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Abstract
The ability to refer to entities such as objects, locations, and
people is an important capability for robots designed to inter-
act with humans. For example, a referring expression (RE)
such as “Do you mean the box on the left?” might be used by
a robot seeking to disambiguate between objects. In this paper,
we present and evaluate algorithms for Referring Expression
Generation (REG) in small-scale situated contexts. We first
present data regarding how humans generate small-scale spa-
tial referring expressions (REs). We then use this data to define
five categories of observed small-scale spatial REs, and use
these categories to create an ensemble of REG algorithms.
Next, we evaluate REs generated by those algorithms and by
humans both subjectively (by having participants rank REs),
and objectively, (by assessing task performance when partic-
ipants use REs) through a set of interrelated crowdsourced
experiments. While our machine generated REs were sub-
jectively rated lower than those generated by humans, they
objectively significantly outperformed human REs. Finally,
we discuss the main contributions of this work: (1) a dataset
of images and REs, (2) a categorization of observed small-
scale spatial REs, (3) an ensemble of REG algorithms, and
(4) a crowdsourcing-based framework for subjectively and
objectively evaluating REG.

1 Introduction
Many tasks in Human-Robot Interaction (HRI) require robots
to use natural language (NL) to refer to objects, places, or
people in their environment, a task known as Referring Ex-
pression Generation (REG). Hence, robots capable of au-
tomatically generating compact REs based on interpreted
scenes can have a huge impact in HRI. For example, they
could generate scene descriptions in security reports (Hawes
et al. 2016), document scientific experiments1, and assist peo-
ple in domestic settings. Imagine, for example, a robot that is
asked to fetch a tea box from a kitchen (Figure 1). If there are
many boxes in the scene, the robot may need to ask which
box was meant, using a referring expression (RE) such as:
1. Do you mean the box in the middle?
2. Do you mean the box that is to the right of the box that is close

to the mug?

Copyright c© 2017, Association for the Advancement of Artificial
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1The Smart Wet Lab Assistant: https://istc-pc.
washington.edu/?page_id=303

Figure 1: Example scenario. Left: real-world kitchen scene per-
ceived by a robot (red arrow points to the target object). Right:
scene segmentation (based on RGBD) and interpretation used for
generating a referring expression: “Do you mean the box in the
middle?”

While both REs describe the same object, the second re-
quires more cognitive effort to understand. The REG task
can thus be formulated as the process of finding a RE that
uniquely identifies the target object while minimizing the
expected cognitive effort needed to process that RE.

An RE may use various relations and properties such as
type, size, color, or texture. In this work, we focus on REs
that use qualitative spatial relations (QSRs), such as Left
and Close, that hold between the target and other landmark
objects. By using QSRs, the world is abstracted into a smaller
qualitative state space in which REs hold. Moreover, these
qualitative relations can be easier mapped to expressions
in Natural Language as metric details are abstracted away.
However, qualitative spatial REs may assume diverse forms,
and there is no one form that is maximally appropriate in
all situations. For example, in some situations it may be
best to use a spatial RE which describes the target with a
relation to some landmark, such as “the mug next to the
sink”, whereas if there are two mugs on opposite sides of
the sink it may be better to say “the mug between the sink
and the box”. This suggests the need for an REG solution in
which different classes of spatial relations may be selected
based on context. We address this problem with a solution
in which context is used to select between candidate REs
generated by an ensemble of REG experts, each of which is
capable of generating a single class of spatial RE.

