
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Resilience for Goal-Based Agents:
Formalism, Metrics, and Case Studies
JENNIFER LEAF1, (Member, IEEE), JULIE A. ADAMS1, (Senior Member, IEEE), MATTHIAS
SCHEUTZ2, (Senior Member, IEEE) and MICHAEL A. GOODRICH3, (Senior Member, IEEE)
1Collaboative Robotics and Intelligent Systems Institute, Oregon State Univeristy, Corvallis, OR 97331 USA (e-mail: leafj@oregonstate.edu,
adamjuli@oregonstate.edu)
2Department of Computer Science, Tufts University, Medford, MA 02155 USA (e-mail: Matthias.Scheutz@tufts.edu)
3Department of Computer Science, Brigham Young University, Provo, UT 84602 USA (e-mail: Mike@cs.byu.edu)

Corresponding author: Jennifer Leaf (e-mail: leafj@oregonstate.edu).

This work was supported in part by the Office of Naval Research grant #N00014-18-1-2831. Leaf also received a Foundation Scholar
award from the Achievement Rewards for College Scientists.

ABSTRACT Goal-based agents need to be resilient to perturbations in the world. Existing resilience
definitions emphasizemaintenance-type goals and, consequently, describe howwell systems can recover and
return to a desirable operating state after a perturbation. An alternative formulation of resilience is required
for achievement-type goals that emphasize the ability to progress towards a goal state. This manuscript
proposes a new formalism of resilience as a computational construct that accounts for an agent’s sensors,
effectors, communication channels, and computational resources. Two metrics for comparing the resilience
of different algorithms are derived, namely power and efficiency. Three case studies demonstrate how the
metrics can be used to characterize power-efficiency tradeoffs in algorithm design. A common property
of the resilient algorithms in the case studies is that they have the ability to exploit many possible world
trajectories, often at the cost of failing to find optimal trajectories in unperturbed conditions.

INDEX TERMS Resilience, Perturbations, Single Goal, Agents, Robots.

I. INTRODUCTION

AGENT-based systems must be able to achieve their
goals even when operating conditions cannot be pre-

dicted completely. The pursuit of optimality, with the ob-
jective of implementing the best algorithm given the agent’s
computational system and task parameters, imposes con-
straints that can reduce the agent’s ability to cope with un-
expected events. Indeed, real-world robot deployments have
demonstrated that cutting-edge algorithms, extensive simula-
tion, and testing alone do not guarantee successful mission
performance because unanticipated or unmodeled perturba-
tions frequently occur [1], [2]. A resilient agent achieves its
goals under unanticipated perturbations, even if redundant or
suboptimal behaviors are necessary to achieve those goals.

Resilience as a concept has been applied across many
domains, including engineering, ecology, psychology, sociol-
ogy, and economics (e.g., [3]–[12]). Two types of resilience
definitions are particularly relevant, each of which is based
on the notion of an equilibrium. First, engineering resilience
quantifies how well systems are able to recover performance
after a perturbation and return to an equilibrium [3]. En-
gineering resilience assumes the equilibrium is a desirable

state and leads to algorithm designs that seek to maintain that
equilibrium. Second, ecological resilience describes whether
relationships between system elements can persist over time
[13], [14], such that system elements remain in a consistent
state space region. Ecological resilience assumes that the rela-
tionship between system elements is configured in a desirable
way and seeks to maintain that configuration.
Engineering and ecological resilience are suited for sys-

tems that pursue maintenance or procedural goals [15], in
which the system either needs to maintain a desired state or
perform a specified set of actions, respectively. Resilience is
not as clearly defined for agents that pursue achievement-
oriented goals in which the goal is achieved if the system
reaches a state in which a task has been accomplished.
Consider an autonomous vehicle that after delivering goods

needs to traverse mountainous terrain to return to its home
base. While following the road on the vehicle’s map, it en-
counters a boulder blocking the road at the entrance to a nar-
row canyon, preventing it from continuing. The vehicle must
handle this environmental ‘‘perturbation’’ (e.g., determine
alternative off-road paths to potentially traverse). Driving up
a steep incline requires the vehicle to lower its load (i.e., drop-

VOLUME 11, 2023 1

Leaf et al.: Resilience for Goal-Based Agents

ping all empty containers) in order tomake it up themountain.
After a few miles, the vehicle becomes stuck in a sandy patch
with its wheels spinning. The vehicle must cope with this
perturbation, perhaps by deflating its tires to get enough trac-
tion to move beyond the sandy area. Yet, due to the deflated
tires, the vehicle must adjust its driving model, in particular,
its steering on hard ground to avoid collisions. Throughout
the vehicle’s mission, it had to cope with unexpected events
and changes, and the steps it took to cope with them were
in the interest of its goal to reach its final destination, not in
order to maintain a particular state or execute a procedure.
This manuscript defines resilience for achievement-oriented
agents, as exemplified by the autonomous vehicle, which are
referred to hereafter as goal-based agents.
Throughout this manuscript, the term algorithm refers to

the collection of decision-making processes that map sensed
information to actions. The behavior of an agent’s algorithm
is determined by: the agent’s configuration (sensors, effec-
tors, memory, and computational resources) and the environ-
ment. For goal-based agents, the probability that an agent’s
behaviors achieve its goals is referred to as the agent’s com-
petency [16]. If the world can be modeled with high fidelity,
then competency-related guarantees of stability, optimality,
and efficiency can be made about the algorithm [17]. Un-
fortunately, competency is not sufficient to define an agent’s
success, because some aspects of the environment may not be
anticipated at design time, and; therefore, are not sufficiently
well-modeled to provide competency-related guarantees. Re-
silience also must be a design objective. Resilient goal-based
agents react to perturbations to the environment or the agent
itself in ways that enable the agent to achieve its goal.

Formal resilience definitions for goal-based agents are in-
troduced, along with metrics that permit comparing different
algorithms. The manuscript builds on the definitions from
two conference papers and an extended abstract [16], [18],
[19], making three substantial improvements: (1) the mathe-
matical formalism is extended and refined, (2) the definitions
of resilience and perturbation types are more precise and
complete, and (3) the three case studies are novel. Most
importantly, the three case studies illustrate in detail how to
use the resilience framework’s formal definitions to obtain
theoretical results that can elucidate why some problems
have tradeoffs between optimality and resilience, and in some
cases even reveal the extent of the tradeoff. The case studies
demonstrate how empirical measurements can be used based
on the framework’s definitions to understand an algorithm’s
resilience to various types of perturbations that in turn, can
help algorithm designers determine which design choices are
needed to reach their performance goals for the system (e.g.
sacrificing optimality to achieve a certain level of resilience).

II. RELATED WORK
The definitions of resilience found in the literature are re-
viewed, followed by a discussion of useful metrics and mea-
surement concepts derived from the definitions.

A. RESILIENCE DEFINITIONS
The first resilience category is a state space-based definition
known as engineering resilience [13], which is closely related
to the notion of robustness in control systems [3], [13], [20],
[21]. The key concept is that a resilient system can maintain
a desired property (e.g., stability), or return to a desired equi-
librium state after a perturbation [3]. Engineering resilience is
suited for systems with maintenance and procedural goals in
which a system propertymust bemaintained at an equilibrium
point, but is insufficient for systems with achievement goals
that require actions to bring about a desired state.
The second resilience category is also state space-based

and referred to as ecological resilience. Ecological resilience
applies to natural phenomena, including biological and net-
work systems, that lack fixed stable points in their dynamics
[22]–[24]. For example, predator-prey systems have predator
and prey populations that vary over time. A resilient eco-
logical system preserves the system’s identity by ensuring
relationships between system elements persist over time [13].
Ecological resilience assumes maintenance goals.
The third state-based category defines resilience using a

viability kernel [25]. Viability assumes only that the system’s
goal is reachable and does not impose the existence of a
baseline or equilibrium condition. Viability-based resilience
frameworks exist for ecological systems [25]–[27] and show
promise as a generic approach to measuring resilience for
both maintenance and achievement goals. There are two
primary differences between viability-based resilience and
the notion proposed in this manuscript. First, viability-based
resilience is only defined for threshold-based performance
goals, while this manuscript’s resilience framework intro-
duces a much larger class of goals that can be defined via gen-
eral goal functions. This manuscript also introduces resilience
metrics based on the formal resilience concepts that can be
used to measure how well an algorithm is achieving its goal
under different perturbation types. Viability-based notions of
resilience do not provide such metrics.
A fourth category, called switching resilience, is a qual-

itative framework that describes resilience as the ability to
(re)establish stability, perhaps around a new equilibrium state,
when new operating parameters or new goals arise [28].
Switching resilience allows transitions between different
maintenance or procedural goals when the boundaries of a
system’s competence envelope are altered due to changing
conditions. Switching resilience requires a system to change
its competence envelope in order to continue operation, which
may require the system to alter its goals or its structure. The
introductory terrain traversal example’s vehicle altered how
it achieved its goal in order to cope with the environmental
perturbations. While switching resilience can apply to agents
with maintenance goals and those with achievement goals,
it lacks a precise mathematical formulation with associated
metrics. This manuscript addresses this limitation by making
precise the high-level description of switching resilience.
Various designs or algorithms have been qualitatively

described as improving resilience under various circum-

2 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

stances (e.g., [29]), but qualitative definitions typically do
not yield generalizable quantitativemetrics. Some approaches
to resilience provide precise formulas for calculating re-
silience [30]–[32], but are restricted to specific algorithms or
applications, and are not applicable in general to any system
with sensors, actuators, and computational resources as in the
notions of resilience defined in this manuscript.

B. RESILIENCE METRICS
One class of resilience metrics for natural and networked sys-
tems is based on susceptibility to disturbance or catastrophe,
and are based on the absence of system fragility [24], [33].
Many more direct measures of resilience are intended for
maintenance goals and are based on the so-called resilience
triangle (e.g., [34]–[36]), which represents performance lost
due to a perturbation and subsequently recovered, relative to
a baseline value. Three different types of baselines exist: the
magnitude of total change in a system variable relative to
its pre-perturbation value, the percentage of recovery relative
to its pre-perturbation value, and the percentage of recovery
relative to the maximum change [37].

A number of metrics exist for characterizing the distur-
bance and subsequent restoration of the system’s performance
relative to a stable baseline [4], [5], [7], [10]. Resistance,
the magnitude of the deviation between the equilibrium and
current performance values, and recovery, the speed at which
the system returns to equilibrium, provide insight into how
well the system withstands disruption [38]. Resistance and
recovery are not necessarily correlated [37], and systems with
high resistance and low recovery differ from systemswith low
resistance and high recovery.

Resilience metrics often impose simplifying assumptions.
The triangle model assumes that both the perturbation’s ef-
fects and the performance recovery are relatively linear pro-
cesses, and are treated as non-overlapping phases. Similarly,
engineering resilience metrics often assume that the perfor-
mance measure is constant in the absence of a perturbation.
Metrics often examine the effect of perturbations on a single
performance measure even when a system has multiple per-
formance measures [36], which requires the overall system
resilience to be inferred from the individual results.

