTD and AVC can
be facilitated through speech pauses, and as an idiosyncrasy
of MMTD—which originally was not designed for word
learning—by identifying connectors, such as und (“and”) or
dann (“then”). The algorithm is attentive to actions and speech
chunks which at least temporally overlap with the action
sequence. Based on pauses in the speech signal and temporal
co-occurrence between speech chunks and performed action,
the algorithm finds the sequence of speech chunks that should
be aligned with the current action. For a discussion of the
alignment of speech and action (acoustic packaging) in infant-
directed speech and beyond (see [34]). For more details on the
segmentation and alignment process applied to MMTD and
AVC (see [26]).

A scene in itself is a list of expressions referring either to
objects or actions or both. Thus, by defining different types
of scenes, we are able to model different learning strategies.
The result of the alignment process is a list of utterance–scene
pairs, comprising the whole corpus.

2) Model for Incremental Action Learning: Assuming that
the correlations between words and objects or actions occur-
ring in the same utterance–scene pair are sufficiently high, we
designed a word learning algorithm that sequentially processes
each event and checks if word-referent pairs can be assigned
to the lexicon. In this manner, the lexicon is incrementally
filled with entries, but if a word is mapped to multiple ref-
erents or a referent is mapped to multiple words, certain
links will also be “unlearned,” and hence removed from the
lexicon.

The key measure for assessing the significance of a given
word-referent pair (a “link”) is pointwise mutual information
(pmi). In order to be able to use this value for comparisons
between concurring links, one has to employ the normal-
ized pmi (the quotient of pmi and the self-information h with
h(w, r) = log2(1/p(w, r))). We also tested the potential of the
conditional probabilities p(w|r) and p(r|w) to support the deci-
sion whether a link should be added to or expelled from the
lexicon. These measures, however, were not useful.

For each event, the full set of potential links is created by
combining each word (unified list, lowercase) with each refer-
ent from the scene (object, action, or both), and the statistical
values (npmi) are updated for these links.
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The algorithm proceeds as follows: for all current referents
that are linked to a given word, if the difference between the
link with the highest npmi and links with lower npmi values
is greater than a given threshold (par.bdif , default: 0.05), the
first link will get an extra count on its “boost” value, the others
on their “decline” value.

In a second step, for all referents that have occurred so far,
the links to words of the current utterance are re-evaluated.
Similarly to the decline value, if a link is outranked by another
link and the difference between npmi values is greater than
the given threshold (par.bdif ), an extra count on its “exclude”
value is given. While decline compares links on the basis of
concurring referents, the exclude value stores information of
co-occurrences between words. There is an option to inhibit
the exclude value if the two words predominantly co-occur
as bigrams (skipping over functional words, such as arti-
cles or the preposition von “of”) in a significant number of
co-occurrences (e.g., Mitte [von dem] Blatt “center [of the]
sheet”; parameter: par.minbigr, default: 0.25). If the condi-
tions listed below are met, this particular link is included in
the lexicon.

1) The npmi value is greater than a given absolute threshold
(par.npmilex, default: 0.25).

2) The ratio between the sum of the decline, exclude,
and boost values is smaller than a given threshold
(par.boostlex, default: 0.6).

On the other hand, links already in the lexicon need to be
constantly re-evaluated. In each processing step, the links per-
taining to the event (that have updated values), are examined,
and if several conditions are met, the link is removed from the
lexicon. This is important since especially at the beginning of
the learning procedure, erroneous links have a higher chance
to enter the lexicon. The conditions are the following:

1) there are concurrent links;
2) the npmi value is smaller than a given threshold

(par.npmilex, 0.25);
3) the ratio between the sum of the decline, exclude, and

boost values is equal or greater than a given threshold
(par.boostlex).

The model not only learns what the best candidate link is but
it is also able to model multiple connections between words
and referents. Two words can refer to the same object (or
action). This is typically the case with synonyms (e.g., “bottle”
and “flask”), but also hypernyms can be used instead of a
given word (e.g., “that thing”). Additionally, more than one
word can be used to refer to an object, e.g., in MMTD, Blatt
Papier—“sheet of paper” consisting of a measure noun (Blatt,
“sheet”) and a common noun (Papier, “paper”). Hypernyms,
by definition, refer to several objects (or actions).