The rest of this paper proceeds as follows. After discussing
related work in Section 2, we discuss in Section 3 how we gen-
erated artificial tabletop scenes in order to acquire a corpus



Figure 2: Overview of crowdsourcing framework for acquiring and
evaluating REs. Given a set of scenes (Section 3.1) the framework
can be used to both crowdsource natural REs from humans (Sec-
tion 3.2) and generate REs based on the geometric and qualitative
relations between objects within the scenes (Section 4). The result-
ing human and machine generated REs can be evaluated using a
subjective and/or an objective analysis (Section 6).

of human-generated REs, and then present a categorization
of those REs. In Section 4, we present a set of algorithms and
heuristics (uniformly referred to as “algorithms”) that gener-
ate different types of REs from this categorization, based on
qualitative scene descriptions. We then present two strategies
for contextually selecting a class of RE in Section 5. In Sec-
tion 6, we introduce a novel crowdsourcing framework for
the evaluation of REG algorithms, and present an empirical
evaluation of the task effectiveness (an objective measure)
and user preference (a subjective measure) of the presented
algorithms. The presented framework (Figure 2) can be used
as a common evaluation paradigm for future REG algorithms.
Finally, we conclude with a discussion in Section 7, and of
future work in Section 8.

2 Related Work
The problem of REG dates back to early work on Natu-
ral Language Processing (Winograd 1972). A review of
REG algorithms and evaluation methods can be found in
(Krahmer and van Deemter 2012). In (Dale and Reiter
1995), classic REG algorithms are discussed, including the
Full Brevity, Greedy Heuristic, and Incremental Algorithm
(IA), which differ primarily in how distinguishing proper-
ties are selected. The IA, for example, selects properties
using a preference ordering, e.g. type < color < size.

As we will describe, one algorithm within our ensemble
is based on the version of the IA that was extended to han-
dle binary relations (e.g., “left”) (Kelleher and Kruijff 2005;
2006). Two of our other algorithms go beyond this to handle
n-ary relations as well (e.g., in-the-middle). In general, all of
our presented algorithms are based on a graph-based scene
representation (Krahmer, van Erk, and Verleg 2003).

In addition to our ensemble of experts, we present an REG
evaluation framework. Most approaches to evaluating REG
algorithms (Viethen and Dale 2006) compare REs generated
by algorithms with those found in text corpora (Krahmer
and van Deemter 2012). These evaluation methods are prob-
lematic, however, because NL is flexible, and a RE may be
realized in many equally acceptable forms. Our evaluation
thus follows the path taken by (Viethen and Dale 2006), who
argue in favor of a task-based evaluation. We thus objectively
evaluate our approach with a task-based evaluation in which
participants must identify referenced objects in scenes gener-
ated using qualitative spatial relationships (Fisher et al. 2012;
Merrell et al. 2011), similar to that in (Belz 2008) and
in the spirit of the GIVE Challenge (Koller et al. 2010).
Unlike the GIVE Challenge, however, we (1) use a multi-
stage evaluation, (2) evaluate machine-generated REs with
respect to human-generated ones, and (3) supplement our
task-based evaluation with a ranking task that subjectively
evaluates the perceived naturalness of our generated REs
(cf. (Gatt, Belz, and Kow 2009)). This evaluation is realized
via crowdsourcing. Recently, crowdsourcing platforms have
been used for a variety of tasks, including image labeling
(Russell et al. 2008), commonsense knowledge acquisition
(Gupta and Kochenderfer 2004), and language understanding
(Kazemzadeh et al. 2014a; Tellex et al. 2011). In (Fang et al.
2013), REG was evaluated using Amazon’s Mechanical Turk
(AMT); but while they used AMT only to evaluate the effec-
tiveness of generated REs, we also use it for the wider variety
of REG evaluation and benchmarking tasks that comprise our
framework.

3 Initial Data Collection
The initial motivation for this work was a desire to understand
and generate REs in small-scale HRI scenarios. The REG
algorithms and evaluation we present build on an initial study
where users were asked to provide commands to pick up
objects in tightly controlled machine-generated scenes.

3.1 Generation of Desktop Scenes
We generated a set of artificial desktop scenes using the
MORSE simulator (Lemaignan et al. 2014). To obtain realis-
tic scenes, we used object statistics of real-world office desks
(Kunze, Burbridge, and Hawes 2014). The statistics provided
information about the presence of an object, its location on a
desk, and its qualitative spatial relations to other objects.