Three quantifiable properties for assessing resilience in
ecological systems are: latitude-the total amount a system
can change before crossing the current basin of attraction’s
threshold, resistance-the difficulty in changing the system,
and precariousness-how close the system currently is to a
threshold [39]. Latitude is represented by the basin of attrac-
tion’s width, resistance by the basin’s depth, and precarious-
ness by the minimum distance between the current system
state and the edge of the current basin of attraction. Systems
operating in different domains of attraction are not directly
comparable, and comparing the value of a single property
(e.g., latitude) provides no insight into the other properties.
Consequently, metrics have largely been evaluated on a per-
case basis, even though the description of ecological re-
silience has remained consistent [39]–[41]. The development

and validation of a generalized framework for measuring
ecological resilience remains an open problem [42]–[45].
Overall, these metrics do not apply to agents with achieve-

ment goals. While some metrics can measure resilience rel-
ative to maintenance goals, they do not apply to agents with
achievement goals (e.g., there may simply be no recovery to
a pre-perturbation value, as illustrated by the introductory ex-
ample’s vehicle deflating its tires). Similarly, the metrics for
ecological systems are not applicable to agents with achieve-
ment goals where many of the system’s initial properties
may have irreversibly changed due to the system’s attempt
to overcome the changes caused by the perturbation (e.g., the
introductory example’s vehicle dropping its containers).

III. RESILENCE FOR GOAL-BASED AGENTS
An agent’s algorithm generates action commands that alter
the world. Perturbations alter what actions an agent uses and
how those actions affect the world. A resilient goal-based
agent can accomplish its goal in the presence of perturbations.

A. AFFORDED BEHAVIOR POTENTIAL
Defining resilience requires understanding the effects of both
agent behaviors and perturbations. The world model is a
discrete-time, discrete-state tuple ⟨S,A,E⟩. S denotes the set
of world states, and st ∈ S denotes a finite n-element tuple of
state variables at time t . A denotes the set of actions, a, that
induce a transition from one state to another.E represents how
environment states are related via actions, where

E ⊆ S × A× S.

Elements of the environment relation are present-state-action-
next-state tuples, (st , a, st+1).
The environment relation is broad enough to include

many common world models, including transition systems,
difference equations, Markov processes, and other prob-
abilistic systems. The present-state-action-next-state tuple,
(st , a, st+1), abstracts many other representations for discrete
time, discrete state systems. The relation makes no com-
mitment to how these tuples are formed, but does make a
commitment to a weak form of the Markov property where
next state depends only on the current state and current action.
The Markov property is ‘‘weak’’ because the environment
relation does not specify conditional probabilities. Note that
the environment relation allows transitions to next states from
current states, both when an agent acts and in the absence of
agent action. Thus, the environment relation is an open sys-
tem, subject to both intentional and external state transitions.
A sequence of actions induces a corresponding sequence

of transitions between states. A finite state-action trajectory
with initial state s0 is a t-step time-indexed history of states
and actions, beginning at state s0:

ξ(s0, t) = [(s0, a0), (s1, a1), . . . , (st−1, at−1), st]

∈

[
t−1∏
τ=0

(S × A)

]
× S. (1)

VOLUME 11, 2023 3

Leaf et al.: Resilience for Goal-Based Agents

Let T(s0, t) denote the set of all t-step trajectories that can
occur in the world when no restrictions are placed on what
action sequences can be performed,

T(s0, t) = {ξ(s0, t) : ξ(s0, t) is possible in E}.

The world’s afforded behavior potential given time bound
Tmax represents all possible trajectories from any initial state,

B(Tmax) =
⋃
s∈S

⋃
t≤Tmax

T(s, t).

An embodied agent usually does not have enough control
authority, observational power, or computational resources
to choose actions that reach the world’s afforded behavior
potential. Indeed, a goal-based agent seeks to induce only
those trajectories that achieve its goal.

B. ALGORITHM BEHAVIOR POTENTIAL
Three practical restrictions exist when the algorithm is part of
an embodied agent:

1) The agent may observe only a portion of the state due
to sensor limitations, Sobs ⊆ S. An element of the
observable subspace at time t is denoted by sobst .

2) The agent may influence only a portion of the action
space, Aeff ⊆ A. An element of the action space that
can be effected by the agent at time t is denoted by aefft .

3) Bounded memory and bounded computation time limit
what an agent can do in the world. Consequently,
computational resources are part of the state space,
Scomp ⊆ S. The computational state scomp

t ∈ Scomp

is understood in the Turing machine sense to be what
is needed by the algorithm to make future decisions
(e.g., an estimate of current environment state that the
algorithm stores for the next time step).

Represent the agent’s algorithm as a relation:

X ⊆ Sobs × Scomp × Aeff × Scomp.

Elements of the algorithm relation are tuples [(sobs, scomp),
(aeff , scomp′

)]. The state available to the algorithm is
(sobs, scomp), which is composed of the sensor input and
the agent’s current internal computational state. The prod-
uct Sobs × Scomp is almost always a proper subset of the
state space for real-world systems, because real-world sensors
and finite memory are insufficient to capture the world per-
fectly [46]. The algorithm’s output (aeff , scomp′

) is the action
the agent will perform and an updated computational state.
The algorithm relation X is functionally equivalent to a ‘‘state
table’’ defining the possible actions an agent can take in a
given state. Representing the algorithm as a relation means
that multiple actions can be associated with a given state.

The environment relation,E , and algorithm relation,X , can
be combined to create the trajectories an algorithm can induce
in an environment. Since Sobs × Scomp ⊆ S, the present
state of the world is composed of the algorithm’s present
state and any additional information unavailable to the agent,
st = [(sobst , scomp

t), s̃t] where s̃t represents everything in the

world state that is not part of the agent’s state. Aeff ⊆ A,
the effectual action taken in the world can be written as
at = [aefft , ã], where ãt represents everything that is not
explicitly part of the agent’s action.
A state-action trajectory, ξ(s0, t), is created for a starting

state, s0, using Algorithm 1. Line 3 finds all tuples that have

Algorithm 1 Construct a t-step trajectory from an initial
state s0.

Require: initial state s0 and time t − 1
1: ξ ← [] and s← s0 ▷ s = [(sobs, scomp), s̃]
2: for τ ∈ [1, 2, . . . , t] do
3: Select [(sobsτ , scomp

τ), aeffτ , scomp′

τ] from X where sτ =
[(sobsτ , scomp

τ), s̃τ]
4: Select (sτ , a, sτ+1) from E where aτ = (aeffτ , ãτ)
5: ξ ← [ξ, (sτ , aτ)]

6: ξ ← [ξ, st]

a present state compatible with the agent’s observed and
computational state, and picks one of the tuples. Line 4 looks
up all world present-state, actions, and next-states that have an
action compatible with the agent’s action from line 3. Line 5
appends the world state-action tuple to the trajectory, and
line 6 appends the final state to the trajectory.
Algorithm 1 can generate multiple trajectories from a given

start state, since both E and X allow non-determinism. Let
TX (s0, t) denote the set that holds all t-step state-action tra-
jectories produced for a given initial state (s0) by algorithmX ,

TX (s0, t) = {ξ(s0, t) : ξ(s0, t) is generated by X in E}.

The dependency of TX (s0, t) on the environment is omitted
from the notation when it is clear which environment is used.
State s0 = [sobs0 , scomp

0 , s̃0] is a valid initial state if the
agent’s initial state is (sobs0 , scomp

0). Let Sinit represent the
set of valid initial states. An algorithm’s behavior potential
represents the agent’s bounded ability to effect change in
the world, and is defined as the set of possible trajectories
generated from any valid initial state:

BX (Tmax) =
⋃

s0∈Sinit

⋃
t≤Tmax

TX (s0, t).

In summary, TX (s0, t) is the set containing all t-step tra-
jectories that can be produced from a given starting point. A
state-action trajectory ξ(s0, t) ∈ TX (s0, t) is a sample from
the possible trajectories that can be produced by an algorithm.
The algorithm’s behavior potential, BX (Tmax) is the set of
all trajectories that the algorithm can produce from any valid
initial state, given a time bound Tmax.

C. COMPETENCY
Defining resilience requires understanding how competently
an algorithm satisfies an achievement goal in the presence of
perturbations. Formally, an autonomous agent is competent
if it has an algorithm that induces state-action trajectories
that satisfy the goal with sufficiently high probability within

4 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

a given time period. Competency requires a probability, P,
defined for each trajectory set in the afforded behavior poten-
tial B. Assume (with little loss of generality) that all sets of
trajectories are measurable with respect to probability P.

Represent a goal, G, as a Boolean random variable defined
with respect to the probability space. A Boolean random vari-
able is very general and includes tests of single states (e.g., the
agent reached a desired state), tests of state trajectories only
(e.g., a trajectory avoided a danger region), goals that include
valuations over actions (e.g., maximum torque limits were
not exceeded), goals that compare performance measures to
acceptable performance thresholds (e.g., the trajectory’s score
was high enough), or combinations of these tests. Let S0
denote the initial state random variable, defined with respect
to the same probability space. The derived distribution of
achieving the goal given the start state is:

PG|S0(true|s0; t,X) = P({ξ(s0, t) ∈ BX (Tmax) :

G(ξ(s0, t)) = true}).
The conditioning bar indicates that the goal random variable
is conditioned on the starting state random variable, and the
semicolon indicates that time t parameterizes the conditional
probability. The derived distribution PG|S0(true|s0; t,X))
represents the measure of the set of all t-step trajectories that
are produced by the algorithm and that satisfy the goal.

Formally, algorithm X competently accomplishes goal G
given initial state s0 if

PG|S0(true|s0; t,X) ≥ θ (2)

for the given parameters t and θ. Note that the time
bound Tmax is implicit in Equation (2). In other words, an
agent competently accomplishes a goal in time t if the set
of goal-satisfying trajectories from a given start state have a
probability measure that exceeds θ.
A time-bound, tolerance, and starting state are all neces-

sary, because it is not always possible for an agent to perfectly
accomplish its goal in a reasonable time from any initial
state in many real environments. The start state is a formal
expression of where the agent begins. The time bound Tmax

represents the idea that a goal must be achieved in a finite
time, after which the goal is no longer worth pursuing. The
probability threshold θ is a formal expression of the tolerance
associated with achieving a goal (i.e., it represents the ‘‘size"
of the competency envelope [28]).

Defining competency as a logic-based goal function per-
mits a rich goal set, but some goal types do not naturally fit
the logic-based definition. An example incompatible goal is
‘‘an agent is competent if it uses the optimal solution.’’ Opti-
mality, means that an algorithm is objectively superior to all
other algorithms according to a performance criterion. Con-
sequently, optimality defines competence relative to the set
of all possible algorithms and the objective function, instead
of evaluating whether trajectories satisfy a goal. Another
example is ‘‘operate as long as possible,’’ where competence
is defined with respect to a time value that cannot be specified
precisely. Each example has a related boolean goal: ‘‘an agent

is competent if a numerical score over its trajectories exceeds
a desirable value,’’ and ‘‘an agent is competent if it can
operate at least T units of time into the future.’’