IV. OBJECT- AND ACTION-WORD LEARNING

EXPERIMENTS

In this section, we present a number of experiments on
object- and action-word learning with varying input data
and discuss their results. We start with object-word learn-
ing experiments to demonstrate the robustness of Model 1
(Section III-A) to sensory noise, such as noise in vision (e.g.,

Fig. 5. High-level DIARC architecture for proof-of-concept demonstration
(“Rec” stands for Recognition and “Prod” stands for Production).

errors in object recognition) and noise in speech (e.g., mis-
recognition of words), see Section IV-A1. Next, we show
how the model can be embedded in a subset of the cogni-
tive robotic DIARC architecture [35] and demonstrate how a
robot, using the model, can learn new words through real-time
interactions with a human teacher. (A high-level view of the
DIARC configuration used can be seen in Fig. 5.) This is fol-
lowed by experiments with Model 2 on action-word learning
from crossmodal input data based on inputs from AVC and
MMTD, where the input data to the learning model presented
in Section III-B are varied as follows: full form utterance and
related actions and objects (represented as concept labels) are
presented to the learning system. This is contrasted with the
input to the learning system where utterances are paired with
either action labels or object labels alone but not both.

A. Model 1: Experiments in Object-Word Learning

1) Sensory Noise Evaluation: We examined the robustness
of the model to noise in vision and speech recognition by
systematically adding noise to the inputs from these two com-
ponents and evaluating the mean F-score of the best lexicon
found by the model, averaged over ten runs. For the purpose
of comparison, we implemented several incremental models
of cross-situational word learning [association frequency (4),
conditional probability P(object|word), and conditional proba-
bility P(word|object)] mainly to provide a baseline expectation
for the results produced by an incremental model

P(word, object) = Count(word, object)
∑

i
∑

j Count
(
wordi, objectj

) . (4)

The best lexica found by the non-Bayesian models con-
sisted of a number of word–object pairs with the highest
heuristic [e.g., P(object|word)] score. We varied the number of
links included in the best lexicon found by these models and
reported the lexicon with the best F-score. Fig. 6(a) demon-
strates the behavior of the model under noise. Fig. 6(b)–(d)
demonstrates the behavior of non-Bayesian incremental mod-
els under noise. As can be seen, our model exhibits more
robustness to noise compared to other models, as the least
mean F-score value reported for our model (0.76) is much
higher than that of other models (0.28, 0.55, 0.2).

2) Proof of Concept Embodied Model: For this experi-
ment, we embedded our model in a subset of the DIARC
architecture [35] and replaced the simulated speech recog-
nition and visual object detection components used in the
sensory noise model evaluations with components capable of
processing raw speech [36] and vision data. Additionally, we
integrated a speech production component (allowing the robot
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Fig. 6. Heatmap of mean F-score values (averaged over ten runs) for the lexica found by the (a) incremental model [29], (b) association frequency model,
(c) conditional probability P(object|word) model, and (d) conditional probability P(word|object) model, under different noise conditions.

to provide verbal feedback) and a robot manipulation com-
ponent (allowing the robot to point to target objects in the
environment).

The robot demo, available at https://vimeo.com/210659339,
illustrates two types of interactions between the embodied
model and the human teacher: 1) training and 2) testing.
Testing interactions are marked with the word “point” at the
start of the utterances made by the human interactor (e.g.,
“point to the X”) and are used to examine the robot’s knowl-
edge of words (e.g., the word X). If the robot has at least one
word–object mapping for the word X in its lexicon, it uni-
formly draws one of those mappings and points to the object
in the drawn mapping while uttering “here it is.” Otherwise,
the robot responds “I don’t know what that is.” The robot uses
other interactions (training interactions) to update its lexicon.
The robot starts with an empty lexicon (no known word–object
mappings). The human interactor then starts to teach new
words through a series of word learning situations (utterance–
scene pairs), using single word utterances (e.g., “knife”) as
well as complete sentences (e.g., “look at the knife”). The
human interactor changes the scene by taking away and putting
back objects on the table. See also Table I for sample inputs.

B. Model 2: Experiments in Object- and Action-Word
Learning

In this section, results from crossmodal word learning exper-
iments mapping verbs onto action concepts and nouns onto
action-related objects are presented. The respective gold stan-
dard lexica comprising the mappings between lexical form
and concept (action or object) label are listed in Table III.9

The mappings were extracted from the manual annotations of
action-related speech and visual action in MMTD and AVC.
Examples for lexical forms are nimm, nehmen, nehm, and
nehme (take). The related concept label for each of these forms
is TAKE. The gold standard lexica comprise only word-concept
mappings for those lexical forms that recur at least three times
in the input to the learning system, as the model is not designed
to learning from singletons. Therefore the gold standard lexi-
con for AVC comprises three verb-action mappings and three
noun-object mappings, whereas in MMTD, there are seven
verb-action and eight noun-object mappings. It assumes that
each inflected form is learned as a word in its own right, in

9For a description and discussion of “gold standard” in corpus annotation
(see [37]).

TABLE III
GOLD STANDARD LEXICA FROM AVC AND MMTD

order to avoid employing an external lemmatizer (a computer
program that reduces inflected word forms to their base form).