First, we sampled a number of objects (e.g., keyboards,
monitors, laptops, lamps, cups, books, and bottles) to ap-
pear2, at least one of which (a keyboard, monitor, or laptop)

2As we are mainly interested in spatial REs, we only used
monochromatic objects to prevent subjects from using color- and
texture-based features.



functions as a landmark. The landmark is placed on the desk
according to its object-specific spatial distribution. Second,
we sampled a set of qualitative spatial relations (QSRs) such
as Left and Close between the landmark and all other objects,
which were transformed into metric object poses using a gen-
erative model of the Ternary Point Calculus (TPC) (Moratz,
Nebel, and Freksa 2003). A physics engine is used to ensure
that generated scene configurations are physically possible.

Finally, in each scene an object was selected as target
object and an image was then generated. In the image, the
selected object was denoted with a red arrow (cf. Figure 5).
Overall we generated 20 scenes for the experiments.

3.2 Collection of Commands and Categorization
of Small Scale Spatial REs

Twenty participants (9 male, 11 female) were tasked with
generating the best possible command to pick up the selected
object in each scene. Participants ranged in age from 20 to 59
(M=35.3, SD=9.44). Of these, ten completed the survey and
made an attempt to disambiguate the target objects, resulting
in a total of 200 REs. As we will describe in the next section,
participants’ REs generally fell into five categories:

(1) Type: REs such as “Pick up the cup.” These refer only
to the target, and comprised 6.6% of all REs.

(2) Relative: REs such as “Get the bottle that is in front
of the keyboard.” These REs refer to the target with respect
to the direction relative to some other object, and comprised
21.9% of all REs.

(3) Set-Relative: REs such as “Pick up the cup in between
the keyboard and the computer screen” or “Pick up the second
bottle from the right”. These refer to the target relative to
some set of other objects, and comprised 19.2% of all REs.

(4) Proximal: REs such as “Pick up the mug closest to
the book.” These refer to the target based on its proximity to
some other object, and comprised 20.4% of all REs.

(5) Distal: REs such as “Pick up the furthest bottle.” These
refer to the target as being furthest from some object or other
entity (such as the scene viewer) in a given direction, and
comprised 31.8% of all REs.

While we saw high variance of class usage, certain classes
saw higher context-specific usage. For example, Type REs
were often seen when there were no objects of the same type
as the target in the scene, and Set-Relative REs were often
seen in cluttered environments. This presents an opportunity
for a new direction in REG algorithms for HRI: instead of
using a single algorithm to generate a RE for a given object,
it may be more prudent to first determine which class of RE
is most appropriate, and then use a RE of that class generated
by a class-specific REG algorithm. In the next section, we
propose a collection of such REG algorithms.

4 Algorithms for RE Generation
In this section we describe the generation of different classes
of REs. As the majority of the proposed REG algorithms
makes use of qualitative spatial relations (QSRs), we first
explain how different QSRs are generated.3

3Note, in this work we generate all QSRs for all pairs of objects
in the scene. However, in general, the generation of QSRs could be

object
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Figure 3: The relative angle is defined by the reference axis spec-
ified by robot and landmark, and the object. The example above
illustrates a situation where the object is left and behind of the
landmark.

4.1 Qualitative Spatial Relations
The REG algorithms presented in this work build on easily
expressible QSRs such as Left and Close, with direction and
distance between objects calculated using the Ternary Point
Calculus (TPC) (Moratz, Nebel, and Freksa 2003). The TPC
is so named for its use of three points: the origin (e.g., the po-
sition of a robot), the referent (e.g., a target to be described),
and the relatum (e.g., a landmark with respect to which to
describe the referent). The origin and relatum (hereafter robot
and landmark) define a reference axis which partitions the
surrounding space, allowing a spatial relationship to be de-
fined by the partition in which the referent (hereafter object)
lies. To determine this partition, the relative angle φrel be-
tween the robot-landmark axis and the object (Figure 3) is
calculated as:

φrel = tan−1 yobj − yland

xrobj − xland
− tan−1 yland − yrobot

xland − xrobot
(1)