D. PERTURBATIONS
Perturbations affect what an agent observes, what actions are
possible, how the environmental states change, and what an
agent can compute. Without loss of generality, assume that
perturbations to the probability measure P alter the frequency
with which trajectories are produced and not the underlying
sample space. Thus, perturbations affect an algorithm’s com-
petency if they alter either the algorithm’s behavior poten-
tial BX , or the probability of trajectories within the behavior
potential P. Let BI

X (defined below) represent the perturbed
set of trajectories. Formally, a perturbation occurs when(

BI
X ̸= BX

)
∨
(
∃ξ ∈ BI

X and ∃δi ∈ I, such that

P({ξ}|δi) ̸= P({ξ})
)
.

Represent changes to an algorithm’s behavior potential
using an indexed set of perturbation mappings, δi, where i
is an element of some finite index set I. Each perturbation
mapping changes the set of trajectories TX (s0) into a new
set of trajectories δi(TX (s0)). For simplicity, assume that
all sequenced combinations of perturbations are included in
I. Formally, an algorithm’s perturbed behavior potential is
defined as the set of all possible trajectories:

BI
X (Tmax) =

⋃
s∈Sinit

⋃
t≤Tmax

⋃
i∈I

δi(TX (s, t)).

BI
X (Tmax) contains all trajectories from any initial state with

any perturbation.
Five perturbation function types exist: ablation, addition,

distortion, shift, and transformation. The ablation and addi-
tion types change the set of trajectories by changing the set
of states, actions, or tuples in the environment, or the agent’s
algorithm. Distortion types change the trajectory probability.
Shifts blend ablation, addition, and distortion types, while
transformations alter goals. Let the superscript ′ indicate a
change caused by a perturbation.
Ablation occurs when there is loss of information, control,

or possible trajectories as a result of changes to the action
space, state space, or environment. An ablation occurs if:

Ablation(A) = A′, where A′ ⊂ A,

Ablation(S) = S ′, where S ′ ⊂ S, or

Ablation(E) = E ′, where E ′ ⊂ E .

Ablations remove tuples from the algorithm’s behavior poten-
tial. Example ablation events include: 1) losing an effector,
2) losing a sensor, 3) losing a computational resource, and
4) an environmental change that reduces what can be done.
Addition occurs when there is an increase in information,

control, or possible trajectories as a result of changes to the

VOLUME 11, 2023 5

Leaf et al.: Resilience for Goal-Based Agents

action space, state space, or environment. Addition is the
inverse of ablation, and is represented as:

Addition(A) = A′, where A′ ⊃ A,

Addition(S) = S ′, where S ′ ⊃ S, or

Addition(E) = E ′, where E ′ ⊃ E .

Addition perturbations add trajectories to the algorithm’s
behavior. Example addition events include: 1) an obstacle
is removed, 2) the agent acquires a new sensor or a new
computational resource, and 3) a broken effector is repaired.
Distortion occurs when the probability of a trajectory is

altered without altering the algorithm’s behavior potential.
Examples of distortion events include: 1) a sensor degrades,
2) a malfunctioning effector begins to work, or 3) a software
defect occurs that reduces memory utilization.
Shifts occur when multiple ablations, additions, and distor-

tions occur. Shifts combine the effects of multiple ablation,
addition, or distortion instances, and can affect combinations
of states, actions, state-action transitions, or probabilities.
Transformations occur when the goal is changed. Exam-

ples of a transformation include: 1) a humanmanager changes
the agent’s goal, or 2) an agent endowed with self-assessment
abilities determines that it can no longer competently achieve
an existing goal and selects a different goal to pursue. Trans-
formations are beyond the scope of this manuscript.

E. RESILIENCE DEFINITION AND METRICS
Even when the environment or the algorithm is perturbed, a
resilient algorithm can still observe enough of the world, has
enough control authority, and possesses sufficient computa-
tional resources to accomplish the goal with high probability
within a reasonable time bound. Formally, an agent is resilient
to a perturbation δ if

PG|S0(true|s0, δ; t,X) ≥ θ. (3)

Note that resilience is relative to the goal being pursued and
the specific perturbation that occurs. For example, a robot
navigating a previously mapped environment can exhibit re-
silience to newly discovered obstacles by replanning its route,
but may not be resilient if its sensors are noisy, inhibiting its
ability to model the obstacles’ locations accurately.

Equation (3) defines resilience as a binary decision prob-
lem, which does not allow different algorithms to be use-
fully compared. The remainder of this section introduces
three resilience metrics for comparing algorithms: domi-
nance, power, and efficiency. The metrics will be defined
for a single start state. Generalizing to the multiple possible
starting states is left to future work. Comparing algorithms is
fair only if they operate in the same environment, so the same
environment is assumed for both algorithms.

Consider algorithms Xm and Xn, and consider perturba-
tion δ. Algorithm Xm weakly dominates algorithm Xn for
initial state s0 and environment E if

∀t ≤ Tmax PG|S0(true|s0, δ; t,Xm) ≥
PG|S0(true|s0, δ; t,Xn).

Xm weakly dominates Xn if the success probability of Xm is
always at least as high as Xn. Weak dominance can be used
to partially order different algorithms, Xm ⪰D Xn, if and only
if Xm weakly dominates Xn, where the superscriptD indicates
that the preference ordering is derived from dominance. Since
dominance does not always apply, it induces only a partial
order. The notation Xm ⪰D Xn omits the dependence on the
starting state for readability. Dominance is useful in detecting
whether one algorithm is clearly inferior to another.
The second resilience comparison metric is time efficiency,

which is defined using the time required for an algorithm to
satisfy a performance threshold

tsat(X ;θ, s0, δ) =

arg min
0≤t≤Tmax

(
PG|S0(true|s0, δ; t,X) ≥ θ

)
.

If there does not exist a time forwhich the algorithm is compe-
tent in the presence of a perturbation, then tsat(X ; θ, s0, δ) =
Tmax. Efficiency, F , is defined using the time-bound

Fsat(X ; θ, s0, δ) =
Tmax − tsat(X ; θ, s0, δ)

Tmax
,

which equals one if the threshold is immediately satisfied, and
equals zero if the threshold is not satisfied before the time
bound is reached. When the algorithm, starting state, and per-
turbation are unambiguous, it is useful to represent efficiency
by F(θ) to make the performance threshold explicit.
The efficiency metric induces a total order over all algo-

rithms, where Xm is at least as efficient as algorithm Xn, given
an initial state and perturbation, which is written as(

Xm ⪰F(θ) Xn
)

⇔
(
Fsat(Xm; θ, s0, δ) ≥ Fsat(Xn; θ, s0, δ)

)
(4)

⇔
(
tsat(Xm; θ, s0, δ) ≤ tsat(Xn; θ, s0, δ)

)
(5)

⇔
(
tsat(Xm; θ, s0, δ)− tsat(Xn; θ, s0, δ)

)
≤ 0. (6)

Equation (5) shows that the ordering does not depend
on Tmax, but with an important caveat. Neither Xn nor xm may
meet the performance threshold θ when Tmax is low, which
means that tsat is the same for both algorithms andFsat is zero
for both algorithms. This scenario results in Xm and Xn being
equivalent. However, when Tmax is increased one algorithm
may meet the threshold while the other fails to, which means
that one algorithm has an efficiency of zero and the other
has a positive efficiency. For this scenario, one algorithm is
strictly better than the other. The ordering thereforemust use a
weak ordering⪰ instead of a strict ordering≻. Stated simply,
when Tmax is small, the efficiency metric may not be able to
differentiate between algorithms. Equation (6) represents the
ordering as a difference, which is a simple test used in the
third case study.
The third resilience comparison metric is the power of an

algorithm, defined as the peak success probability achieved
before a time deadline,

6 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

Ppeak(X ; t, s0, δ) = max
0≤τ≤t

PG|S0(true|s0, δ; τ,X)

= PG|S0(true|s0, δ; t,X),
where the second equality holds if and only if the success
probability is a nondecreasing function of time (e.g., when
nothing can ‘‘undo’’ the goal once it is achieved). When the
algorithm, starting state, and perturbation are unambiguous, it
is useful to represent power byP(t) to make the time explicit.
Applying the definition of P to algorithms Xm and Xn allows
the power metric to induce a total order over all algorithms,(
Xm ⪰P(t) Xn

)
⇔

(
Ppeak(Xm; t, s0, δ) ≥ Ppeak(Xn; t, s0, δ)

)
(7)

⇔
(
PG|S0(Xm; t, s0, δ) ≥ PG|S0(Xn; t, s0, δ)

)
,

when P is nondecreasing (8)

⇔
(
PG|S0(Xm; t, s0, δ)− PG|S0(Xn; t, s0, δ)

)
≥ 0. (9)

There are two ways to define resilience when multiple
perturbations are possible. The first is to evaluate dominance,
efficiency, and power on a case-by-case basis. This approach
allows conclusions of the form ‘‘Xn is more powerful/efficient
than Xm for perturbation δj, but less powerful/efficient for
perturbation δk ." The second approach to multiple perturba-
tions is to aggregate the resilience metrics across perturba-
tions using worst-case or average-case analysis. Worst-case
resilience metrics can be computed over the set of possible
perturbation mappings, and average values can be computed
over a probability distribution of perturbation functions.

The worst-case efficiency and power values for algo-
rithm X are given by:

⌊Fsat⌋(X ; θ, s0) = min
i∈I
{Fsat(X ; θ, s0, δi)} ,

⌊Ppeak⌋(X ; t, s0) = min
i∈I
{Ppeak(X ; t, s0, δi)} ,

respectively. Average-case values depend on the probability
of the various perturbation functions. Let I denote a random
variable over the set of all possible perturbation functions,
and let PD(δi) denote the corresponding derived probability
distribution. Let EPD represent the expected value operator,
where expectation is with respect to the distribution PD(δi).
The average-case efficiency and power values are:

Fsat(X ; θ, s0) = EPDFsat(X ; θ, s0, δi),

Ppeak(X ; t, s0) = EPDPpeak(X ; t, s0, δi),

respectively. Algorithms Xm and Xn can be ordered using the
worst-case efficiency and power values,(

Xm ⪰⌊F(θ)⌋ Xn
)
⇔
(
⌊Fsat⌋(Xm; θ, s0) ≥

⌊Fsat⌋(Xn; θ, s0)
)
,(

Xm ⪰⌊P(t)⌋ Xn
)
⇔
(
⌊Ppeak⌋(Xm; t, s0) ≥

⌊Ppeak⌋(Xn; t, s0)
)
,

respectively, where the superscripts ⌊F(θ)⌋ and ⌊P(t)⌋ in-
dicate that the preference is derived from the worst case
efficiency and the worst case power. Orderings using average-
case efficiency and power are defined similarly.

IV. CASE STUDY: MEMORY-CONSTRAINED NAVIGATION
A robot designer wants to analyze the resilience of two algo-
rithms. The designer identifies the world, algorithms, behav-
ior potentials, and perturbations. The algorithms’ resilience
properties can be compared using power and efficiency.

A. ENVIRONMENT AND PERTURBATIONS
The agent is a simulated four-wheeled robot equipped with
GPS and lidar that must travel through the maze shown in
Fig. 1. The figure shows that the environment E is a two-
dimensional grid where the blue lines represent walls through
which the robot cannot pass. The robot can move one square
per time step. The robot’s available abstract perceptions (Sobs)
are grid cells, adjacent walls, and intersections.

