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In interactive task 

learning, an agent 

actively tries to learn 

the actual definition 

of a task through 

natural interaction 

with a human 

instructor, not just 

how to perform a 

task better.

we can learn extensions and modifica-
tions to it, getting better and better with 
experience. In contrast, if we want to get a 
computer to do a completely new task, the 
only practical approach has been through 
programming. This has served us well so  
far, but with advances in artificial intel-
ligence, cognitive science, and robotics,  
we’re approaching a future populated with 
intelligent systems that have the cogni-
tive and physical capabilities to perform 

many different tasks. Unfortunately, it 
will be impossible to preprogram all the 
tasks that creative, generative human users 
will want their agents and robots to per-
form. It will be similarly unlikely that bil-
lions of users in the general public will 
have the specialized skills necessary to cus-
tomize and extend the capabilities of their 
agents using programming languages. 
So how will future intelligent systems 
learn the tasks we want them to perform?

An enabling characteristic of humans and other intelligent entities is 

that we aren’t limited to a fixed set of innate or preprogrammed tasks. 

We quickly learn new tasks through language, gestures, observation, and 

other forms of natural communication. After we learn the essence of a task, 

C O G N I T I V E  C O M P U T I N G
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Throughout the history of cogni-
tive science, many research efforts 
have studied how to perform a task 
better,1–4 but few have focused on 
learning the underlying concepts that 
define the task. For example, games 
and puzzles are usually defined by the 
environment in which the game takes 
place (such as a board), the objects 
that are used (pieces or cards), the le-
gal actions that can be taken, losing 
states, and the goal to be achieved.5,6 
Assembly tasks, such as cooking a 
dinner or building a piece of furni-
ture, are usually defined by a set of 
physical actions, available tools, com-
ponent pieces, and constraints on the 
final product. Classification tasks in-
volve learning labels for sets of data. 
Most learning research assumes these 
aspects of a task are known to an 
agent, and the agent’s learning task is 
to learn how to perform a task well. 
In contrast, we’re interested in how 
the agent learns an initial represen-
tation of a task so that the task can 
be attempted and then the agent can 
learn to perform it well.

One promising approach takes in-
spiration from how we teach humans 
new tasks.7 Usually the need to teach 
a task arises in the context of other ac-
tivities. A person who wants to learn 
the new task (the student) or a person 
that wants to teach it (the instructor) 
will initiate an interaction, using lan-
guage, in which an overview of the 
task is described. During the interac-
tion, the task’s purpose is described, 
including when it is appropriate, and 
its goal or termination conditions. 
The instructor might also describe 
constraints on what actions can be 
used and, depending on the student’s 
knowledge, provide some form of 
feedback, scaffolding, or even step-
by-step instructions. Typically, the in-
struction occurs while the student is 
attempting to perform the task, with 
the instructor referring to real-world 
objects (by pointing or linguistic ref-
erence) and, if it’s a physical activity, 
possibly demonstrating what the task 

involves. Throughout, the student 
asks questions, especially when there’s 
an ambiguous instruction, or when 
the instructor uses novel terminology. 
The instructor might even ask ques-
tions of the student to assess the stu-
dent’s understanding of some aspect 
of the task, environment, or previous 
instructions. After a learner under-
stands the essence of the task, he or 
she can then learn to do the task well, 
possibly through practice but also 
through additional interactions with 
the instructor or other humans.

We call this general approach inter-
active task learning (ITL). Although 
clearly drawing inspiration from the 
human–human interactions described 
in the previous paragraph, our empha-
sis in this article is on intelligent ar-
tificial agents or robots learning new 
tasks through natural interactions 
with humans. The learner actively 
tries to assimilate the meaning of the 
instruction while performing the task, 
and learning occurs in conjunction 
with that task’s performance. This is 
an ambitious problem to tackle, but 
recent progress in many fields sug-
gests that now is the time to make a 

cooperative and coordinated attack 
on ITL, making it an intriguing, mul-
tidisciplinary challenge problem that 
spans several fields, including AI, cog-
nitive science, and robotics. It draws 
on research advances in those fields, 
forcing us to confront many funda-
mental unsolved problems that arise 
when we have the persistent machine 
intelligence required to continually ex-
tend and customize tasks.

A central challenge of ITL is con-
verting externally specified de-
scriptions of a task into internal 
representations that are incremen-
tally integrated with existing knowl-
edge. The agent must be able to 
interpret those representations not 
only to produce behavior but even-
tually to perform the task as effi-
ciently as if it were preprogrammed 
with that knowledge. Because the 
agent is learning tasks from scratch, 
its processes for interpreting the in-
structions must be task-independent. 
Furthermore, we expect the agent to 
immediately learn from each and ev-
ery interaction with an instructor, 
which requires one-shot learning in-
stead of repeated practice over large 
datasets (although practice might 
help tune the learned knowledge). 
These characteristics suggest that 
techniques such as deep learning and 
reinforcement learning aren’t the core 
learning approaches in ITL.

Rather, ITL requires the integra-
tion of most, if not all, the capabilities 
we associate with cognition, includ-
ing extracting task-relevant meaning 
from perception, language processing, 
dialog and interaction management, 
integrated knowledge-rich relational 
reasoning, problem solving, planning, 
learning, and metacognition. ITL’s 
focus on integration is in contrast to 
most current research in AI and cog-
nitive science, which has become in-
creasingly fragmented and focused on 
specific technologies and techniques, 
and on narrow problems.

ITL has the potential to funda-
mentally change the way we interact 

After a learner 

understands the essence 

of the task, he or she can 

then learn to do the task 

well, possibly through 

practice but also through 

additional interactions 

with the instructor or other 

humans.
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with intelligent agents and robotic 
systems. No longer will these sys-
tems be limited to preprogrammed 
tasks. Human users will teach 
agents new tasks and help them im-
prove their performance via instruc-
tion, demonstration, and feedback. 
This will include software and ro-
botic agents, with applications in 
healthcare, where agents will need 
to be customized to patient needs; 
in industry, where tasks will change 
and be unique to a specific work-
place; for rescue and military ap-
plications, where agents will need 
to be dynamically tasked to novel 
missions in new environments; and 
for the home, where service robots 
and software assistants will need 
to be extended and customized  
to their users. There are also many 
applications in developing intelligent 
support software for business and in-
telligence analysis, where creating and 
maintaining models of dynamically 
unfolding events based on incomplete, 
inaccurate, and deceptive information 
requires updating information gather-
ing and integration strategies; in en-
tertainment, where developing rich 
virtual characters that can be taught 
by players will open new dimen-
sions of immersion; and in education, 
where ever-changing curricula and 
learner needs will require software tu-
tors and coaches that are extensible 
without reprogramming.