When calculating a robot-landmark axis, we assume a
robot is standing about two meters before a scene. According
to the relative angle and the relative radius, we label the
relations between all objects and the landmark as Left, Right,
InFront, Behind, Close, and Distant. Note, when generating
a RE, we are not considering the intrinsic reference frames
of objects (e.g. the front of an object such as the screen of a
monitor), but rather their extrinsic relations to other objects
when viewed from a certain point of view. We leave the
problem of different reference frames ((Tenbrink 2011)) for
future consideration. Here are a subset of QSRs that hold for
the target (Cup1) in Figure 5 (scene 16):
Close(Keyboard, Cup1) ∧ Right(Keyboard, Cup1) ∧
Right(Monitor, Cup1) ∧ Behind(Monitor, Cup1) ∧
Close(Book2, Cup1) ∧ InFront(Book2, Cup1) ∧

. . . ∧ Behind(Lamp, Cup1).

This approach captures abstractions used by humans, as it
generalizes across quantitatively different yet qualitatively
similar scenes. As such, it applies to any indoor environment
in which entities are arranged on a 2D plane, without needing
a massive corpora to attempt to learn those abstractions. In
previous work, we exploited such abstractions for the inter-
pretation of desktop scenes (Kunze et al. 2014).

subject to constraints such as the distance between two objects.



Table 1: NL sentence templates for rendering REs.

RE Cat. NL Sentence Template

Type Pick up the ?obj.
Relative Pick up the ?obj that is (close to/far from/left

of/right of/in front of/behind of) [and (close to/far
from/left of/right of/in front of/behind of)] to the
?landmark [that is . . . ].

Set-
Relative

Pick up the ?obj in the middle.
Pick up the ?nth ?obj from the left/right.

Proximal Pick up the ?obj that is next to the ?landmark.
Distal Pick up the (leftmost—rightmost) ?obj.

Pick up the ?obj (furthest from/closest to) you.

Variables ?obj and ?landmark refer to the type of the respective
objects; ?nth is a positive number and denotes a particular object
when counting from a given direction.

4.2 Class-Specific RE Generation
In this section, we present an algorithm that generates REs
for each category using QSRs or metric positions of objects
within a scene. All REs are first generated as logical formulae
then rendered in NL using sentence templates shown in Ta-
ble 1. We will refer to all objects of the same type as the target
(T ) as distractors (D) and all other objects as landmarks (L).

Algorithm 1 (Type) This strategy refers to the target object
by its type alone. This is useful when there are no distrac-
tors and when the other algorithms cannot generate a RE
(cf. Section 5). Example: “Pick up the bottle”.

Algorithm 2 (Relative) This strategy is an adaptation of
the algorithm presented in (Kelleher and Kruijff 2005; 2006).
If there are no distractors in a scene, the type of the target
object is discriminative and is thus used to describe the object;
otherwise, Algorithm 1 is called, with the target, distractors,
landmarks, and set of QSRs that hold in the scene given as
input (Line 1).

First, landmarks are ranked according ‘suitability’ (Lines 4-
5), such that large landmarks close to the target that have
fewer distractors are preferred. For each candidate landmark
l (Line 6), the algorithm determines the set of QSRs that
hold between it and the target T (Line 7), and orders them:
(Close/Distant < InFront/Behind < Left/Right) (Lines 8-
9) with the aim of minimizing the interlocutor’s cognitive
effort (Kelleher and Kruijff 2005; 2006). The algorithm
then iterates over all elements of the power set of QSRs
(Line 10). If an element rset discriminates a target from its
distractors (Line 11), then, like (Kelleher and Kruijff 2005;
2006), the algorithm generates a RE (Lines 12-13). Unlike
that work, however, we then additionally verify that rset also
discriminates the candidate landmark (Line 15). If so, the RE
is returned (Line 16). Otherwise, if the RE discriminates the
target but not the landmark, the algorithm recurses with the
landmark as the new target (Lines 18-21). If this recursive
call is successful, the chain of REs is combined and returned

Algorithm 1: Adapted locative incremental algorithm for
the generation of relative REs.