(a) XDFS (b) XTrem

FIGURE 1: The map of the environment that the robot must
traverse. Solid red lines are obstacles that can appear, and the
dashed red line is a door that can open. The shaded squares
represent information described in Section IV-C about two
memory-limited algorithms: (a) XDFS and (b) XTrem. White
squares are not reachable by XDFS.

Robot actions are north, south, east, and west (Aeff), which
are implemented by low-level rotational and translational
controllers. The computational states (Scomp) are algorithm
parameters, bookkeeping variables, and a stack that has only
ten slots. The robot’s goal, G, is to traverse from the marked
start location (Start) to one of the exit locations (Exit 1 or
Exit 2). The solid and dashed red lines in Fig. 1 represent
perturbations. The solid red line near the center of the map
represents a roadblock (an ablation perturbation) that blocks
the direct route to Exit 1, the solid red line across Exit 2
represents a roadblock across the exit, and the red dashed line
represents a door that opens (an addition perturbation) that
provides a new route to an exit.

VOLUME 11, 2023 7

Leaf et al.: Resilience for Goal-Based Agents

B. ALGORITHMS
The first algorithm’s, XDFS, planner uses the depth-first-
search (DFS) given in Algorithm 2. The algorithm uses the
ten-element stack to invoke recursion. The DFS returns suc-
cess if an exit is reached (line 3), failure if the stack is full
(line 4), or otherwise searches through each action (line 5).
The NextCell method returns ‘‘wall’’ if the action leads to
a wall collision, otherwise it returns the cell induced by the
action (line 7). A wall terminates the recursion with a fail-
ure (line 8), otherwise the DFS method is recursively called
(line 9). If the recursion ends with success, then the recursion
unwinds and saves the sequence of actions (lines 9–10).

Algorithm XDFS uses planning to find optimal (shortest
length) paths. The path is executed by following the actions
in order. If a wall is found (or not found) by the robot in
a location that did not match the map used by the planner,
then the DFS method is called again, but with a constraint.
The constraint is that the actions executed to bring the robot
to the new (missing) wall are used to initialize the stack
(replacing line 1 of Algorithm 2), which allows replanning
while retaining the ability to find optimal paths.

Algorithm 2 XDFS

1: initialize path as an empty vector
2: procedure DFS(scurrent)
3: if scurrent == Exit then return(success)
4: else if stack.status == full then return(failure)
5: else
6: for a ∈ {N , S,E ,W} do
7: snext ← NextCell(a)
8: if snext == wall then return(failure)
9: else if DFS(snext) == success then
10: path.append(a)
11: return(success)

Algorithm 3 XTrem

1: initialize empty stack
2: procedure Trem()
3: while scurrent ̸= exit do
4: if IsDeadEnd(sobs) then snext ← sprevious

5: else if scurrent ̸= intersection then snext ←
NextCell(scurrent, sprevious)

6: else snext ← IntersectionManager(scurrent)

7: [sprevious, scurrent]← MoveTo(snext)

8: return(success) ▷ Reached exit
9: procedure IntersectionManager(scurrent, sprevious)
10: if first time in scurrent then
11: if stack.status == full then return(sprevious) ▷

Turn around
12: else senter ← sprevious and stack.push(scurrent)
13: snext ← GetFreeNeighbor(scurrent, sarrive)
14: if snext == None then stack.pop() and snext ← senter

15: return(snext)

The second algorithm, XTrem, is a version of Tremaux’s
algorithm, where the robot moves while searching for an exit.
XTrem uses the 10-element stack to track intersections as they
are explored. The Trem main method, given in Algorithm 3,
succeeds when the current state is an exit (lines 3 and 8). The
algorithm sends the robot back the way it came if the robot
encounters a dead-end (line 4). The robot proceeds through
a cell to the next open cell if the cell is not at an intersection
(line 5). Otherwise, the intersection stackmanager determines
the next state (line 6). The algorithm uses theMoveTomethod
to select the appropriate action from {N , S,E ,W}, take the
action, and update the next state (line 7).
The IntersectionManager method first checks whether the

intersection has been visited or not (line 10). Two things occur
when the intersection is visited: first, the robot turns around if
the stack is full (line 11); and second, the algorithm notes how
the robot entered the intersection and pushes the intersection
onto the stack. The algorithm uses GetFreeNeighbor function
to find a cell adjacent to the intersection that has not been
visited (line 13). If there are no adjacent cells to explore, then
the algorithm removes the intersection from the stack and tells
the robot to exit the intersection the same way it first entered
(line 14). The algorithm then returns the next cell.

C. TRAJECTORIES AND PERTURBED ALGORITHM
BEHAVIOR POTENTIAL
The perturbed behavior potentials, BI

X , for the two algorithms
are shown in Fig. 1a. The behavior potential for the deter-
ministic algorithm XDFS is shown on the left as shaded cells
with directional arrows. The directional arrows indicate tra-
jectories that are produced depending on what perturbations
occur. If the path toExit 1 is not blocked, then the robot moves
directly to the exit. If the path to Exit 1 is blocked, but Exit 2
remains open, then the robot travels to the obstacle, discovers
that it is blocked, replans, and turns around to take the path
to Exit 2. If the direct path to both exits is blocked, the robot
cannot find any exit, even if the door in the upper right of the
maze opens. The shaded regions without arrows indicate cells
that are considered by XDFS, but are not part of any feasible
path produced by the algorithm.
XTrem can move the robot to any cell on the map, because

no path contains more than 10 intersections, as shown by
the arrows connecting the shaded cells in Fig. 1b. XTrem

chooses next cells in the orderW ,N , S,E , which was chosen
to illustrate differences between the algorithms. When Exit 2
is not blocked, the robot goes west at the first intersection
and finds the exit in 10 steps. If Exit 2 is blocked, then the
robot continues down the left corridor, returns to the first
intersection, and tries to go north. If Exit 1 is not blocked then
the robot finds the exit in 25 steps, but if Exit 1 is blocked and
the door is open, then the robot finds the exit in 31 steps. All
possible trajectories can be found by following the arrows in
the figure. The set of possible trajectories includes trajecto-
ries that arise only when one exit is blocked, both exits are
blocked, and both exits are blocked with the door closed.

8 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

D. DOMINATION, EFFICIENCY, AND POWER

(a) XDFS

(b) XTrem

FIGURE 2: The probability of success for perturbation com-
binations with (a) the DFS and (b) Tremaux’s algorithms.

Fig. 2 plots success probabilityPG|S0(true|s0, δ;T ,X) as a
function of time T for bothXDFS andXTrem.XDFS is designed
to move toward Exit 1 first, and XTrem is designed to move
toward Exit 2 first. The solid blue line, dashed magenta line,
and dotted cyan line indicate sets of possible perturbations δ.
Note that the perturbations shown in Fig. 2(a) are organized
to emphasize the effect of blocking Exit 1 on the optimal
algorithm XDFS, and the perturbations shown in Fig. 2(b) are
organized to emphasize the effect of blockingExit 2 onXTrem.
There are seven conditions for which there is a feasible

path to an exit: no perturbation, only Exit 1 is blocked, only
Exit 2 is blocked, Door is open, and all combinations of
these perturbations, except for the case when Exit 1 and
Exit 2 are both blocked and the Door remains shut. This last
perturbation is catastrophic in the sense that no algorithm
can satisfy the goal. Assume that each condition is equally
probable, and consider average efficiency and average power.

The thick dotted black line in Fig. 2 shows the average success
probability as a function of time.
Dominance. Neither algorithm dominates the other. Dom-

inance only occurs if the probability of success of one algo-
rithm is greater than or equal to the probability of success for
the other for all time.
Worst Case Efficiency. Execution time in the Fig. 1 world

equates to the number of cells the robot visited. Set Tmax =
49 is the length of the path that touches each cell in the world.
XDFS is designed to be efficient, because it seeks the shortest
path. Worst case efficiency is determined by the minimum of
the success probability curves over the possible perturbations.
The worst case efficiency for XDFS is zero for all positive per-
formance thresholds, but the worst case efficiency for XTrem

is 49−31
49 = 37% for all positive performance thresholds.

Worst Case Power.Worst case power is determined by the
minimum of the success probability curves over the possible
perturbations. The worst case power for XDFS is zero for all
time, and the worst case power for XDFS is one for t ≥ 31.
Average Efficiency and Power. Fig. 2 shows that for any

performance threshold less than θ = 0.85, XDFS is more
efficient, because it reaches the threshold sooner than XTrem.
Similarly, up until time t = 31, XDFS is more powerful,
because it reaches the threshold sooner than XTrem. However,
XDFS is not able to find a solution when both obstacles appear
and the door is open. Thus, XTrem is more efficient for a
performance threshold higher than about θ = 0.85, andXTrem

also has higher power after t = 31.

E. DISCUSSION

This memory constrained navigation case study demonstrates
that the resilience metrics provide useful insight into the
relative resilience properties of two memory-limited algo-
rithms. An important insight is that the most resilient algo-
rithm depends on performance tolerances and allowed time.
Determining which algorithm is more efficient, using average
efficiency, depends on performance tolerance, because high
tolerance means that a fast, but low-performing algorithm
can reach the threshold quickly. Similarly, which algorithm
is more powerful, using either worst-case or average power,
depends on the time at which power is measured. If more
time is available, then XTrem is more powerful. Moreover,
this problem exhibits a tradeoff between efficiency and power,
where an algorithm that produces more efficient solutions for
some types of perturbations is less powerful for other types
of perturbations, given enough time.

V. CASE STUDY: THEORY
The concepts and definitions introduced in Section III pro-
vide a general framework for determining and quantifying an
agent’s level of resilience. This case study shows how addi-
tional problem assumptions and constraints lead to insight-
giving theoretical results.

VOLUME 11, 2023 9

Leaf et al.: Resilience for Goal-Based Agents

A. ACTING IN AN OBSERVABLE AND DETERMINISTIC
WORLD
Suppose an additional structure is added so that the environ-
ment relation E is given by a deterministic state transition
system, S × A → A, with transition matrix M . Also suppose
a fully observable world, Sobs = S, so that the algorithm
relation X is represented as a policy mapping S to an action.
Next, suppose the goal is satisfied if the world’s state is within
some proper subset of the world states, S∗ ⊂ S, where S∗

denotes the set of goal states. Suppose that each goal state
is an absorbing state, meaning once an agent reaches the
goal state no action causes it to move from that state. Finally,
suppose the world is fully controllable, Aeff = A, so that
the agent’s actions uniquely determine the next state of the
environment.

B. ALGORITHMS
Consider two different algorithm types, one deterministic and
the other probabilistic, which are denoted by Xdet and Xprob,
respectively. The deterministic algorithm uses a lookup table
specifying a unique action for each state, ℓ : S → A.
The output of the table lookup is the action that moves the
agent along the shortest path to a goal state. The probabilistic
algorithm, Xprob, uses a probability table to specify the action
probability given a state, π(a|s) = P(a|s). The action with
highest probability is the action that moves the agent to the
state on the shortest path to the nearest goal, and the remaining
probability is uniformly distributed across all other actions.
The computational subspaces, Scomp, for the deterministic
and probabilistic algorithms are ℓ and π, respectively.
Each algorithms’ behavior potential can be represented as

a directed graph, Gdet and Gprob, respectively. The vertices
in each graph represent states, Vdet = Vprob = S. The
directed edges in Gdet represent the state transition for the
action from the table lookup, e(sj, sk) ∈ Edet, if and only
if sk = M(sj|ℓ(sj)). The outdegree of each vertex is one
because the table lookup function ℓ is deterministic. The
directed edges in Gprob also represent the state transition for
any action with nonzero probability from the transition table,
e(sj, sk) ∈ Eprob, if and only if there exists an a such that
π(a|sj) > 0, and sk = M(sj|a). The outdegree of each vertex
equals the size of the action space.