In 2014, we held a US National Sci-
ence Foundation (NSF)-sponsored 
workshop to take the first steps to de-
fine ITL and build a community of re-
searchers that studies and develops the 
science and technology to support it. 
Here, we present the major products of 
that workshop: an analysis of desider-
ata for ITL systems, a synopsis of re-
lated work, and a discussion of possible 
application areas for ITL systems.

ITL Desiderata
To further clarify ITL research goals, 
we developed a set of desiderata that 
help define ITL as well as provide 

dimensions for evaluating and com-
paring ITL agents. These are desider-
ata for a complete and comprehensive 
ITL agent, at least as we’re able to 
conceive of it today. Many of these 
desiderata won’t apply to ITL agents 
that are developed for specific do-
mains or for limited sets of tasks—
rather, they focus on generality, 
effectiveness, and efficiency across 
task learning, performance, and in-
teraction, with the added desiderata 

that task-learning capabilities are in-
tegrated with the agent’s overall per-
formance and available at any time to 
learn about any aspect of a task that 
the agent is pursuing.

General Task Learning
Most AI systems are developed to per-
form a single task, with the definition 
of the task “baked” into the agent’s 
design and structure. In contrast, ITL 
agents must have the ability to learn 
information and then later interpret 
it to produce task-relevant behavior. 

Thus, a general long-term challenge 
for ITL research is developing meth-
ods to learn representations of not 
just a single type of task but methods 
that can learn many different types of 
tasks. Although complete generality 
across all tasks is a goal, we expect 
that early research in ITL will natu-
rally pursue task clusters that share 
common environments and limit the 
diversity of types of task knowledge 
that can be learned, such as simple 
games, puzzles, or household chores.

Learning a new task can require 
learning new goals, concepts, actions, 
and procedures across different types 
of environments. Each of these catego-
ries of knowledge has a different under-
lying structure, so being able to learn 
one type of goal or concept for a task 
might not imply the ability to learn 
similar structures for other tasks. For 
example, although many tasks can be 
characterized as attempting to achieve 
a goal (defined by a set of constraints 
on a state of the environment), other 
tasks involve maintaining the state 
of the world within some constraints 
(homeostatic goals), such as keeping a 
plane flying, patrolling a building, per-
forming a dance, or maintaining accu-
rate knowledge of an ongoing sports 
event. Some tasks involve goals that are 
internal to an agent, such as learning 
a map of a building or learning some-
one’s likes and dislikes. In addition, 
many tasks include some form of op-
timization, such as reaching a goal as 
quickly as possible, using the fewest 
resources. This diversity spans other 
aspects of tasks (concepts, actions, pro-
cedures, environments, and so on) and 
presents a major challenge for general 
ITL agents, which need general learn-
ing methods and internal data struc-
tures for representing and reasoning 
over that diversity to produce effective 
behavior.

One approach to limiting the di-
versity of what must be learned is by 
constraining the environment so that 
an agent can perform a task even with 
very little knowledge. Consider the 
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case of playing chess. If an agent plays 
the game with a physical set of pieces 
and a board, the agent must physically 
set up the game, determine for itself 
which moves are legal, and make each 
move by physically moving the piece. 
It must know when it can castle, and it 
must be able to detect when the game 
has ended in a win, loss, or draw. 
Contrast this with an agent that plays 
the game using a computer simulation 
of chess: the computer enforces all the 
rules and presents the agent with a list 
of legal moves for each of its positions. 
After the agent chooses a move, the 
environment makes the appropriate 
changes to the board and detects when 
the game ends. In the first case, the 
agent must know much more to make 
a legal move and play a legal game. In 
the second case, the agent can choose 
randomly between the moves pre-
sented to it; it’s guaranteed to make le-
gal moves and play a legal game. It’s 
even possible that the agent in the sec-
ond case can learn to play the game 
well, but it will never learn a complete 
characterization of the game that it 
could communicate to a human. Thus, 
as we develop task-learning systems, 
we must also consider what aspects of 
the task are constrained by the envi-
ronment, what must be learned, and 
how much the agent actually learns 
about a task when its environmental 
interactions are constrained.

A complementary goal of achieving 
general task learning is also develop-
ing an understanding of the limits of 
the interaction-based approach to task 
learning. What tasks are amenable to 
that approach? What tasks are not?

Effective Task Learning
The primary goal of an interactive task 
learner is to learn a task from its inter-
actions with an instructor and from its 
own experiences. It must have reason-
ing and learning capabilities to inter-
pret instructions and demonstrations 
within the context of its prior knowl-
edge, ground them in the current situ-
ation, extract information about the 

task, generalize across multiple exam-
ples, and store the extracted knowl-
edge in its memories for future use. 
What makes this capability especially 
challenging, in comparison to most re-
search on machine learning, is that the 
learning doesn’t occur within the con-
fines of the structure of a known task, 
where a learning mechanism can be 
chosen to learn a specific type of data 
under prespecified circumstances. In 
learning a new task, an agent must be 
effective in learning many different 
types of knowledge, at different times, 
and from different types of interac-
tions with an instructor.

Efficient Task Learning
In contrast to many other forms of 
learning that depend on “big” data, 
an ITL agent has a paucity of data 
from which to learn: its interactions 
with an instructor and its own inter-
actions with the task environment. 
The advantage in ITL is that each 
interaction is targeted toward the 
agent, with the human providing in-
formation that’s directly relevant to 
helping the agent learn the task. Each 
interaction is a “golden nugget” of 
tailored and targeted instruction that 
the agent can mine for the knowledge 
embedded within it. Another reason 
for the need for efficiency is that a hu-
man instructor will have limited pa-
tience. The agent needs to minimize 

its interactions and maximize the 
knowledge it extracts from each inter-
action, avoiding questions for which 
the answer is obvious. Furthermore, 
because it’s in a real-time interaction 
with an instructor, the learning must 
also be efficient in the absolute time it 
takes for the agent to assimilate new 
information. The underlying learning 
algorithms can’t take minutes or even 
seconds to process new data as that 
could disrupt the interaction (and an-
noy the instructor). Even if that pro-
cessing occurs in parallel with the 
agent’s interaction with the instruc-
tor, the new knowledge must be im-
mediately available, so that the agent 
can use it as it progresses through the 
task. One additional efficiency chal-
lenge is that the agent must maintain 
its reactivity, even as it’s continually 
learning new tasks and building up 
its knowledge. Its learning algorithms 
must not slow down as knowledge 
accumulates.