1 Function REGRelative (T,D,L,Q)
Input :Target object T ; set of distractors D; set of landmarks

L; qualitative scene description Q
Output :Referring expression RE

2 begin
3 RE ← NIL
4 /* Rank L by size, distance to T , No. of distr.*/
5 LR← Ranked(L)
6 for l ∈ LR do
7 R← {r | r(T, l) ∈ Q}
8 /* Order R according to predefined order: Close,

Distant, InFront,Behind, Left,Right*/
9 RO ← Ordered(R)

10 for rset ∈ PowerSet(RO) do
11 if rset is distinguishing for T w.r.t. D then
12 /* Craft RE using relations between T and l*/
13 RET ← REG(T, l, rset)
14 LD ← GetDistractors(l, L)
15 if rset is distinguishing for l w.r.t. LD then
16 return RET

17 else
18 T ′ ← l
19 D′ ← LD
20 L′ ← {l|l ∈ L \ LD}
21 REl ← REGRelative(T ′, D′, L′, Q)
22 if REl 6= NIL then
23 return RET +REl

24 return RE

(Lines 22-23). Example: “Pick up the bottle that is close to
and in front of the keyboard”.

Algorithm 3 (Set-Relative) This class has two strategies.
The first is used if the target object is between two distrac-
tor objects. For all distractors we check whether any two
are Left and Right, InFront and Behind, Left/InFront and
Right/Behind, or Left/Behind and Right/InFront with respect
to the target:

Middle (T, x, y) ⇔∃x, y
((Left(x, T ) ∧ Right(y, T ))∨
(InFront(x, T ) ∧ Behind(y, T ))∨
(Left(x, T ) ∧ InFront(x, T )∧ Right(x, T ) ∧ Behind(y, T ))∨
(Left(x, T ) ∧ Behind(x, T ) ∧ Right(x, T ) ∧ InFront(y, T )))

where x, y ∈ D. If any of these hold for the target (but not
for any distractor) we use them to generate a RE. Example:

“Pick up the bottle in the middle”.
When this first strategy fails, we instead compute an or-

dering in two directions (left to right and front to back) over
the target object and all distractor objects using metric object
positions. The position of the target object within the ordered
list is then computed in all four directions, and the direction
with the lowest position is chosen. Example: “Pick up the
second bottle from the right”.



Algorithm 4 (Proximal) This strategy uses the same al-
gorithm as Relative, but only generates an RE if the Close
relation is distinctive. Example: “Pick up the cup that is next
to the keyboard”.

Algorithm 5 (Distal) This strategy generates an RE if the
target is the furthest of its type in a certain direction:
Leftmost(T,D) ⇔ ¬∃xLeft(x, T ),
Rightmost(T,D) ⇔ ¬∃xRight(x, T ),
Closest(T,D) ⇔ ¬∃xInFront(x, T ),
Furthest(T,D) ⇔ ¬∃xBehind(x, T ),

where x ∈ D. For this strategy to generate an RE, the target
must be above a distance threshold (15cm in this work, but
in principle learnable from data) from the next distractor if
those objects are qualitatively in the same position. Example:

“Pick up the bottle furthest from you”.

5 RE Class Selection Strategies
The algorithms described in Section 4.2 generate one RE
for each category. In this section we define two methods
for choosing which class of RE a robot should use when
interacting with a human. First, we present a classifier-based
strategy that learns which class of RE would be used by
humans in a particular scene. Second, we present a fixed-
ordering strategy, which uses the fact that only some classes
of RE can be generated in a given scene.

Classifier For the first selection strategy, we trained a set
of classifiers on annotated human data. Based on object type
information and human-used QSRs (Section 4.1) we identi-
fied twenty-six relevant features (in future work we aim to
learn such features using unsupervised methods):

• Two scene-wide parameters: the number of distractors and
non-distractors in the scene.