C. DOMINANCE IN THE ABSENCE OF PERTURBATION
The proof of Theorem 1 follows directly from the definitions
of dominance.

Theorem 1. For all starting states and in the absence of
a perturbation, the deterministic algorithm dominates the
probabilitistic algorithm, Xdet ⪰D Xprob.

Proof. Recall from Section III-E that dominance in the ab-
sence of a perturbationmeans that ∀t PG|S0(true|s0; t,Xdet) ≥
PG|S0(true|s0; t,Xprob). The deterministic algorithm opti-
mally chooses the action on the shortest path to a goal state.
Let T ∗(s0) denote the number of steps on the shortest path

from s0 to a goal state. Therefore, the success probabilities
for the algorithms are

PG|S0(true|s0; t,Xdet) =

{
0 t < T ∗(s0)
1 t ≥ T ∗(s0)

,

PG|S0(true|s0; t,Xprob) =

{
0 t < T ∗(s0)
α ∈ (0, 1) t ≥ T ∗(s0)

.

Stated simply, the deterministic algorithm succeeds precisely
when the elapsed time equals the time to the nearest goal.
The probabilistic algorithm can succeed no faster than the
minimum time, but does not always succeed immediately at
the minimum time, because probabilistic choices by the agent
will sometimes deviate from the optimal path.

D. DOMINANCE IN THE PRESENCE OF PERTURBATION
Consider an ablation, δedge, that removes the same single
edge from both Gdet and Gprob. Restrict attention to non-
degenerate cases where (a) all vertices in Gdet are not on the
same shortest path, and (b) there is more than a single goal
state.

Theorem 2. Given a δedge that removes the same edge from
Gdet and Gprob, there exists a starting state, time t, Tmax, and
performance threshold θ, for which both Xprob ⪰⌊F(θ)⌋ Xdet

and Xprob ⪰⌊P(t)⌋ Xdet.

Proof. Removing an edge fromGdet cuts off at least one state
from reaching a goal, since every edge is on the shortest path
from a state to the nearest goal. Let s′ denote a state that is cut-
off from a goal. The probability of success for s′ is zero for all
time, ∀t ≥ 0 PG|S0(true|s′; t,Xdet) = 0, which means that
both average and worst case efficiency is zero (regardless of
the cutoff time Tmax), and that average and worst case power
is always zero for the deterministic algorithm. By contrast,
multiple paths from any node to the goal exist for the proba-
bilistic algorithm, because every other state is incident to s′ in
Gprob, yielding ∀t ≥ maxs T ∗(s) PG|S0(true|s′; t,Xprob) >
0. The max operator accounts for the neighbor of s′ farthest
from the goal. Consequently, average and worst case effi-
ciency are positive for θ > 0, and average and worst case
power are also strictly greater than zero. Thus, there are values
of θ > 0 and t < ∞, such that Xprob ⪰⌊F(θ)⌋ Xdet and
Xprob ⪰⌊P(t)⌋ Xdet.

E. DISCUSSION
This section illustrated how adding assumptions about the
structure of the world and algorithms can lead to theoretical
properties about the relative resilience of two algorithms.
Like the previous case study, this case study also suggests
a tradeoff between (a) algorithms that are efficient in unper-
turbed worlds, and (b) less efficient algorithms that are more
powerful in a perturbed world. A common property from the
two case studies is that, when tolerance is low (e.g., θ is high),
the ability to follow multiple paths may decrease efficiency
for unperturbed problems, but increase power for perturbed
problems. Evaluating tradeoffs in terms of multiple paths
from states to goals suggest a possible area for future work,

10 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

namely using graph-based analyses of the behavior potential
to analyze resilience. Work on percolation theory suggests
that strong theoretical results are possible for understanding
resilience for complicated behavior in graphs (e.g., [47]).

VI. CASE STUDY: EMPIRICALLY ESTIMATING RESILIENCE

The previous case studies evaluated resilience properties for
systems that were small enough to enumerate trajectories,
or structured enough to provide theoretical analysis. Each
section showed a type of power-efficiency tradeoff, where
algorithms that generated more trajectories had higher power,
but lower efficiency than algorithms that generated optimal
trajectories. This case study demonstrates that algorithms ca-
pable of exploring larger regions of the state space have higher
power than algorithms that make decisions more quickly.
However, the relative power of the different algorithms is nu-
anced. Importantly, this section demonstrates how sampling
trajectories for a complicated distributed algorithm yields
insights into the relative resilience of various algorithms.
Sampling trajectories is done in the carefully constructed ex-
periment. Power and efficiency are used to compare algorithm
responses to various world and perturbation conditions.

This case study focuses on a best-of-N problem [48], [49],
which requires a robotic collective to find a set of spatially
distributed sites and form a consensus to select the highest
value site. Fig. 3 illustrates two example environments con-
taining a single hub, two sites with associated values, and
three robots. The collective’s behavior is inspired by the way
biological collectives search for resources [48], [50]. Bio-
inspired solutions to the problem have previously been shown
to offer useful algorithms for disaster events over large spatial
areas (e.g., earthquakes or wildfires), even when individual
robots are subject to significant loss or perturbation [18].

A. ENVIRONMENT

The environment is a simulated two-dimensional world con-
taining N sites {σ1, . . . , σN}, spatially distributed in the
world and each assigned a quality. The environment includes
M homogeneous point-based robots (e.g., no mass, no vol-
ume [51]) that know about a centralized hub location, can
move about in the world by executing movement commands,
can communicate with other robots within the hub, and can
sense the quality of encountered sites. The collective behavior
of the set of robots emerges from the individual robot ac-
tivities through a distributed collective algorithm. Thus, the
state of the world, which is referred to as the world state
to distinguish it from the computational states of individual
robots, includes the locations of the N sites, the site qualities,
the hub location, the locations of the robots, and the internal
computational states of the individual robots. The collective
actions in the world are the robot movements and their sens-
ing and communication acts. A robot can only communicate
with other robots if both are at the hub.

(a) Environment 1

(b) Environment 2

FIGURE 3: Two best-of-N problem environments that il-
lustrate how the environment affects interaction timing. The
diamond represents a collective’s hub. The blue squares rep-
resent sites, each with a quality value. The circles represent
robots. Robot Awill be recruited by Robot B to the closer site
(Site 1) in both cases. (a) The highest value site is closer to
the hub. (b) The highest value site is further from the hub.

B. COLLECTIVE GOAL
The collective’s goal for the best-of-N problem is to discover
and select the highest quality site in the environment. Robots
at the hub regularly interact to determine if other robots favor
a higher quality site option. Once a quorum of robots favors
a particular site, they will commit to it [52], [53]. Robots will
transition from consensus formation to decision execution
when they detect a sufficient number of neighboring robots
are also committed to the same site.

C. ALGORITHMS
Two collective algorithms are considered. Both algorithms
rely on emergent collective behavior from individual robots,
where each robot uses a finite state machine (FSM). The
computational states in the FSM are referred to as robot states
to differentiate them from the world state. Each robot i can
only observe the environment within a limited sensing range,
which means that what is observable by robot i, S iobs, is a
small subset of the world state. The computational state of
robot i, S icomp, stores current sensor values, task state, naviga-
tion information, which neighboring robots are communicat-
ing, and the location and quality of its favored site. Robot i’s
actions, Aieff , are movements and sensing in the world, and
communications to nearby robots (if at the hub). Inter-robot
communication includes whether a robot is in a favoring or
committed state, votes received for quorum sensing, and the
locations/qualities of sites known to other robots. Robots do
not know the identity of other robots. Site locations and values
are not known when the task begins.

The first algorithm, Xcore, implements Reina et al.’s robot-
based model for collective decision making [53]. The second

VOLUME 11, 2023 11

Leaf et al.: Resilience for Goal-Based Agents

algorithm, Xext, includes the extensions by Cody and Adams
[54], [55]. The robots in Xcore use Reina et al.’s defined
probabilistic state transitions [53], [56]. The robots in Xext

use a probabilistic finite state machine developed by Cody
and Adams [54], [55] to address the effects of environmental
bias [57], [58] observed with Xcore [49], [53], [56].

Individual robot state transitions include: discovering and
favoring new site options, recruiting uncommitted robots,
abandoning a previously favored site option, inhibiting other
robots from favoring other site options, and committing to a
site [52], [53]. Formally, robots probabilistically transition
between five computational states in Scomp: uncommitted
interactive, uncommitted latent, favoring interactive, favoring
latent, and committed. Interactive and latent states differ-
entiate whether robots are receptive to interaction. Robots
in an uncommitted or favoring state can be recruited by
other robots, while robots in the committed state cannot be
recruited. Robots move from a favoring state to a committed
state due to interactions with other robots; therefore, a robot’s
state transitions depend on interaction timings and contents.

D. TRAJECTORIES AND BEHAVIOR POTENTIAL

Each unique sequence of robot state transitions, inter-robot
interactions, robot sensor readings, and robot movements
generates a state-action trajectory according to Equation (1).
The behavior potential of each algorithm is the union of all
possible state-action trajectories. The trajectory is sensitive to
timing effects, as illustrated in the following two examples.

The first example is a robot at the hub (robot A) interacting
with other robots (B and C) returning to the hub from two
different sites (1 and 2), as shown in Fig. 3. The two possible
environments that result in different intermediate collective
states. Site 1 (value = 90), which is closest to the hub in
Environment 1 (Fig. 3a), has a higher value than Site 2 (value
= 80). Robot B discovers Site 1, returns to the hub before
robot C , and succeeds in recruiting robot A to investigate
and favor Site 1. Robot C will not subsequently succeed in
recruiting robot A, because robot C’s favored site has a lower
value than robot A’s preferred site. Two robots will favor the
higher valued Site 1, and only one robot will favor Site 2. The
collective will be more likely to select Site 1, because robots
can be recruited for the closer site at a faster rate.

The second example, shown in Environment 2 (Fig. 3b),
changes the sites’ relative values, as Site 1 has a lower value
(80) than Site 2 (value = 90). Robot B again discovers Site 1,
returns to the hub before robot C , and successfully recruits
robot A, who subsequently leaves the hub to visit Site 1 to
verify the site’s value. Robot C will be unable to recruit
robot A; thus, two robots will favor the lower valued site,
resulting in a different intermediate collective state than in
Environment 1. However, upon robot A’s return, it can be
recruited by robot C to investigate Site 2. The collective is
more likely to select inferior Site 1.