In the objects only condition, the multimodal input to the
learning system comprises pairs of utterance and a list of
objects which are in the visual focus of the speaker, i.e., the
object(s) which are manipulated by the speaker, while explain-
ing the current activity, or which are landing sites or close to
landing sites of the moved object. In other words, the input
comprises an utterance and only objects which are in the visual
field of attention. See, for instance, the input pair <und ich
nehme jetzt die Banane, BANANA PLATE> where BANANA

represents the object taken and PLATE the object/location from
which the banana is taken. In the actions only condition, the
input comprises pairs of utterance and action label, <und
ich nehme jetzt die Banane, TAKE>. In the action+object
condition, the input consists of the utterance, and the labels
representing the action and the objects in visual focus, <und
ich nehme jetzt die Banane, TAKE BANANA PLATE>. See
Table II, for more examples of word learning situations com-
prising action, object(s) and utterance. For all conditions, ten
learning runs have been performed randomly changing the suc-
cession of input sequences, and the results are then averaged
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Fig. 7. Model 2 learning from AVC: incremental plots F1 (upper row) and mean values (lower row) for objects and actions only, and for actions plus objects.

TABLE IV
RESULTS FROM LEARNING WORD–ACTION AND WORD–OBJECT

MAPPINGS FROM CROSSMODAL INPUT DATA DERIVED FROM AVC AND

MMTD. LISTED ARE THE MEAN VALUES AND STANDARD DEVIATIONS

(IN PARENTHESES) FROM TEN LEARNING-TESTING RUNS PER MODEL

AND CONDITION. THE F1-SCORE IS THE HARMONIC MEAN OF

PRECISION AND RECALL, F1 = 2 ∗ [(precision ∗ recall)/(precision + recall)].

per condition. The respective mean values for precision, recall,
and F1-score are presented in Table IV. In order to assess
the required number of input sequences to stabilize the lexi-
con, Figs. 7 and 8 show plots of mean F1-scores (individual
and averaged runs) against the number of events seen by the
learner.

Because of the random selection of input sequences per
run, the results differ slightly even after averaging over ten
runs. We ran Model 2 over several packs of ten runs result-
ing in persistently better lexical learning from AVC than from
MMTD. This result can be partially explained by the differ-
ences in lexical variation in the input to learning (in other
words, in the training corpora). The utterances in the AVC
corpus comprise only one lexical form for each action and
object referent, whereas, in MMTD, there are three lexical
forms referring to PUT-actions, four for TAKE-actions, two
different words, Blatt and Papier (sheet and paper) with two
different lexical forms each referring to the sheet of paper
being part of the task setup (blatt, blattes; papier, papiers).
See Table III for a summary of all lexical forms referring to
the actions and objects in the AVC corpus and in MMTD. If
there are more potential links between words and a particular
concept, then the scores for each mapping decrease and leave
room for erroneous mappings. See, for instance, the relation
between the personal pronoun sie “her/it,” and the concept
PUT, which is erroneously learned from MMTD, but not from

AVC, even though in both data sets, PUT actions frequently
co-occur with sie (64 times in a total of 106 PUT actions in
MMTD and 24 times in a total of 24 PUT actions in AVC).
This situation arises due to the combination of TAKE and PUT

actions in both corpora, resulting in utterances, such as ich
nehme die Erdbeere und lege sie neben die Banane (“I take
the strawberry and put it next to the banana,” MMTD) or ich
nehme die Schachtel und stelle sie links neben die Dose (“I
take the box and put it to the left of the can,” AVC).

While in AVC, a PUT action is always accompanied by
one and the same word/verb lege (put), PUT in MMTD is
accompanied by a variety of verbs, including lege (62), empty
verb (8), platziere (7), packe (6), kommt (4), platziert (3), zu
platzieren (3), tu (2), absetzen (1), tun (1), zu liegen kommt (1),
sich ergibt (1), sein (1), liegt (1), verschiebe (1), vertauscht
(1), and ordnen (1). In addition, out of 64 occurrences of sie
in total in MMTD, 62 co-occur with a PUT action, whereas
out of 33 occurrences of sie in total in AVC, 23 co-occur with
a PUT action, 9 with a PUSH action, and 1 is an alignment
error.

This results in significantly different npmi values for the pri-
mary candidate lege and the personal pronoun sie. In MMTD,
these are roughly on par, which prohibits the algorithm to
decide which of the two is the correct one. In AVC, the npmi
value for lege is almost twice as high as the one for sie. In
that case, the latter is assigned an exclude penalty for its link
to the PUT action, which prohibits (correctly) this link from
being added to the lexicon.