• Six distance parameters: the number of distractors and
non-distractors within a certain distance from the target
object: Close (R1), Medium (R2), and Distant (R3). We
parameterized the qualitative relations with R1 and R2 for
which we tried several combinations of values (in meters):
.3, .35, .4, .45 for R1, and .5, .6, .7 for R2, and where R3
was set to 5.0; a number sufficiently high so as to extend
to the edge of the scene. However, such parameterizations
of QSRs can be learned as we have shown in previous
work (Young and Hawes 2015).
• Twelve directional parameters: the number of distractors

and non-distractors, within a distance Close (R1), Medium
(R2), Distant (R3) of the target in each direction (i.e., In-
Front, Behind, Left, or Right).
• Eight binary existential parameters: each of which is 1 iff

there is a distractor within either 15cm or 5m of a particular
table edge (top, bottom, left, right).

Several classifiers were trained on a corpus of human-
generated REs (Section 6) annotated with RE category in-
formation. Specifically, we examined Naive Bayes, Logistic
Regression (LR), Decision Trees, and Linear SVM classi-
fiers, each under the range of parameterizations listed above.

Ten-fold cross evaluation for each classifier-parameterization
pair showed best performance results with LR under parame-
terization R1=.45,R2=.7 (46.73% accuracy).

Dependent on the scene, it might be the case that not all of
the five algorithms will be able to produce a RE. Therefore,
we have determined an ordering of classifiers/algorithms in
which we use them when available. We used the confusion
matrix resulting from training the LR classifier on the full
data set to create a set of classification orderings. For exam-
ple, when a scene is classified as Relative, the next-best clas-
sifications are, in decreasing order, Proximal, Set-Relative,
Distal, and Type. Here, the “next-best classifications” are
those classes that are most often misclassified as the target
class; because Proximal is the second most likely actual class
of REs classified as Relative, we view it as the second best
choice of class for a RE classified as Relative; the fact that
a RE of class Relative is not available suggests that perhaps
Relative was not actually the correct choice, so Proximal
represents a “second chance” for the approach. If this is not
possible, a RE of class Set-Relative is used, and so on.

Fixed Ordering The second RE class selection strategy
used an experimentally-determined fixed ordering: instead
of using a selection ordering based on the LR classifier, this
strategy always uses the ordering Distal, Proximal, Relative,
Set-Relative, Type, moving roughly in descending order of
typical discriminability, at least for the scenes we examined.
While this ordering does not explicitly use environmental
features, it does implicitly, as those environmental features
affect which of the five algorithms will be able to produce
results in the first place, and thus guide the RE class selection
mechanism through failure of algorithm preconditions.

6 Crowdsourced Evaluation
In this section we describe the crowdsourced evaluations
used to evaluate the presented REG algorithms4. The two
criteria we have evaluated will show how successfully our
approach could ultimately be when used by a robot. We
wished to evaluate: (C1) how well our machine-generated
REs subjectively compared to those generated by humans,
as assessed through preference ordering; and (C2) how well
our machine-generated REs objectively compared to those
generated by humans, as assessed by task completion.

6.1 Experiment One: Subjective Analysis
To evaluate C1, we devised a ranking task in which re-
cruited participants (18 male, 11 female, ages 23 to 62
(M=31.28,SD=9.45)) were shown images generated in the
initial data collection (Section 3.1), and asked to rank from
“best” to “worst” eight randomly ordered commands for pick-
ing up the target in each image: six sampled human-generated
commands and two machine-generated commands (generated
using the Classifier- and Fixed-Ordering-based strategies).

Data was successfully collected for 19 of the 20 scenes. To
analyze this data, we performed a repeated-measures ANOVA

4All participants were recruited using AMT and paid a small
cash incentive.