E. EXPERIMENT DESIGN
A simulation-based experiment used the power metric to
analyze and understand some resilience properties of the two
collective algorithms. The experiment introduced an ablation
perturbation that disabled a percentage of the collective’s
robots partway through each trial. The disabled robots were
randomly selected from the collective’s population, regard-
less of the robots’ states or locations in the environment.
The hypothesis is that Xcore and Xext will exhibit similar

performance levels, relative to their respective baselines, for
perturbations affecting the collective’s size. Each trial com-
menced with all robots within the 3 meters (m) x 3m hub
region in the uncommitted interactive state. Robots with a
12.8m perception range searched a region up to 500m from
the hub at a speed of 2.78m per timestep. Robots’ sensory
regions enclosed a full 360◦ circle around the robot. Each
trial completed after a single decision. All trials completed
after at most 25,000 timesteps. A single perturbation event
occurred during each trial. The independent variables, listed
in Table 1, included the number of robots in the collective at
the start of the trial, the four site locations and qualities, and
the perturbation timing relative to the collective’s progress
towards a decision. Each site had a unique quality value.
Baseline results, in which no perturbation occurred, were also
collected for each combination of independent variables.

TABLE 1: Independent variables.

Variable Values

Number of Robots 50, 100, 200, 300, 400, 500
Site Value 60, 70, 80, 90
Site Locations 250-400m from the hub, at 3, 6, 9,

and 12 on a clock
Perturbation Timing 15%, 35%, 60%
Robots Removed 25%, 50%

TABLE 2: Site configuration parameters.

ID Site Value Difficulty0 1 2 3

SC.1 60 70 80 90 Easy
SC.2 70 80 90 60 Easy
SC.3 80 90 60 70 Intermediate
SC.4 90 60 70 80 Hard

The site configuration defined the problem difficulty. The
site locations were constant across all trials, while the site
values varied, as listed in Table 2. The distances for sites
0, 1, 2, and 3 were set to 400m, 350m, 300m, and 250m,
respectively. Site 0 was located at the 9 o’clock position, site
1 at the 6 o’clock position, continuing in a counter-clockwise
pattern. A problem was easy if the highest valued site was
one of the two closest sites to the hub (i.e., at sites 2 or 3).
The highest valued site was most distant from the hub (i.e.,
at site 0) for hard problems. Robots did not know any site
locations at the start of the trial.
The collective’s progress towards making a decision de-

termined the perturbation’s timing. Robots sensed a quorum

12 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

and committed to a site when at least 75% of the fifteen most
recently received votes supported a single site. Since robot
interactions were restricted to the hub where a robot has an
equal probability of interacting with any other robot, the col-
lective’s decision progress can be approximated by a random
robot’s progress towards sensing a quorum [53]. Three pertur-
bation timings were considered. Early perturbations occurred
when 15% of robots favored the same site. Perturbations at
35% consensus occurred approximately halfway through the
decision process. The late timing at 60% consensus evaluated
the collective’s ability to alter its decision quickly.

The dependent variables support estimating the average
power and average efficiencymetrics. Selection accuracywas
measured by the percentage of trials in which the collective
selected the best available site when the decision was made.
Decision time was measured by the number of simulation
iterations required to reach a quorum. Selection accuracy
equals PG|S0 , and decision time equals tsat.

F. RESULTS
The baseline and perturbation power and efficiency results
are presented. Results are reported using the difference tests
in Equation (6) for efficiency, and Equation (9) for power. The
perturbation results are aggregated by perturbation timing and
by the percentage of robots removed during the trial.

1) Power Metric
The power metric represents the success probability achieved
as a function of time. Power was evaluated at t = 7200
iterations (i.e., two hours, 1 iteration = 1 second), which
was subjectively chosen by how well it allowed the algo-
rithms to be compared. The power metric illuminates how
the algorithms’ success probability is affected by the various
independent variables and the perturbation.

Both algorithms demonstrated a general increase in power
as the collective size increased, which was an anticipated
trend [59]. Xcore’s power was clearly differentiated by prob-
lem difficulty. The power for the two easy configurations
(SC.1 and SC.2) ranged between 64-100% and 42-88%, re-
spectively, shown in Fig. 4a. The intermediate (SC.3) prob-
lem’s power never exceeded 25%, and the hard (SC.4) prob-
lem’s power ranged from 0-8% for collectives with less than
300 robots, and was zero for larger collective sizes.
Xext’s ability to mitigate environmental bias is demon-

strated by the higher power levels for the intermediate and
hard problems, shown in Fig. 4b, compared to Xcore. Xext’s
power was relatively consistent across the problem difficul-
ties. The two easy configurations had power ranging from
52-62% with 50 robots to 88-96% with 500 robots. The inter-
mediate problem ranged from 50-86%, and the hard problem
had a power from 46-86%.

Comparing the resilience power between the algorithms
demonstrates how well each algorithm performs under var-
ious conditions, as shown in Table 3. The difference test
in Equation (9) was used: positive values in these tables
indicate Xext had a higher power, and negative values indicate

(a) Xcore

(b) Xext

FIGURE 4: Resilience power for the Remove Robots pertur-
bation at decision time t = 7200 iterations.

Xcore’s power was higher. Xcore outperforms Xext in the SC.1
configuration both in the baseline case andwhen the perturba-
tion occurred. Notably, Xcore’s higher performance occurred
regardless of the perturbation’s timing, or the percentage of
robots removed, shown in the SC.1 rows in Tables 4 and 5,
respectively. Xext performed slightly better than Xcore in the
SC.2 configuration, and markedly better for the two harder
configurations (SC.3 and SC.4).

2) Efficiency Metric
The efficiency metric represents the minimum time needed to
achieve a given success probability. The success probability
threshold was subjectively chosen as θ = 50%. Relative
efficiency was computed using the difference in Equation (6).
Only tsat(Xext) is reported, rather than the difference in times
whenXcore did not reach the success threshold.Xext wasmore
efficient than Xcore in nearly all cases, shown in Tables 6–8.

VOLUME 11, 2023 13

Leaf et al.: Resilience for Goal-Based Agents

TABLE 3: Relative power between the two algorithms for the
baseline case given the configuration (Config.). Values > 0
indicate Xext had a higher power than Xcore.

Number of Robots
Config. 50 100 200 300 400 500

SC.1 -18 -14 -20 -6 -6 2
SC.2 0 18 4 6 -6 6
SC.3 40 32 52 74 72 80
SC.4 54 42 68 72 76 88

TABLE 4: Relative power between the algorithms after the
perturbation occurred, by perturbation timing (% consensus).
Values > 0 indicate Xext had a higher power than Xcore.

Number of Robots
Config. Timing 50 100 200 300 400 500

SC.1 15 -15 -26 -17 -8 -2 -6
SC.1 35 -7 -4 -7 -8 -12 -1
SC.1 60 -12 -14 -8 -12 -5 -2

SC.2 15 15 20 0 8 6 2
SC.2 35 13 9 -3 0 -1 4
SC.2 60 7 12 7 5 3 8

SC.3 15 25 43 59 62 74 85
SC.3 35 31 36 61 59 76 71
SC.3 60 32 40 60 64 65 72

SC.4 15 46 52 61 78 74 83
SC.4 35 45 52 70 72 77 79
SC.4 60 46 56 72 75 76 84

TABLE 5: Relative power between the algorithms after the
perturbation occurred, by the percentage of robots removed.
Values > 0 indicate Xext had a higher power than Xcore.

Number of Robots
Config. % Removed 50 100 200 300 400 500

SC.1 25 -6 -16 -6 -4 -6 -4
SC.1 50 -8 -12 -10 -8 -8 -4

SC.2 25 8 16 2 0 0 8
SC.2 50 20 16 4 12 2 0

SC.3 25 28 48 62 68 74 70
SC.3 50 32 38 58 58 74 80

SC.4 25 48 54 74 80 76 80
SC.4 50 44 48 66 74 78 86

Xcore did not achieve the 50% success probability threshold
in the SC.3 or SC.4 configurations, regardless of the pertur-
bation timing or the percentage of robots removed.

The algorithms demonstrated similar levels of relative effi-
ciency independent of the perturbation’s timing. For example,
with 200 or more robots in the baseline SC.1 configuration
the minimum improvement in efficiency for Xext over Xcore

ranged from a minimum of 1285 iterations (300 robots), to a
maximum of 1590 iterations (500 robots), shown in Table 6.
The post-perturbation efficiency, when considering the per-
turbation’s timing, showed Xext to be 1313 (200 robots, 60%
consensus) to 1575 (500 robots, 60% consensus) iterations
faster than Xcore for the SC.1 configuration, shown in Table 7.
This result indicates that momentum towards a decision was

TABLE 6: Relative efficiency (in iterations) between the
algorithms for the baseline case. Values> 0 indicate Xext had
a higher efficiency than Xcore. (bold: Xcore did not achieve
50% success probability, N/A: neither algorithm achieved
50% success probability.)

Number of Robots
Config. 50 100 200 300 400 500

SC.1 -16 1406 1483 1285 1460 1590
SC.2 N/A 3977 2161 2450 2161 2640
SC.3 4320 5714 4250 3473 3435 3301
SC.4 4277 5946 4024 4036 3572 3599

TABLE 7: Relative efficiency between the algorithms after
the perturbation, by perturbation timing (% consensus). Val-
ues> 0 indicateXext had a higher efficiency thanXcore. (bold:
Xcore did not achieve 50% success probability, N/A: neither
algorithm achieved 50% success probability.)

Number of Robots
Config. Timing 50 100 200 300 400 500

SC.1 15 1188 480 1419 1398 1330 1330
SC.1 35 1511 1135 1466 1404 1398 1384
SC.1 60 972 1307 1313 1425 1482 1575

SC.2 15 5543 3205 2198 2378 2402 2411
SC.2 35 2666 2590 2552 2472 2478 2553
SC.2 60 N/A 3312 2675 2624 2799 2457

SC.3 15 N/A 4194 3700 3573 3615 3404
SC.3 35 N/A 4867 3957 3735 3604 3737
SC.3 60 5834 3774 3993 3473 3794 3574

SC.4 15 6195 5095 4097 3928 3908 3662
SC.4 35 N/A 4773 3973 4098 3711 3944
SC.4 60 6044 4784 3929 3768 3742 3574

TABLE 8: Relative efficiency between the algorithms after
the perturbation, by the percentage of robots removed. Values
> 0 indicate Xext had a higher efficiency than Xcore. (bold:
Xcore did not achieve 50% success probability, N/A: neither
algorithm achieved 50% success probability.)

Number of Robots
Config. % Removed 50 100 200 300 400 500

SC.1 25 1283 985 1429 1438 1337 1498
SC.1 50 1204 1100 1426 1388 1460 1385

SC.2 25 5686 3062 2378 2345 2414 2448
SC.2 50 5351 2782 2536 2550 2645 2519

SC.3 25 N/A 4088 3618 3506 3560 3641
SC.3 50 N/A 4641 4059 3776 3736 3431

SC.4 25 6100 5032 3797 3769 3800 3679
SC.4 50 N/A 4773 4258 4067 3795 3787

established relatively early in the decision making process.
Removing robots after momentum for a site has been estab-
lished does not alter the collective’s eventual decision.
The efficiency differences between the algorithms were

relatively constant for collectives that began with 200 or more
robots, regardless of the collective’s size at decision time. For
example, Xext was 2161 iterations more efficient than Xcore

for the SC.2 configuration with 200 robots, and 2640 itera-

14 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

tions more efficient with 500 robots (Table 6). Xext remained
more efficient in the SC.2 configuration after the perturbation
for an original collective size of 200 robots (Table 8), with an
efficiency of 2378 iterations above Xcore when removing 25%
of the collective’s robots, and 2536 iterations when removing
50%. Xext was faster for collectives with an original size of
500 robots by 2448 iterations when removing 25% of the
collective’s robots, and 2519 iterations faster when removing
50%. The similar results by collective sizes indicates that the
300-500 sizes provided minimal improvement to the collec-
tive’s decision time.