Effective Task Performance
Once an agent has learned the defini-
tion of a new task, it should be able 
to effectively use that knowledge to 
pursue the task. This requires that 
the agent operationalize the knowl-
edge, converting it from the external 
declarative structure of natural lan-
guage into an internal procedural rep-
resentation that it can use to perform 
the task: determining when it’s ap-
propriate to attempt the task, deter-
mining when actions are appropriate, 
performing those actions, obeying ad-
ditional task constraints, and recog-
nizing when it has succeeded or failed. 
Beyond operationalization of its 
knowledge, the agent should be able to 
use other background knowledge and 
knowledge it has learned from earlier 
tasks to enhance its performance, such 
as using appropriate problem-solv-
ing and planning methods, or strate-
gies and heuristics that work across 
multiple tasks. It should also be able 
to employ additional learning mecha-
nisms beyond ITL to further improve 
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performance, such as reinforcement 
learning or inductive concept learn-
ing. Furthermore, the agent should be 
skillful at managing its performance 
of tasks, such as being able to decide 
when it can pursue multiple tasks, 
when it needs to interrupt low prior-
ity tasks with higher priority tasks, 
and when it should resume suspended 
tasks as they become relevant.

Efficient Task Performance
In addition to effective task perfor-
mance, the agent should be able to effi-
ciently use the knowledge it has learned 
from instruction. Achieving efficient 
execution might not happen immedi-
ately, requiring additional internal rea-
soning, analysis, and learning, but in 
the limit, the agent’s execution of a new 
task should approach the efficiency 
achieved when the task is programmed 
by hand in the same underlying archi-
tecture. As with learning efficiency, the 
agent’s execution efficiency shouldn’t 
degrade as more tasks, concepts, and 
procedures are learned.

Effective Interaction
ITL provides a vision of how un-
trained humans can teach agents new 
tasks and task knowledge. The long-
term goal is for instructors to use a 
combination of unrestricted natural 
language, gestures, sketches, and sim-
ple demonstrations, so that the com-
munication is effective, natural, and  
efficient. Effective interaction re-
quires that both the agent and the in-
structor understand the content and 
intentions of an interaction given the 
current environment and instruc-
tional context. The agent must be 
able to extract the meaning from 
the instructor’s utterance, no mat-
ter what modality is used, and must 
also be able to express itself so that 
the instructor can understand it. 
Moreover, the agent should be robust 
to errors in the instructions so that 
the teacher doesn’t have to provide 
perfect instructions. There might be 
many different ways of supporting 

robustness, including having the 
agent verify the correctness of in-
structions in some way (such as 
through internal simulation) or try-
ing out the instruction and allow-
ing the teacher to correct any errors. 
Recent research on the nature of ro-
bustness,8 a domain-general meth-
odology for quantifying robustness 
and stability,9 and mechanisms that 
produce robust cognitive systems10 
provides a conceptual and method-
ological foundation for the formal 

assessment of the degree of robust-
ness achieved by systems capable of 
ITL, as well as implementation guid-
ance for producing greater robust-
ness. Finally, the ability to learn from 
instruction can potentially be applied 
to interaction so that an agent can 
also learn to improve its interaction 
capabilities through instruction.

Accessible Interaction
Communication with an agent should 
be unconstrained and natural for an 

untrained instructor. Accessibility can 
be increased by supporting multiple 
modalities, such as language, gestures, 
and diagrams, as well as by allowing 
access to shared background knowl-
edge and analogies. Communication 
shouldn’t require extensive knowledge 
of the internal mechanisms and repre-
sentations of a system on the part of 
the human, but there should be means 
for the human to build up an accurate 
model of the agent’s capabilities and 
knowledge of a task.

Efficient Interaction
One of the promises of ITL is that 
it’s an efficient means for an instruc-
tor to teach an agent a new task. This 
includes minimizing the information 
that has to be communicated for a 
new task in terms of concepts but also 
in terms of the actual form of that 
information, such as the number of 
words, gestures, or demonstrations. 
Contrast this efficiency with the in-
efficiency of programming an agent 
to perform a task, which requires a 
very specific and detailed set of in-
structions (the program) to be com-
municated in a language that’s quite 
different from the ones used for hu-
man–human communication. Inter-
action efficiency should approach 
that required when humans teach 
tasks to other humans. Just as in ac-
cessible interaction, efficient interac-
tion requires that an instructor can 
easily construct an abstract model 
of the agent’s processing, reasoning, 
and existing knowledge. An instruc-
tor with a good model of a student 
can skip instructions that the student 
already has or can infer on its own, 
and focus on those aspects of the 
task that will be challenging for the 
student to learn. This implies that 
the agent can explain its reasoning 
and performance when necessary. An 
additional implication might be that 
the interaction should be modeled on 
human-to-human interaction, such 
as the communication that occurs be-
tween human teachers and students, 
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between trainers and trainees, and 
between teammates, although this is 
an area of future research.

Use-Specific Desiderata
For many uses of ITL, there will be 
additional desiderata that arise from 
the specifics of the types of tasks  
being learned. For example, in cog-
nitive modeling, the agent’s learned 
behavior should model human be-
havior, and the agent’s learning pro-
cess should model human learning. 
Conversely, for many tasks, there are 
safety concerns and other restrictions 
on behaviors that the agent can per-
form, most generally that an agent 
shouldn’t be taught “evil” behav-
iors. How will we have confidence 
that ITL systems will remain reli-
able and safe when their fundamen-
tal advantage is that they can learn 
entirely new things that weren’t an-
ticipated at production? The recent 
experience Microsoft had with its 
chat bot, Tay, clearly demonstrates 
that some people will dedicate them-
selves to nefarious manipulation of 
machine intelligence. Certainly, some 
people will attempt similar manipu-
lations of ITL systems, trying to get 
them to learn new tasks that are of-
fensive or malicious or dangerous, or 
some combination of those. Beyond 
the possibility of unethical interac-
tive corruption of ITL systems, there 
are, of course, the standard concerns 
about cybersecurity. We must assume 
that these systems won’t be stand-
alone, off-the-grid products, so they 
must be protected from cyberattack. 
This latter version of the safety is-
sue is already part of the global con-
cern about secure machines, but the 
former is relatively new and specific 
to learning machines and promises 
to be a significant challenge for ITL 
systems.