Figure 4: Subjective performance of REG algorithms (using differ-
ent class selection strategies) vs. human subjects across all scenes.
H1-10 represent human-generated REs; A1 represents the machine-
generated REs using the fixed-ordering strategy; A2 represents the
machine-generated REs using the classifier-based ordering strategy.
Barred boxes denote first, second, and third quartile scores.

with participants’ rankings as the dependent variable, and the
RE generating agent (i.e., the human, or the algorithm using
a specific class selection strategy) and presented scene as in-
dependent variables (Figure 4). Significant differences were
found for agent (F (11, 3952) = 35.059, p < .0001) and
for interaction between scene and agent (F (198, 3952) =
2.660, p < .0001)). The fixed-ordering strategy (A1 in Fig-
ure 4, M=3.54) performed better than the classifier based
strategy (A2 in Figure 4, M=4.36), but both were in the bot-
tom half overall.

This performance may be partly due to our simple sentence
templates (Table 1). In this work, we have mainly focused on
the content selection, i.e. the generation of the logical formu-
las, but not the linguistic realization, and as such our simple
sentence templates (Table 1) likely harmed performance. It
would be interesting to evaluate whether the results could be
improved by using a different rendering approach. One rea-
son why the fixed ordering may have performed better than
the classifier is that the data provided by the classifier was
only tagged with the most prominent category, for the sake of
simplicity. However, human-generated REs were sometimes
complex, making use of a series of REs of different classes,
and sometimes narrowed the focus of the scene to a partic-
ular area as part of their RE (e.g., by calling attention to a
particular group of objects or a particular part of the table).

6.2 Experiment Two: Objective Analysis
In the second experiment, we objectively evaluate the comple-
tion of tasks (C2) which is very essential for any successful
interaction between humans and robots. To evaluate C2, we
devised a task in which participants (15 male, 7 female, ages
23 to 62 (M=30.95, SD=8.99)) were shown the images gen-

Table 2: Objective performance comparison.

Algorithm H1 H2 H3
Success Rate 0.81 0.74 0.73 0.71

erated in the initial data collection without the added arrow,
paired with machine- or human-generated commands. For
each scene-object pair, participants were asked to click on the
object specified by the command. Overall, we presented to
participants the twenty images four times each, in randomized
20-image blocks, totalling 80 images each. Each presented
image was captioned with either the machine-generated RE
(using the fixed-ordering strategy) or a RE from one of the
three humans with the highest median subjective ratings. We
only used REs of three humans to prevent participants from
viewing scene-object pairs too often.

Results We performed a logistic regression analysis, with
scene and RE-generating agent (i.e., the three humans, and
the algorithm) as independent variables, and success of iden-
tification as the dependent variable. This revealed significant
effects indicating that some scenes were more difficult to
create REs for than others, and that some agents were more
effective than others. As seen in Table 2, the proposed REG
algorithms (using the fixed-ordering strategy) produced the
objectively best results (81% vs. 74%, 73%, and 71%). Fur-
thermore, a Pearson’s chi-squared test of independence was
performed to examine the difference in performance between
human- and machine-generated REs; the results show a sig-
nificant difference, X2(1,N =1760)=12.4266,p < .0005. To
determine why the presented algorithms were more effective
than the top subjectively-performing humans, we examined
some scenes in which the machine-generated REs greatly
outperformed the human-generated REs.

Discussion Human REs generally showed a lack of atten-
tion. In the following we discuss four particular scenes of our
data set (Figure 5). For example, in Scene 8, the presented
algorithms generated “Pick up the cup that is next to the
keyboard”, whereas one user stated “Pick up the cup behind
the left side of the keyboard and the monitor”, which does
not actually describe any object. Participants given this RE
misidentified the target as the mug next to the keyboard. The
human may simply have forgotten to add the words “next to”
before “the monitor”, in which case their utterance would
have been unambiguous.

Similarly, there were scenes in which the human RE clearly
referred to the wrong object. For example, in Scene 5, the
target object was a bottle, but one human RE from the initial
data collection referred to the book behind the bottle, which
one might think the arrow was pointing to if they did not look
closely. In this scene, participants in the second experiment
may have actually clicked on the object that was described to
them, it simply wasn’t the object intended in the experiment.