G. DISCUSSION
The power and efficiency metrics provide two important in-
sights into the algorithms’ performance. The relative power
(Table 3) and efficiency (Table 6) metrics for the baseline case
demonstrate that Xext can accurately select the highest valued
site in a wider variety of environmental configurations, and
is faster to reach the correct decision than Xcore. Comparing
the baseline results to the post-perturbation results (e.g., Ta-
bles 3–8) demonstrates that both algorithms are resilient to
the Remove Robots perturbation. The power and efficiency
for each algorithm follow similar trends, regardless of the
percentage of robots removed during runtime. However, these
results also emphasize a characteristic of resilience that is
consistent with the other case studies: a resilient algorithm is
not necessarily a high-performing algorithm. An algorithm’s
actual success rate is as important as its performance in
the presence of perturbations. Indeed, Xext was designed to
overcome the environmental bias that appeared in Xcore by
delaying transitions to favoring and commitment robot states,
thereby allowing more trajectories to be explored [51], [54].

Two insights follow. First, if the performance threshold
θ is increased, then Xcore can have very low efficiency in
the difficult worlds. The relevant data is not shown in the
tables, but is easy to understand. Xcore exhibits environmental
bias, favoring nearby sites over distant sites. Consequently,
Xcore can choose an inferior site closer to the hub, rather
than the best site farther from the hub, which means that it
does not accomplish the goal as often as Xext in the difficult
world conditions. Efficiency depends on the performance
tolerance θ, and for high values of θ Xcore does not meet the
performance criterion and is less efficient than Xext in the
difficult worlds. Second, the reason thatXext is more powerful
is that it favors different trajectories than Xcore. Subjective
observations confirm that Xext causes robots that discover
nearby sites of low quality to wait at the hub until other robots
return instead of immediately transitioning to a recruiting
state. This delay creates trajectories where distant high quality
sites are reported to the hub, allowing recruiting to the highest
quality site. Xcore produces those trajectories far less often.
Xext permits more trajectories to be explored before making
a decision, resulting in higher power in difficult worlds.

The conclusion is that Xext is the superior algorithm for the
information gathering task, as it demonstrates greater power
and efficiency than Xcore. This conclusion is based on two

assumptions: the only disruption to the collective’s behavior
is the loss of robots during runtime, and that the problem
difficulty varies. Xext may not be resilient to other types of
perturbations, or the possible operating environments may
only pose easy decision problems. Declaring an algorithm or
system to be resilient is specific to the type of perturbation
encountered during the evaluation [38], [60].

VII. CONCLUSION AND FUTURE WORK
Resilience has mostly been studied and defined for agents
with maintenance goals, roughly as an agent’s ability to main-
tain some equilibrium state. However, resilience for agents
with achievement goals may require the agent to change its
entire operation. This manuscript proposed a novel definition
for resilience for such agents that need to cope with unex-
pected perturbations to their task environment in order to
achieve their goals. A theoretical framework was introduced
that formally defines core notions related to resilience in
agents with achievement goals, and also provides several
metrics to quantify an agent’s resilience. Critically, the frame-
work’s definitions and metrics provide a common mecha-
nism for describing and comparing algorithm performance
for embodied agents, regardless of the task or goal type.
The metrics in the existing literature only applied to certain
types of agents or goals. Three case studies demonstrate how
the framework can be applied in real-world conditions to
experimentally validate one’s hypotheses about an agent’s
resilience: through complete analysis of all trajectories in
bounded-memory algorithms, through theoretical analysis of
highly structured problems, and through sampling-based es-
timations of complex distributed algorithms. The provided
framework and metrics can also inform the design of resilient
agents with achievement goals.
Designing resilient systems is challenging due to the com-

putational complexity inherent in evaluating all possible tra-
jectories of a robotic system operating in a real-world envi-
ronment. An exact measurement of resilience in embodied
agents will require designers to consider every possible en-
vironmental condition or perturbation to an agent’s behavior
potential, and the subsequently changed behavior potentials,
which is practically only possible for small well-defined do-
mains. Fortunately, determining absolute resilience is often
less important than estimating relative resilience, because
comparing different algorithms’ performance is often more
useful than deriving a raw performance measurement. The
three case studies; thus, suggest a tradeoff between choosing
optimal behaviors under unperturbed conditions and having
the ability to exploit multiple paths to achieve a goal under
perturbed conditions. This tradeoff manifested itself in the
case studies as a tradeoff between the efficiency and power
metrics, which designers can evaluate.
Future work will further explore how estimating compe-

tency and resilience can mitigate the challenges in computing
these metrics exactly. Design patterns that enable adaptive
and resilient behavior in goal-based agents will be identified.

VOLUME 11, 2023 15

Leaf et al.: Resilience for Goal-Based Agents

REFERENCES
[1] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine, J. Strauss,

G. Pratt, and C. Orlowski, ‘‘The DARPA robotics challenge finals: Results
and perspectives,’’ Journal of Field Robotics, vol. 34, no. 2, pp. 229–240,
2017.

[2] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full,
N. Jacobstein, V. Kumar, M. McNutt, R. Merrifield, B. J. Nelson, B. Scas-
sellati, M. Taddeo, R. Taylor, M. Veloso, Z. L. Wang, and R. Wood, ‘‘The
grand challenges of Science Robotics,’’ Science Robotics, vol. 3, no. 14, p.
eaar7650, 2018.

[3] S. L. Pimm, ‘‘The complexity and stability of ecosystems,’’ Nature, vol.
307, no. 5949, pp. 321–326, 1984.

[4] V. Grimm andC.Wissel, ‘‘Babel, or the ecological stability discussions: An
inventory and analysis of terminology and a guide for avoiding confusion,’’
Oecologia, vol. 109, no. 3, pp. 323–334, 1997.

[5] F. S. Brand and K. Jax, ‘‘Focusing theMeaning(s) of Resilience: Resilience
as a Descriptive Concept and a Boundary Object,’’ Ecology and Society,
vol. 12, no. 1, 2007.

[6] P. Martin-Breen and J. M. Anderies, ‘‘Resilience: A Literature Review,’’
Institute of Development Studies (IDS), Brighton, Tech. Rep., 2011.

[7] S. Hosseini, K. Barker, and J. E. Ramirez-Marquez, ‘‘A review of defi-
nitions and measures of system resilience,’’ Reliability Engineering and
System Safety, vol. 145, pp. 47–61, 2016.

[8] R. Bhamra, S. Dani, and K. Burnard, ‘‘Resilience: the concept, a liter-
ature review and future directions,’’ International Journal of Production
Research, vol. 49, no. 18, pp. 5375–5393, 2011.

[9] L. Olsson, A. Jerneck, H. Thoren, J. Persson, and D. O’Byrne, ‘‘Why
resilience is unappealing to social science: Theoretical and empirical in-
vestigations of the scientific use of resilience,’’ Science Advances, vol. 1,
no. 4, p. e1400217, 2015.

[10] A. E. Quinlan, M. Berbés-Blázquez, L. J. Haider, and G. D. Peterson,
‘‘Measuring and assessing resilience: Broadening understanding through
multiple disciplinary perspectives,’’ Journal of Applied Ecology, vol. 53,
no. 3, pp. 677–687, 2016.

[11] R. Francis and B. Bekera, ‘‘Ametric and frameworks for resilience analysis
of engineered and infrastructure systems,’’ Reliability Engineering and
System Safety, vol. 121, pp. 90–103, 2014.

[12] R. Patriarca, J. Bergström, G. Di Gravio, and F. Costantino, ‘‘Resilience
engineering: Current status of the research and future challenges,’’ Safety
Science, vol. 102, pp. 79–100, 2018.

[13] C. S. Holling, ‘‘Engineering Resilience versus Ecological Resilience,’’
in Engineering Within Ecological Constraints. Washington, D.C.: The
National Academies Press, 1996, pp. 31–43.

[14] G. S. Cumming and G. D. Peterson, ‘‘Unifying Research on Social-
Ecological Resilience and Collapse,’’ Trends in Ecology & Evolution,
vol. 32, no. 9, pp. 695–713, 2017.

[15] M. B. Van Riemsdijk, M. Dastani, and M. Winikoff, ‘‘Goals in agent
systems: A unifying framework,’’ in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, vol. 2, 2008,
pp. 702–709.

[16] M. A. Goodrich, J. A. Adams, and M. Scheutz, ‘‘Autonomy reconsidered:
Towards developing multi-agent systems,’’ in Proceedings of SAI Intelli-
gent Systems Conference. Springer, 2021, pp. 573–592.

[17] M. Egerstedt, J. N. Pauli, G. Notomista, and S. Hutchinson, ‘‘Robot ecol-
ogy: Constraint-based control design for long duration autonomy,’’ Annual
Reviews in Control, vol. 46, pp. 1–7, 2018.

[18] J. Leaf and J. A. Adams, ‘‘Measuring Resilience in Collective Robotic Al-
gorithms,’’ in Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems, 2022, pp. 1666–1668.

[19] X. Cao, P. Jain, and M. A. Goodrich, ‘‘Adapted metrics for measuring
competency and resilience for autonomous robot systems in discrete time
markov chains,’’ in IEEE International Conference on Systems, Man, and
Cybernetics. IEEE, 2022, pp. 71–76.

[20] P. Albertos and I. Mareels, Feedback and Control for Everyone. Berlin:
Springer-Verlag, 2010.

[21] A. M. Madni and S. Jackson, ‘‘Towards a conceptual framework for
resilience engineering,’’ IEEE Systems Journal, vol. 3, no. 2, pp. 181–191,
2009.

[22] R. C. Lewontin, ‘‘The meaning of stability,’’ in Brookhaven Symposia in
Biology, vol. 22, 1969, pp. 13–24.

[23] C. S. Holling, ‘‘Resilience and Stability of Ecological Systems,’’ Annual
Review of Ecology and Systematics, vol. 4, pp. 1–23, 1973.

[24] T. G. Lewis, ‘‘The many faces of resilience,’’Communications of the ACM,
vol. 66, no. 1, pp. 56–51, 2022.

[25] C. Béné and L. Doyen, ‘‘From Resistance to Transformation: A Generic
Metric of Resilience Through Viability,’’ Earth’s Future, vol. 6, pp. 979–
996, 2018.

[26] S. Martin, ‘‘The Cost of Restoration as a Way of Defining Resilience: a
Viability Approach Applied to a Model of Lake Eutrophication,’’ Ecology
and Society, vol. 9, no. 2, 2004.

[27] C. Rougé, J.-D. Mathias, and G. Deffuant, ‘‘Extending the viability theory
framework of resilience to uncertain dynamics, and application to lake
eutrophication,’’ Ecological Indicators, vol. 29, pp. 420–433, 2013.