Desiderata Summary
These desiderata allow us to com-
pare our goal for ITL to the capa-
bilities of other general approaches 

for specifying and developing agents 
(some of which are described in more 
detail in the following section). Figure 
1 is an attempt to visualize a subset 
of the desiderata in three dimensions. 
The vertical dimension is a mea-
sure of task performance combined 
with efficient execution—the over-
all quality of task performance after 
learning. The horizontal dimension 
measures the ability to dynamically 
scale to new tasks. This is the essence 
of effective task learning together 
with the generality to learn many dif-
ferent tasks with different types of 
knowledge. The final dimension is 
the effectiveness, efficiency, and ease 
of communicating new knowledge, 
which involves teaching for an ITL 
system but programming for more 
traditional approaches. Not included 
in this figure are approaches (such 
as deep learning and reinforcement 
learning) that require massive train-
ing. Although those approaches are 
effective for learning some aspects of 
tasks, it isn’t yet clear how they sup-
port efficient learning of many of the 
types of knowledge required in ITL.

Traditional programming lan-
guages support the development of 
systems with high task performance 
and efficient execution, but they’re 

difficult to develop and don’t inher-
ently support dynamic extension to 
new tasks. Cognitive architectures11 
provide some important capabilities 
(such as memory structures, decision 
making, and learning mechanisms) 
that improve the ease of develop-
ment and help support ITL while 
maintaining high task performance; 
however, they alone don’t inherently 
provide dynamic learning of new 
tasks, although first-generation ITL 
systems have been developed using 
them. Learning from demonstration 
systems12 usually results in good task 
performance on the tasks that they’re 
taught, and they eliminate the need 
for programming, greatly simplify-
ing the communication of knowledge. 
However, they’re restricted to learn-
ing a few types of tasks, and there 
are significant limits on the types of 
knowledge that are easily communi-
cated through demonstration. Some 
existing ITL systems can learn mul-
tiple tasks, although their efficiency 
and final performance is often not yet 
to the level of hand-programmed sys-
tems. They also don’t have the flex-
ibility or ease of teaching that we 
desire for the ultimate ITL system, 
which is at the extreme for all three 
dimensions.

Figure 1. Comparison of task-specification techniques using major interactive task 
learning (ITL) desiderata.
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Literature Review
Our review of related work is di-
vided according to how information 
is communicated, either by natural 
language or demonstration. Within 
each, we proceed historically and dis-
criminate between systems based on 
knowledge that’s taught or specified, 
including task definition knowledge, 
but also considering knowledge that 
aids task performance, such as heu-
ristics or policy information.

Learning from Language
Since the beginning of AI, there has 
been interest in developing agents 
that can take instruction in natural 
language. In 1958, John McCarthy 
proposed the Advice Taker,13 which 
focused on taking advice about known 
tasks through natural language but 
didn’t involve learning completely 
new tasks. SHRDLU, developed by 
Terry Winograd,14 processed limited 
natural language commands, solved 
problems in a simulated blocks world, 
and acquired knowledge about its en-
vironment from language including 
the definition of composite concepts; 
however, it didn’t learn new tasks.

The first attempt at task learn-
ing was Understand,15,16 the goal of 
which was to extract the actions and 
goals from natural language specifi-
cations of multiple isomorphisms of 
the Tower of Hanoi puzzle. This ef-
fort shared many of the goals of ITL. 
However, the learning wasn’t inter-
active, much of the translation from 
language to internal data structures 
was done through hand simulation, 
and it was never applied to other 
problems. In 1975, the Instructable 
Production System (IPS) project17 was 
launched at Carnegie Mellon Uni-
versity with the goal of developing a 
system that could learn from instruc-
tion; however, it failed, in large part 
because of the lack of a general for-
mulation of task representations.

An alternative approach to using 
language for teaching was explored 
by a team18,19 whose noninteractive 

approach explored learning three 
heuristics for the game of Hearts us-
ing logical expressions as input. For 
example, a possible bit of advice is, 
“Avoid taking tricks with hearts in 
them.” Jack Mostow’s BAR system 
would take in a logical representation 
of that statement and transform it (a 
process called operationalization) so 
that a problem solver could use it in 
playing the game.

Colleen Crangle and Patrick Sup-
pes20 presented a theoretical exami-
nation of the issues and challenges 
that arise in commanding robots 
through natural language, as well as 
teaching them new tasks. Their anal-
ysis didn’t include any specific com-
putational systems but considered 

many of the problems that arise in 
ITL from a theoretical perspective.

Instructo-Soar21 was an agent de-
veloped in Soar that learned simple 
but novel block manipulation tasks 
from simple natural language instruc-
tions in a simulated robotic domain. 
It could learn to compose learned 
tasks when learning additional tasks. 
Instructo-Soar pushed the state of the 
art in cognitive architecture (at the 
time) to its limits.

Alfredo Weitzenfeld and col-
leagues22 created a method for 
“coaching” a robot that plays soccer 
by teaching it basic behaviors trained 
from a sequence of existing actions 
and hierarchical multirobot strate-
gies. The language was constrained 

for the domain and wasn’t interactive. 
Stephanie Tellex and colleagues23 cre-
ated a system that learned a mapping 
from natural language commands to 
robotic tasks. It learned through the 
analysis of a large corpora of such 
interactions and not through one-
on-one interaction with a human. 
Similarly, David Chen and Raymond 
Mooney24 created a system that 
learned mappings from language for 
simple navigation tasks, but as with 
Tellex and colleagues,23 their system 
doesn’t learn new tasks.