In Scene 17, the proposed ensemble of algorithms gener-



(a) Scene 8. Target: mug. (b) Scene 5. Target: bottle.

(c) Scene 16. Target: mug. (d) Scene 17. Target: mug.

Figure 5: Example scenes of our data set. The corpus of im-
ages, metadata, and REs is available at https://github.com/
williamstome/SPARE-Corpus.

ated a RE which was not perfect (“Pick up the cup that is
in front of the bottle”) but performed much better than the
human REs. One human referred to the wrong cup, while
two humans used side-to-side descriptions instead of front-to-
back descriptions (i.e., “Pick up the coffee mug to the right
of the bottle” and “Pick up the cup next to the bottle”) which
were either incorrect or ambiguous.

In Scene 16, two of the three humans also generated REs
which referred to the wrong object. This seems to be due to
inattention, again, as those humans seem not to have noticed
a potential distractor object which made their REs inaccurate.
The remaining human seems to have confused left and right,
another sign of inattention. We thus see that the majority of
the cases where the algorithm was significantly better were
due to lack of attention on the part of human participants.
However, this is only a problem when comparing human
REs to machine-generated REs; not when comparing REG
algorithms to each other.

7 General Discussion
The goal of this work was to develop REG algorithms for
HRI based on empirical data, and to evaluate these algorithms
through empirical experimentation, thus closing the loop on
scientific discovery. In this work we sought to evaluate our
algorithms using human data in part because in Human-Robot
Interaction scenarios, humans will expect their teammates to
communicate in a natural way. In this section, we will briefly
discuss the four major contributions of this work.

Image and RE Corpus First, to study human genera-
tion of small-scale spatial REs, we generated a set of im-
ages of tabletop environments, and collected a corpus of
human-generated REs referencing items found in those
scenes. This corpus of images, metadata, and REs is
available at https://github.com/williamstome/
SPARE-Corpus for other researchers to use to both study
human generation of REs and to test REG algorithms. Al-

though smaller in size then other RE datasets (Kazemzadeh
et al. 2014b; Mao et al. 2016), our approach allows us to
generate arbitrary scenes for a range of different, situated
tasks. Moreover, ground truth information (in 3D) can be
immediately obtained from the simulator without the need
for expensive labeling.

Categorization of Small-Scale Spatial Referring Expres-
sions Second, examination of this corpus suggested five
categories of small-scale spatial REs. Researchers will be
able to refine this categorization, and possibly use it to in-
form their own REG algorithms.

REG Algorithms Third, we presented an ensemble of
REG algorithms, and strategies for algorithm selection. In the
future, it will be valuable to evaluate this ensemble relative
to other REG algorithms. It is important to note that while
our approach focused on spatial REG, there is no reason why
other features could not be included in future work.

Evaluation Framework Finally, beyond the validation of
the algorithms, the presented evaluation framework provides
a benchmarking platform for comparing REG algorithms.
This framework could easily use scenes and images of vary-
ing degrees of complexity beyond those presented here. The
framework consisted of three phases, each of which presented
participants with information gathered by other participants
in the previous phase. This evaluation allowed us to both
subjectively and objectively evaluate algorithms relative to
each other and relative to human participants.

8 Conclusion and Future Work
In this paper, we have presented work with four primary
contributions: (1) a corpus of machine-generated images and
human-generated REs, (2) a categorization of small-scale
spatial REs, (3) an ensemble of REG algorithms for HRI, and
(4) a framework for the evaluation of REG algorithms.

The foremost direction for future work will be to integrate
the presented algorithms with the Dialogue and Perception
components of a robot architecture (e.g. DIARC (Scheutz et
al. 2013)), in order to generate referring expressions in task-
based scenarios based on perceptual data. In particular, we
foresee integrating the presented algorithms with QSR-based
robot perception systems such as that seen in (Kunze et al.
2014). Figure 1 shows a first step in this direction where a
RE was generated based on QSRs that were abstracted from
RGBD sensor data.
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