[28] R. R. Hoffman and P. A. Hancock, ‘‘Measuring Resilience,’’ Human Fac-
tors, vol. 59, no. 4, pp. 564–581, 2017.

[29] E. Seraj, L. Chen, and M. C. Gombolay, ‘‘A Hierarchical Coordination
Framework for Joint Perception-Action Tasks in Composite Robot Teams,’’
IEEE Transactions on Robotics, vol. 38, no. 1, pp. 139–158, 2022.

[30] H. T. Tran, J. C. Domerçant, and D. N. Mavris, ‘‘A Network-based Cost
Comparison of Resilient and Robust System-of-Systems,’’ Procedia Com-
puter Science, vol. 95, pp. 126–133, 2016.

[31] K. Saulnier, D. Saldana, A. Prorok, G. J. Pappas, and V. Kumar, ‘‘Resilient
Flocking for Mobile Robot Teams,’’ IEEE Robotics and Automation Let-
ters, vol. 2, no. 2, pp. 1039–1046, 2017.

[32] G. Bai, Y. Li, Y. Fang, Y. A. Zhang, and J. Tao, ‘‘Network approach
for resilience evaluation of a UAV swarm by considering communication
limits,’’ Reliability Engineering and System Safety, vol. 193, no. June 2019,
p. 106602, 2020.

[33] T. G. Lewis, ‘‘Themathematics of catastrophe,’’ AppliedMath, vol. 2, no. 3,
pp. 480–500, 2022.

[34] M. Bruneau, S. E. Chang, R. T. Eguchi, G. C. Lee, T. D. O’Rourke,
A. M. Reinhorn, M. Shinozuka, K. Tierney, W. A. Wallace, and D. Von
Winterfeldt, ‘‘A Framework to Quantitatively Assess and Enhance the
Seismic Resilience of Communities,’’ Earthquake Spectra, vol. 19, no. 4,
pp. 733–752, 2003.

[35] C. W. Zobel, ‘‘Representing perceived tradeoffs in defining disaster re-
silience,’’ Decision Support Systems, vol. 50, pp. 394–403, 2010.

[36] D. Henry and J. Emmanuel Ramirez-Marquez, ‘‘Generic metrics and quan-
titative approaches for system resilience as a function of time,’’ Reliability
Engineering & System Safety, vol. 99, pp. 114–122, 2012.

[37] J. Ingrisch and M. Bahn, ‘‘Towards a Comparable Quantification of Re-
silience,’’ Trends in Ecology&Evolution, vol. 33, no. 4, pp. 251–259, 2018.

[38] D. Hodgson, J. L. McDonald, and D. J. Hosken, ‘‘What do you mean,
‘resilient’?’’ Trends in Ecology & Evolution, vol. 30, no. 9, pp. 503–506,
2015.

[39] B. Walker, C. S. Holling, S. R. Carpenter, and A. Kinzig, ‘‘Resilience,
Adaptability and Transformability in Social-ecological Systems,’’ Ecology
and Society, vol. 9, no. 2, 2004.

[40] L. H. Gunderson and C. S. Holling, Eds., Panarchy: Understanding trans-
formations in human and natural systems. Washington, D.C.: Island Press,
2001.

[41] D. G. Angeler and C. R. Allen, ‘‘Quantifying resilience,’’ Journal of
Applied Ecology, vol. 53, pp. 617–624, 2016.

[42] B. M. Spears, S. C. Ives, D. G. Angeler, C. R. Allen, S. Birk, L. Carvalho,
S. Cavers, F. Daunt, R. D. Morton, M. J. O. Pocock, G. Rhodes, and S. J.
Thackeray, ‘‘Effective management of ecological resilience - Are we there
yet?’’ Journal of Applied Ecology, vol. 52, no. 5, pp. 1311–1315, 2015.

[43] K. L. Nash, C. R. Allen, D. G. Angeler, C. Barichievy, T. Eason, A. S.
Garmestani, N. A. J. Graham, D. Granholm, M. Knutson, R. J. Nelson,
M. Nyström, C. A. Stow, and S. M. Sundstrom, ‘‘Discontinuities, cross-
scale patterns, and the organization of ecosystems,’’ Ecology, vol. 95, no. 3,
pp. 654–667, 2014.

[44] R. J. Standish, R. J. Hobbs, M. M. Mayfield, B. T. Bestelmeyer, K. N.
Suding, L. L. Battaglia, V. Eviner, C. V. Hawkes, V. M. Temperton, V. A.
Cramer, J. A. Harris, J. L. Funk, and P. A. Thomas, ‘‘Resilience in ecology:
Abstraction, distraction, or where the action is?’’ Biological Conservation,
vol. 177, pp. 43–51, 2014.

[45] D. L. Baho, C. R. Allen, A. Garmestani, H. Fried-Petersen, S. E. Renes,
L. Gunderson, and D. G. Angeler, ‘‘A quantitative framework for assessing
ecological resilience,’’ Ecology and Society, vol. 22, no. 3, 2017.

[46] S. T. Freedman and J. A. Adams, ‘‘The inherent components of unmanned
vehicle situation awareness,’’ in IEEE International Conference on Sys-
tems, Man and Cybernetics, 2007, pp. 973–977.

[47] M. Newman, Networks. Oxford University Press, 2018.
[48] T. D. Seeley, The wisdom of the hive: The social physiology of honey bee

colonies. Cambridge: Harvard University Press, 1995.

16 VOLUME 11, 2023

Leaf et al.: Resilience for Goal-Based Agents

[49] G. Valentini, E. Ferrante, and M. Dorigo, ‘‘The Best-of-n Problem in
Robot Swarms: Formalization, State of the Art, and Novel Perspectives,’’
Frontiers in Robotics and AI, vol. 4, p. 9, 2017.

[50] J. L. Deneubourg, S. Aron, S. Goss, J. M. Pasteels, and G. Duerinck, ‘‘Ran-
dom behaviour, amplification processes and number of participants: How
they contribute to the foraging properties of ants,’’ Physica D: Nonlinear
Phenomena, vol. 22, no. 1-3, pp. 176–186, 1986.

[51] J. R. Cody and J. A. Adams, ‘‘An evaluation of quorum sensing mecha-
nisms in collective value-sensitive site selection,’’ in International Sympo-
sium on Multi-Robot and Multi-Agent Systems, 2017, pp. 40–47.

[52] C. A. Parker and H. Zhang, ‘‘Cooperative decision-making in decentralized
multiple-robot systems: The best-of-N problem,’’ IEEE/ASME Transac-
tions on Mechatronics, vol. 14, no. 2, pp. 240–251, 2009.

[53] A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo, and V. Trianni, ‘‘A
Design Pattern for Decentralised Decision Making,’’ PLOS ONE, vol. 10,
no. 10, p. e0140950, 2015.

[54] J. R. Cody, ‘‘Discrete Consensus Decisions in Human-Collective Teams,’’
Ph.D. dissertation, Vanderbilt University, 2018.

[55] J. R. Cody, K. A. Roundtree, and J. A. Adams, ‘‘Human-collective collab-
orative target selection,’’ ACM Transactions on Human-Robot Interaction,
vol. 10, no. 2, pp. 1–29, 2021.

[56] A. Reina, R. Miletitch, M. Dorigo, and V. Trianni, ‘‘A quantitative micro-
macro link for collective decisions: the shortest path discovery/selection
example,’’ Swarm Intelligence, vol. 9, no. 2-3, pp. 75–102, 2015.

[57] T. Laomettachit, T. Termsaithong, A. Sae-Tang, and O. Duangphakdee,
‘‘Decision-making in honeybee swarms based on quality and distance
information of candidate nest sites,’’ Journal of Theoretical Biology, vol.
364, pp. 21–30, 2015.

[58] T. M. Schaerf, J. C. Makinson, M. R. Myerscough, and M. Beekman, ‘‘Do
small swarms have an advantage when house hunting? The effect of swarm
size on nest-site selection by Apis mellifera,’’ Journal of the Royal Society
Interface, vol. 10, p. 20130533, 2013.

[59] L. Bayındır, ‘‘A review of swarm robotics tasks,’’ Neurocomputing, vol.
172, pp. 292–321, 2016.

[60] S. Carpenter, B. Walker, J. M. Anderies, and N. Abel, ‘‘From Metaphor to
Measurement: Resilience of What to What?’’ Ecosystems, vol. 4, no. 8, pp.
765–781, 2001.

JENNIFER LEAF (GS) received the B.S. degree
in computer science from Pacific Lutheran Uni-
versity, Tacoma, WA, USA, in 2001, the M.S.
degree in Computing and Software Systems from
the University of Washington, Tacoma, WA, USA,
in 2007, and the Ph.D. degree in Robotics at
Oregon State University, Corvallis, OR, USA in
2023. She worked as a Senior Computer Scientist
at Advanced Systems Technology (2001-2006),
NewTec (2006-2009), and ManTech (2010), and

as a Senior Program Manager at Microsoft (2010-2015). She is an Assistant
Professor in the Department of Mechanical Engineering and Technology at
Eastern Washington University.

JULIE A. ADAMS (SM’01) received the Bachelor
of Science degree in computer science in 1989 and
the Bachelor of Business Administration degree in
accounting in 1990 from Siena College, Albany,
NY, USA, and the M.S.E. degree in 1993 and
Ph.D. degree in 1995 in computer and informa-
tion sciences from the University of Pennsylvania,
Philadelphia, PA, USA. She is the Associate Di-
rector of Research for the Collaborative Robotics
and Intelligent Systems Institute and a Professor

in the School of Electrical Engineering and Computer Science, Oregon
State University, where she directs the Human-Machine Teaming Laboratory.
Her research focuses on distributed artificially intelligent algorithms and
the development of complex human-machine systems for large human and
robotic teams.

MATTHIAS SCHEUTZ is a Professor in Cogni-
tive and Computer Science in the Department of
Computer Science, Director of the Human-Robot
Interaction Laboratory and the new Human-Robot
Interaction Ph.D. and M.S. programs, and Bernard
M. Gordon Senior Faculty Fellow in the School
of Engineering at Tufts University. He earned a
Ph.D. in Philosophy from the University of Vienna
in 1995 and a Joint Ph.D. in Cognitive Science
and Computer Science from Indiana University

Bloomington in 1999. He has more than 400 peer-reviewed publications
in artificial intelligence, natural language processing, cognitive modeling,
robotics, and human-robot interaction. His current research focuses on re-
silient interactive autonomous systems with natural language and machine
learning capabilities.

MICHAEL A. GOODRICH (SM’14) received the
B.S., M.S., and Ph.D. degrees in electrical and
computer engineering from Brigham Young Uni-
versity, Provo, UT, USA, in 1992, 1995, and
1996, respectively. From 1996 to 1998, he was
a Research Associate with Nissan Cambridge
Research, Nissan Research and Development,
Inc., Cambridge, MA, USA. Since 1998, he has
been with the Department of Computer Science,
Brigham Young University, where he is currently a

Professor and director of the Human-Centered Machine Intelligence Labora-
tory. His current research interests include human-robot interaction, human
interaction with bio-inspired swarms, decision theory, multiagent learning,
and human-centered engineering.

VOLUME 11, 2023 17