Advances in the Soar architecture25 
made it possible to return to many of 
the ideas first pursued in Instructo-
Soar. These advances have led to 
the development of a robotic agent 
named Rosie,26,27 which can inter-
actively learn basic concepts such as 
attributes of objects (color: red, size: 
large), spatial relationships (right-of), 
and simple actions (move) through 
language interaction in a real-world 
robotic environment. Rosie also ac-
quires new vocabulary of adjectives, 
nouns, prepositions, and verbs that 
are grounded in basic concepts and 
can be used in interactions. Rosie 
has been extended to learn 17 sim-
ple games and puzzles, such as Tower 
of Hanoi and Tic-Tac-Toe.28,29 Rosie 
also works on a mobile robot that can 
learn office delivery tasks and strate-
gies for finding objects that aren’t di-
rectly observable.30

Rehj Cantrell and colleagues31 de-
scribe a mobile robotic system imple-
mented in DIARC that can be taught 
individual task actions via verbal 
commands by specifying precondi-
tions (“you are at a closed door”), 
action definitions (“you push it one 
meter”), and postconditions (“you 
will be in the room”) but can’t learn 
completely new tasks as goals the 
agent must achieve on its own or 
tasks that have complex internal 
structure.

Thomas Hinrichs and Kenneth 
Forbus32 developed a system based 
on the Companions architecture that 

Since the beginning of AI, 

there has been interest in 

developing agents that can 

take instruction in natural 

language.
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learns Tic-Tac-Toe and Hexapawn 
through a combination of language 
and demonstration via sketching. It 
transforms the language and sketch-
ing information into the Game De-
scription Language (GDL),33 which is 
then interpreted to play the games.

Maxime Petit and Yiannis Demiris34 
use language to teach an iCub robot 
its body parts and then to label proto- 
actions (such as folding a thumb 
closed) that the robot generates during 
motor babbling so that no primitive 
actions must be known by the robot 
a priori. The instructor can then teach 
more complex motor actions, such as 
closing a hand, but using sequences of 
taught proto-actions.

Additional systems35,36 allow a hu-
man to teach a task by guiding the 
agent through a solution to a prob-
lem, rather than teaching the prob-
lem specification. These systems 
often use specialized languages or 
interfaces, and are often character-
ized as programming by demonstra-
tion, although using language to lead 
the agent instead of pure demonstra-
tion. These systems learn new tasks 
or modifications to existing tasks 
but are limited in the types of tasks 
they can learn, the methods for spec-
ifying the tasks, and their ability to 
only accept tasks that are defined by 
sequences of actions. For example, 
the Tailor system37 allows the user to 
use natural language instructions to 
modify task information and checks 
the modification to ensure there are 
no undesirable side effects. PLOW35 
is a collaborative task-learning agent 
that acquires procedural knowledge 
through a collaborative session of 
demonstration, learning, and dialog. 
The human teacher provides a set of 
tutorial instructions accompanied by 
related demonstrations. The agent 
uses these to acquire new proce-
dural knowledge. Although the learn-
ing is human-demonstration driven, 
the agent controls certain aspects of 
its learning by making generaliza-
tions without requiring the human to 

provide a large number of examples. 
LIA38 is an interactive, instructable 
intelligent agent that can learn new 
commands for managing email by be-
ing given step-by-step instructions in 
natural language.

There are also systems that at-
tempt to learn from reading and pos-
sibly diagrams.39–41 These systems 
don’t learn interactively, nor do they 
learn new tasks, but they do use lan-
guage as a means for acquiring new 
knowledge.

Learning from Observation  
and Demonstration
An alternative to using language to 
teach a task has been to use demon-
strations of tasks. In this approach, 
the agent must induce the goals, 

policies, and possibly rules of a task 
by observing a human or other ro-
bot perform it (learning by obser-
vation) or by being led through the 
task through tele-operation or phys-
ical manipulation of a robot’s effec-
tors (learning by demonstration12). 
This latter approach is popular for 
teaching control policies for action 
execution, including object manipu-
lation and locomotion, and differs 
from systems in which a human di-
rects the robot through natural lan-
guage commands because it relies on 
physical movement instead of lan-
guage. For example, Claude Sammut 
and colleagues42 created a system 
that learned to fly a simulated plane 
by observing human piloting. Some 
work has been done on learning task 

goal concepts from demonstration.43 
Learning by demonstration has also 
been used to learn qualitative mod-
els by observing the actions of an in-
structor in a game (Freeciv), using 
causal models to improve task perfor-
mance within the game.44

A few systems have been developed 
that learn game rules in physical  
environments through observation of 
gameplay.45,46 These projects focus 
on learning a single task and require 
large numbers of demonstrations and 
the labeling of illegal gameplay.

A few systems combine learn-
ing by observation or demonstra-
tion with additional communication 
via language to learn policy knowl-
edge but not task specification. Lan-
guage can be used to refine or clarify 
what’s learned by demonstration47 or 
to provide a goal structure as context 
for learning more complex tasks.48,49 
Other methods provide more struc-
ture for learning from observation, in-
cluding segmented observation data.50 
Some of these systems47,50 also refine 
their knowledge by learning from 
experience.

Domains and Associated 
Applications for ITL 
Research
For a given domain, there can be mul-
tiple applications—for example, in-
teractive mobile robots can be used in 
medical care, industry, the military, 
and the home. Thus, there appear to 
be many “vertical” slices of domains, 
each with clusters of tasks, where in-
teractive task learning could have a 
positive impact.

Games and Puzzles
Games and puzzles have many prop-
erties that make them attractive as 
testbeds for initial investigations of 
ITL. They vary in complexity from 
simple games such as Tic-Tac-Toe, 
which can be taught in a few min-
utes and played with pencil and 
paper, to complex computer strat-
egy games such as Civilization or 

An alternative to using 

language to teach a 

task has been to use 

demonstrations of tasks.
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Starcraft, which require a computer 
to manage the complex rules and pos-
sible dynamics of the game. In gen-
eral, games have well-defined actions, 
rules, and goals that are embedded 
in spatial domains. They also are 
tasks whose formulation can usually 
be learned independent of a specific 
strategy or policy for task perfor-
mance. For example, when learning 
chess, an agent can learn about the 
board, pieces, their movements, and 
the rules of the game without ever 
learning a strategy. For many other 
tasks, such as cooking, learning to 
perform the task is intertwined with 
what the task is (baking a chocolate 
cake) and how the task is achieved 
(the individual steps of measuring 
and combining ingredients). Games 
and puzzles also have the advantage 
that there are many existing exam-
ples that have diverse types of rules. 
In addition, people are familiar with 
teaching and learning games, making 
it natural for them to teach comput-
ers new games. The ITL approach to 
learning games is in contrast to the 
goals of the General Gameplay Com-
petition, where the rules of games are 
described in GDL,33 which is based 
on Prolog, and there’s no interaction 
between a teacher and learning.