Another problem for learning object-word mappings in
MMTD was the more complex linguistic realizations for loca-
tions. For instance: the teachers very often described that they
would put a piece of fruit in the center of the sheet of paper
(in die Mitte des Blattes, or in die Mitte vom Papier, etc.).
Therefore, Mitte “center” acquires the highest npmi values
with PAPER. Blatt “sheet” receives a lower npmi value and
also enters the lexicon, but Papier “paper” does not. This
problem was circumvented in AVC where the users were asked
to move objects by taking one and putting it next to another
one. Another possibility to avoid the effect is to ask users to
use utterances such as “I take X and put it there.” We used
this kind of utterances in learning experiments that ran under
live conditions on a Pepper robot [38].
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Fig. 8. Model 2 learning from MMTD: incremental plots F1 (upper row) and mean values (lower row) for objects and actions only, and for actions plus
objects.

V. SUMMARY AND CONCLUSION

In this article, we presented and assessed two related but dif-
ferent models of incremental word learning. Model 1 realizes
an incremental version of the Bayesian approach for cross-
situational word–referent learning for words with concrete
object references introduced in [21]. The model focuses on
the joint acquisition of referential intention and word meaning
from only a few varying situations. Model 2 implements an
information-theoretic approach to learning from modality rich
input data based on normalized pointwise mutual information.
(For a discussion of variants of pointwise mutual information,
see [39].) The proposed model focuses on learning mappings
of actions onto verbs and of action-related objects onto nouns.
To do so, highly redundant input data were used, whereby
redundancy came from modality richness and repetitiveness
of the data. The data input to the learning model was derived
from two multimodal corpora: 1) the AVC and 2) MMTD. All
learning scenarios were based on situated task-oriented com-
munication in teacher–learner settings. Using this kind of data
for learning was inspired by research on early infant learn-
ing, where parent–child interactions produce modality rich and
redundant input, for instance, when parents name objects their
infants currently interact with (see [1]–[6], [34]). While our
data stem from adult interactions, we are aware that child-
directed speech has many more facets to it than producing
massively redundant input to the learning system [40], [41].

We have illustrated the difference in capacities of the two
proposed models in a number of experiments. We have demon-
strated the robustness of Model 1 with respect to sensory noise,
such as noise in vision (e.g., errors in object recognition) and
noise in speech (e.g., misrecognition of words), based on sim-
ulated data, and demonstrated how a robot (PR2), using the
model (embedded in a subset of the cognitive robotic DIARC
architecture), can learn new words through real-time interac-
tions with a human teacher. We have tested Model 2 with
crossmodal input data from AVC and MMTD, whereby the
input data to the learning model varied as follows: 1) full form
utterance and a list of related actions and objects in visual
attention; 2) utterance paired with action labels only; and
3) utterance paired with object labels only. The results showed
that for Model 2, lexical learning from AVC was easier than

learning from MMTD, i.e., the values for precision, recall, and
F1-scores were persistently higher for AVC than for MMTD.
We attribute this to differences in the complexity of the utter-
ances accompanying the visual scenes, whereby MMTD shows
more lexical variation—several word (forms) refer to a sin-
gle object or action, it has on average longer sentences than
AVC (8.6 versus 5.9) and also a higher structural complexity—
for instance, the linguistic realization of location expressions
such as put something in the middle of the sheet of paper.
Moreover, it has elliptical constructions where action verbs are
missing. All this impedes co-occurrence-based word–referent
mapping.

In future research, to overcome the sensitivity to full
forms versus lemmas, mechanisms for exploiting the simi-
larity between the morphologically related word forms need
to be developed and integrated in the learning algorithms.
Currently, we are working on expanding the word learning
frameworks to capture syntactic information. First, the mod-
els need to differentiate nouns from verbs in parallel with the
distinction between action and object referents obtained from
the multimodal input. On the basis of a verb–noun distinc-
tion, the word order can be taken into account. For example,
Sadeghi and Scheutz [30], [33] have already demonstrated
that Model 1 can be expanded to allow for learning word
referents as well as language word order. The knowledge of
word order allows the learner to parse the input sentences
and to infer a mapping from concepts to grammatical func-
tions, in order to understand who has done what to whom.
Furthermore, functional words, such as articles, pronouns, aux-
iliary verbs, etc., need to be incorporated into the models.
Under the assumption that languages have closed-class lexica
of functional words (or morphemes in the case of agglutinative
languages), these items will no longer behave as distractors in
the learning procedure, but enhance the model by indicating
the category of a syntactic phrase (e.g., articles indicate noun
phrases), serving as placeholders for referential expressions
(pronouns) or help in identifying slots within the syntactic
structure (auxiliaries). From this, we not only expect a sub-
stantial improvement for the learning algorithms but also an
essential advance in modeling learning procedures on the basis
of natural language input.
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