Although there has been success 
with simple games with limited num-
bers of objects, it’s unclear whether 
current techniques can scale up to 
more complex games. Some of the di-
mensions of complexity include the 
number of movable pieces and places 
(such as in chess or Go), the number 
and complexity of rules and their in-
teractions (such as in strategy games), 
the responsiveness/speed of game-
play (such as in speed chess), and the 
number and types of relevant spatial 
relations (such as terrain in Civiliza-
tion). Below are some possible sets of 
games that could be challenge prob-
lems for ITL systems:

• Simple puzzles and games. James 
Kirk and John Laird29 have 

collected 17 such games, which 
could be expanded to include chess, 
checkers, card games, and so forth.

• Freeciv. This open source version of 
the turn-based strategy game Civi-
lization involves complex rules, ter-
rain, and multiple players and is 
well suited as a challenge problem 
for ITL systems.

• Video games. There are many 
video games that are freely avail-
able and can easily be interfaced to 
ITL systems. These include classic 
Atari games, such as Frogger and 
Space Invaders. However, for many 
video games, the task specification 
is trivial: move an object through 
a world, score points, and avoid 
death, a simplicity that has made 
them an excellent training ground 
for reinforcement learning, but at 
least for many of them, there is lit-
tle need for ITL.

Assistive Support Robots
Assistive robots offer an obvious 
domain for ITL as rarely is it possi-
ble to predict all the different tasks 
a human user will want a robot to 
do. Moreover, research in mobile, 
multipurpose robots has greatly ex-
panded in recent years, with more ro-
bots having the capabilities needed to 
perform many different tasks inter-
actively with a human, with such ap-
plication areas as domestic, medical, 
industrial, and military robots. As 
described early, there’s growing re-
search in dynamic teaching of robots, 
including learning by demonstration, 
observation, and through instruction. 
However, there are some challenges 
as well:

• Integration and real-world systems. 
Robotic systems require an inte-
grated architecture and functioning 
systems that have at least partial 
solutions for object identification, 
manipulation, navigation, natu-
ral language, safety, human–robot 
interaction, and learning. While 
current researchers have partial  

solutions for many of these areas, 
integrating them all into a real-time 
system that can learn from instruc-
tion is a major challenge.

• Symbol grounding and uncer-
tainty. Robots sense and act in a 
highly uncertain world, which cre-
ates major challenges for endowing 
taskable systems with basic knowl-
edge about the world. Such sym-
bol grounding is critical to bridge 
high-level reasoning and taskabil-
ity with low-level sensing and ac-
tuation. This inherent uncertainty 
takes several forms, primarily per-
ceptually grounding basic axioms 
about the world as symbols esti-
mated from noisy sensor signals, 
predicting the effects resulting 
from actions to ensure goals can 
be reached by executing actions in 
sequence, and estimating the inten-
tions and goals of human teachers 
demonstrating tasks to robots.

• Metrics. Another challenge is how 
to define metrics for evaluating an 
integrated interactive task-learning 
system. Most such systems will be 
less computationally efficient than 
specialized systems optimized for a 
specific task, so metrics and evalu-
ations need to span multiple tasks 
and domains.

• Interoperability and time-sharing. 
Robotics has the ongoing problem 
that a particular algorithm often 
doesn’t work on a different plat-
form (sensor or robot). Science 
is, at its core, the ability to verify 
knowledge and findings indepen-
dently through reproducible exper-
imentation. To share knowledge, 
the challenge of the same running 
architecture across different physi-
cal platforms must be addressed.

Some possible classes of challenge 
problems include assembly tasks 
taught through interactive instruc-
tion, cleaning up novel toys in a kid’s 
playroom, preparing meals with new 
tools in a novel kitchen, and a task-
able home care robot for an elderly or 
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disabled individual, capable of clean-
ing up a home.

Personal Assistants
Many important kinds of intelligent 
agents today are purely software, 
providing services in the cyberworld 
where so much of our thinking and 
work take place. Intelligence analysts 
build models of countries, factions, 
parties, and people, while business 
analysts build models of products, 
markets, supply chains, and other as-
pects of their operating environment. 
Both types of analysts must deal with 
information that’s incomplete, uncer-
tain, and sometimes aimed at decep-
tion. Scientists, engineers, and doctors 
must handle an explosion of litera-
ture, within which there is contradic-
tion, uncertainty, and much that is 
irrelevant. Software assistants need to 
be taskable and customizable to the 
needs of individual users, and they 
need to learn new analytic practices 
and rapidly get up to speed in new ar-
eas of interest without programming.

One of the major bottlenecks for 
such agents is deep natural language 
understanding. Progress in question-
answering systems provides an in-
teresting illustration. Accuracy for 
most question-answering systems has 
remained at roughly 30 percent for 
years, as the results from the TREC 
competition illustrated. By contrast, 
IBM’s Watson achieved accuracy in 
the top end of the 80th percentile, 
using a combination of structured 
representations (including a 900 mil-
lion-element frame representation, 
automatically constructed via reading 
text) and statistical machine learning, 
which was enough to routinely beat 
human champions at the real-time TV 
quiz show Jeopardy! Watson’s learn-
ing processes and reasoning processes 
were completely hand-tailored for the 
problem at hand by a team of human 
experts who put in a person-century 
of work to succeed. Obviously, this 
approach doesn’t scale. Interactive 
task learning could potentially enable 

anyone to customize and extend, 
in other words, to truly personalize 
their software assistants.

The state of the art in such sys-
tems is still quite primitive. Learning-
by-reading systems39,40 can extract 
deep knowledge from texts. For ex-
ample, Kate Lockwood and Kenneth 
Forbus41 describe a system that, af-
ter processing a textbook chapter 
expressed in simplified English and 
sketched diagrams, was capable of 
correctly answering 12 out of 15 ques-
tions posed at the end of the chap-
ter. Dario Salvucci51 has shown that 
knowledge from Semantic Web re-
sources can be combined with ACT-R  
to provide answers to “factoid” ques-
tions. Project Halo39 focused on  
exploring the kinds of reasoning 

needed to solve Advanced Placement 
test problems in multiple domains, 
while Forbus’s Companion cognitive 
architecture has been used to learn to 
solve AP Physics problems52 and new 
physics problems via cross-domain 
analogies.53 While progress continues 
to be made in all of these areas, the 
building of integrated systems that 
use them to experiment with interac-
tive task learning could push the state 
of the art forward even faster, espe-
cially if improving the knowledge of 
such systems became an important 

class of experimental tasks. Here are 
some possible challenge problems:

• Learning background knowledge. 
Using human-normed textbooks, 
including reading comprehension 
books, the challenge would be to 
learn enough about the world to do 
well on human-normed tests, such 
as the New York State Regents 
Exams.

• Analyst’s assistant. Given back-
ground materials on a new topic, 
the challenge would be to build up 
a conceptual model of the topic, 
extending the model as new in-
formation becomes available and 
responding to queries about it. 
Topics might include countries, 
crises, products, or research find-
ings, while the background mate-
rials might include text, sketches, 
pictures, and video. Queries might 
include prediction questions, ab-
ductive questions (inference to best 
explanation, determining what sort 
of business strategy is most con-
sistent with company X purchas-
ing company Y), and historical 
analogies.

Constructive Agents  
and Virtual Humans
We use the terms “constructive 
agents” and “virtual humans” here 
to be inclusive and attempt to group 
several clusters of research and de-
velopment that have emerged around 
closely related terminology. These 
have somewhat different connota-
tions across education, training, and 
entertainment applications. Con-
structive agents and virtual humans 
are implemented in software and run 
without the direct involvement of (or 
with low-level) remote control from 
human operators. This distinguishes 
them from the avatars that represent 
human users in computer games and 
virtual world environments such as 
Second Life or OpenSim.

The term “virtual human” is more 
often used when the agent takes on 

Many important kinds of 

intelligent agents today 

are purely software, 

providing services in the 

cyberworld where so much 

of our thinking and work 

take place.
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some form of simulated physical em-
bodiment and when it’s designed to 
exhibit human-like behavior. An ex-
ample might be a virtual charac-
ter in a role-playing game that talks 
with the human game player. The 
term “constructive agent” is more 
common when there’s no physical 
embodiment perceived by humans 
interacting with the agent and when 
human-like performance levels aren’t 
necessarily a constraint (it might be 
acceptable or even desirable for the 
agent to behave in a perfectly pre-
dictable and reliable manner every 
time it completes a task). An exam-
ple of a constructive agent could be 
one that controls an airplane or tank 
in a simulation training application. 
These terms and associated underly-
ing technologies have fuzzy boundar-
ies, and the terminology is often used 
interchangeably across and within  
research communities.

Various forms of constructive 
agent and virtual human capability 
have been the focus of scientific and 
technical investments going back at 
least 30 years. Two summative Na-
tional Research Council (NRC) re-
ports54,55 have been published on the 
topic. Intended applications are most 
commonly in education and train-
ing, although they’re increasingly 
commonplace in video games56 and 
in film and television.57 Subtypes of 
these systems tend to cluster into op-
ponents, teammates, and crowds.

Constructive agents or virtual hu-
mans are typically necessary to pro-
vide a realistic and interactive social 
environment in which human expe-
rience takes place in a virtual envi-
ronment. However, these capabilities 
are costly to develop, and, because 
they’re often specialized during im-
plementation for a particular applica-
tion, they typically require significant 
additional manual refinement to 
adapt to a new application.58 Consis-
tent issues associated with brittleness 
and development costs have plagued 
research and application efforts. Even 

modest progress in the direction of 
ITL systems could result in a dramatic 
decrease in development costs and 
generalizability.

These challenges have motivated 
researchers to explore the use of 
machine learning to develop con-
structive agent and virtual human 
capabilities. For example, Laird and 
colleagues48,49 employ traces of en-
tity behavior in simulation, along 
with annotated descriptions of goals 
and plans, to learn an agent behav-
ior model. Automatic construction of 
interactive game characters has also 
been explored in the game and en-
tertainment research community.59 
In almost all cases, there’s little in-
teraction (natural or otherwise) be-
tween the actual user of the virtual 
human, who might be in the best 
position to describe requirements, 

and the development process. A soft-
ware developer acts as the interme-
diary, interpreting requirements and 
creating new behavior models from 
those requirements. This separation 
has led to the development of ab-
stract programming interfaces, such 
as graphical programming tools and 
high-level languages, but these agents 
would be more useful, less brittle, 
and have a longer and more flexible 
life cycle if users could customize and 

specialize their behavior via natural 
interactions.

Learning behavior through natural 
interaction is being explored, how-
ever. Juatin Permar and Brian Mag-
erko60 describe a system that learns 
to improvise a dance with a hu-
man partner. Although the scope of 
the learning interaction is limited to 
movements, the system readily creates 
new dance behaviors without being 
dependent on specialized program-
ming or user training. Moving from 
dance partners to mission teammates, 
the Air Force Research Laboratory 
(AFRL) has been developing a syn-
thetic teammate capability.61 It uses 
a theory of language processing62,63 
combined with a dynamically con-
structed situation model64 to interpret 
and respond to text chat among team-
mates in simulated UAV missions. The 
synthetic teammate’s relevance to ITL 
objectives is in the natural, interactive 
manner in which it develops its inter-
nal mission situation model through 
text chat with teammates.

ITL could make a significant con-
tribution toward several important 
challenges in constructive agents and 
virtual humans. First, conversational 
interactions that allowed an agent to 
gain insight into the specific goals 
and requirements of a particular user 
experience could be important for an 
agent that was primarily manually 
programmed. By analogy, imagine 
actors getting input about a scene or 
story arc from a director or a squad-
ron of pilots receiving their mission 
brief. These conversations inform the 
players in carrying out their behav-
ior in the scene and having greater 
context to make good decisions au-
tonomously. Second, interactive task 
learning would help constructive 
agents and virtual humans migrate 
to new applications or even domains. 
An agent that knows how to fly a 
fighter plane should be able to learn 
to fly a commercial airliner or a cargo 
plane, for example. Below are some 
possible challenge problems:

The term “virtual human” 

is more often used when 

the agent takes on some 

form of simulated physical 

embodiment and when it’s 

designed to exhibit human-

like behavior.
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• At-a-distance actors. Given guid-
ance from a teacher, the agent would 
learn to exhibit/behave within 
given/prescribed norms. The chal-
lenge addresses the need for realis-
tic “background characters” in film 
and television and in some kinds of 
simulation training. To address this 
challenge, learning systems might  
need to “take in” cultural cues and 
learn to exhibit them. Addressing 
this challenge likely requires em-
bodiment (virtual human).

• Platform operator. For this chal-
lenge, the agent would learn to con-
trol a simulated physical platform, 
such as a car, tank, or aircraft. 
Different vehicles and applications 
will have different requirements for 
physical fidelity and thus the com-
plexity of control task will vary de-
pending on the domain (ship at sea 
versus supersonic aircraft). How-
ever, solutions likely share common 
properties and requirements that 
could be exploited across multiple 
research groups. This constructive 
agent approach probably does not 
require embodiment.

• Role-players. For this challenge, 
assume some constructive agent or 
virtual human has been developed 
that exhibits a high degree of capa-
bility and knowledge of a domain 
and application. The challenge 
is to learn to be an effective role-
player within that domain—that is, 
learn to customize how behavior 
is manifest in different situations 
based on requirements for that con-
text. This challenge has some po-
tential pitfalls in terms of how the 
prior knowledge would need to be 
structured to support this capabil-
ity. Further, it’s a narrower prob-
lem than ITL is pursuing in general 
because it’s focused on producing 
variation of behavior within a do-
main. However, it would offer im-
mediate practical utility as a new 
feature for existing models/virtual 
actors. It might also be worthwhile 
as a goal of ITL research to frame 

ITL capability as one that could 
learn to exploit a virtual human or 
constructive agent, rather than nec-
essarily being integrated within it.

Cognitive Science Research
Whereas recent AI approaches to 
task learning have primarily empha-
sized functionality and scope, recent 
cognitive science approaches have 
primarily focused on psychologi-
cal plausibility and validity with re-
spect to human learning. For example,  

several recent efforts have explored 
how computational models can, like 
people, learn by reading and follow-
ing instructions.51,65,66 In such work, 
the models encode instructions as de-
clarative representations, and then 
proceduralize the instructions over 
time, thus moving from novice to ex-
pert performance. Christian Lebiere 

and colleagues67 extend this approach 
to building shared mental models in 
the domain of human–robot interac-
tion and later apply it to sensemaking 
for geospatial intelligence analy-
sis.68 These models combine instruc-
tions specifying a decision-making 
procedure with learning from dem-
onstration and exploration to make 
individual decisions.

That said, many challenges remain 
in developing cognitive models of task 
learning. One of the most important is 
moving beyond instruction following 
to other common forms of learning, 
such as learning by example. People are 
very adept at mixing forms of learn-
ing as they study new tasks, whereas 
current models by and large follow a 
single method of learning. Another im-
portant challenge involves developing 
better models of natural language un-
derstanding. Current cognitive science 
models have typically incorporated 
basic parsing and understanding but 
only in a very limited scope, whereas 
interactive task learning and collabo-
ration will require a much richer and 
more flexible model of understanding. 
Perhaps the most fundamental chal-
lenge is modeling not just the initial 
learning to perform the task from in-
structions and background knowledge 
but the entire learning curve including 
higher levels of expertise with the task. 
This requires the acquisition of high-
level task concepts that aren’t directly 
instructable but instead must be dis-
covered through experience. Below are 
some possible challenge problems:

• Simulated students. Using a cogni-
tive architecture as an underlying 
framework, we can develop simu-
lated students that interactively re-
ceive instruction and, at the same 
time, practice new tasks and im-
prove on these tasks through 
learning. Such a simulated student 
could serve to predict the diffi-
culty of new problems, and could 
also be incorporated into intel-
ligent tutoring systems for more 

Different vehicles and 
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accurate inference of a student’s 
current skill level. Some founda-
tional research in this direction 
has been completed,69–72 yet chal-
lenges remain in improving on the 
generality and degree of natural 
interaction associated with these 
capabilities.

• Interactive learner for psychologi-
cal experiments. Another potential 
challenge problem involves using a 
cognitive architecture to develop 
a model that can learn to perform 
psychological experiments in the 
way that humans do. In a standard 
experiment, a person enters with 
a large base of underlying proce-
dural and declarative knowledge; 
during an instruction period and 
during the experimental task itself, 
the person augments this knowl-
edge with an understanding of how 
to perform the specific task being 
asked. A preliminary model in this 
direction has been developed,51 but 
there remain significant challenges 
to making a broader interactive 
learner. First, the learner requires 
a significant natural language com-
ponent to accept instructions and 
translate them to actions. Second, 
although there has been significant 
progress in learning from instruc-
tions, the experiment learner needs 
to acquire knowledge in multiple 
ways—especially in learning by  
example—and these avenues re-
main largely unexplored in cognitive 
modeling. Third, the experiment 
learner’s background knowledge 
is extremely important and neces-
sitates large-scale understanding 
and development of useful bodies 
of knowledge that can be applied to 
tasks.

• Cognitive debiaser. In contrast 
to physically embodied domains 
such as robotics, information ma-
nipulation in cyberspace is becom-
ing an increasingly important part 
of both everyday life and profes-
sional activities. A potential chal-
lenge is to develop a system that 

could serve as a personal assistant 
to an intelligence analyst, model-
ing his cognitive processes at an 
individual level to alleviate short-
comings such as cognitive biases 
and attentional bottlenecks. The 
task could be defined as receiv-
ing layers of information and is-
suing probability judgments over 
a space of hypotheses. This chal-
lenge would advance the state 
of the art in cognitive modeling 
by requiring the integration of 

a predictive, quantitative theory 
of myriad cognitive biases docu-
mented in the decision-making 
literature. A potential application 
would be to evaluate the impact of 
structured analytic techniques73 
that have been proposed as a so-
lution to cognitive biases. Metrics 
would be designed to quantify bi-
ases as deviations from rational 
normative performance.

We’ve tried to provide an over-
view of the landscape of in-

teractive task learning, including its 
definition, the associated desiderata for 
evaluating future progress, a review of 
previous research in related areas, and 

potential application areas. Interactive 
task learning is a constellation of ap-
proaches and research problems that 
if realized, holds the promise of dra-
matically changing the way we de-
velop and extend the capabilities of 
intelligent agents. No longer will we 
need to rely on programmers to an-
ticipate all of the potential tasks that 
our agents will perform. 
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