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ABSTRACT This paper advances the theory and practice of Domain Generalization (DG) in machine
learning. We consider the typical DG setting where the hypothesis is composed of a representation mapping
followed by a labeling function. Within this setting, the majority of popular DG methods aim to jointly learn
the representation and the labeling functions by minimizing a well-known upper bound for the classification
risk in the unseen domain. In practice, however, methods based on this theoretical upper bound ignore
a term that cannot be directly optimized due to its dual dependence on both the representation mapping
and the unknown optimal labeling function in the unseen domain. To bridge this gap between theory and
practice, we introduce a new upper bound that is free of terms having such dual dependence, resulting in
a fully optimizable risk upper bound for the unseen domain. Our derivation leverages classical and recent
transport inequalities that link optimal transport metrics with information-theoretic measures. Compared
to previous bounds, our bound introduces two new terms: (i) the Wasserstein-2 barycenter term that aligns
distributions between domains, and (ii) the reconstruction loss term that assesses the quality of representation
in reconstructing the original data. Based on this new upper bound, we propose a novel DG algorithm
named Wasserstein Barycenter Auto-Encoder (WBAE) that simultaneously minimizes the classification loss,
the barycenter loss, and the reconstruction loss. Numerical results demonstrate that the proposed method
outperforms current state-of-the-art DG algorithms on several datasets.

INDEX TERMS Domain generalization, domain alignment, reconstruction loss, Wasserstein barycenter.

I. INTRODUCTION

Modern machine learning applications often encounter the
problem that the training (seen) data and the test (unseen) data
have different distributions, which can cause a deterioration
in model performance. For example, a model trained on data
from one hospital may not work well when the test data is from
another hospital [1], a drowsiness driving estimator trained
on one group of subjects may not perform well for other
subjects [2], or a cognitive workload estimator based on fNIRS
(functional near-infrared spectroscopy) measurements may
not generalize well across sessions and subjects [3]. Methods
that aim to mitigate this problem are broadly classified into
two categories, namely Domain Adaptation (DA) [4] and
Domain Generalization (DG) [5]. Both DA and DG aim to

find a model that can generalize well in scenarios when the
training data from the seen domain does not share the same
distribution as the test data from the unseen domain. The key
difference between DA and DG is that DA allows access to the
(unlabeled) unseen domain data during the training process
whereas DG does not. This makes DG a more challenging but
more practical problem.

To address the problem of DG, motivated by the seminal the-
oretical works of [4], [6], the hypothesis is typically expressed
as the composition of a representation function followed by a
labeling function, e.g., see [7]–[10], and the representation and
labeling functions are learned by minimizing an upper bound
for the classification risk in the unseen domain derived in [4],
[6]. The upper bound consists of three terms: (1) the prediction
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risk on the mixture of seen domains, (2) the discrepancy
or divergence between the data distributions of different
domains in the representation space, and (3) a combined
risk across all domains that implicitly depends on both the
representation mapping and the unknown optimal labeling
function from the unseen domain. However, most current
approaches disregard this dual dependency and treat the third
term (combined risk) as a constant while developing their
algorithms. In fact, the majority of prominent works in DG
and DA such as [9], [11], [12] are essentially variations of the
following strategy: ignore the combined risk term and learn a
domain-invariant representation mapping or align the domains
in the representation space, together with learning a common
labeling function controlling the prediction loss across the
seen domains. However, the combined risk term is, in fact, a
function of the representation mapping and should somehow
be accounted for within the optimization process. Additional
details of the shortcomings of previous upper bounds are
provided in Appendix A.

To address these limitations, we revisit the analysis in
[4], [6] and derive a new upper bound that is free of terms
with the dual dependence mentioned above. Our new bound
consists of four terms: (1) the prediction risk across seen
domains in the input space; (2) the discrepancy/divergence
between the induced distributions of seen and unseen domains
in the representation space, which can be approximated via
the Wasserstein-2 barycenter [13] of seen domains; (3) the
reconstruction loss term that measures how well the input can
be reconstructed from its representation; and (4) a combined
risk term that is independent of the representation mapping
and labeling function to be learned. Our new bound differs
from previous ones in two aspects. Firstly, it introduces two
new terms: (a) the Wasserstein-2 barycenter term for domain
alignment and (b) the reconstruction loss term for assessing
the quality of representation in reconstructing the original
data. We note that the Wasserstein-2 barycenter term for
controlling the domain discrepancy in our bound is built in the
representation space, which is better aligned with the practical
implementation than previous Wasserstein-based bounds that
are built in the data space. Secondly, the combined risk in our
bound is independent of the representation mapping and thus
can be ignored during the optimization. Motivated by these
theoretical results, we propose an Auto-Encoder-based model
that interacts with the Wasserstein barycenter loss to achieve
domain alignment.

The contributions of this work can summarized as follows:
1) Contributions to Theory: We propose a new upper

bound for the risk of the unseen domain using clas-
sical and recent transport inequalities that link optimal
transport metrics with information-theoretic measures.
All terms in our new upper bound are optimizable in
practice which overcomes the limitations of previous
works and bridges the gap between previous theory and
practice.

2) Contributions to Algorithm Development and Practice:
We develop a novel algorithm for domain generaliza-

tion based on our new upper bound. Our algorithm
optimizes a new term that controls the domain dis-
crepancy through Wasserstein-2 barycenter. Unlike
previous Wasserstein distance-based bounds that form
the domain discrepancy term in the data space but
optimize it in the representation space, our domain
discrepancy term is constructed and optimized in the
representation space, making our practical implementa-
tion better aligned with the theory.

3) Gains over state-of-the-art methods: Our algorithm
consistently outperforms other theory-guided methods
on PACS, VLCS, Office-Home, and TerraIncognita
datasets, with a noticeable improvement of 1.7 − 2.8
percentage points on average across all datasets.

II. RELATED WORK
Our work falls within the DG framework wherein domain-
invariant features are learned by decomposing the prediction
function into a representation mapping followed by a labeling
function. A recent example of this framework is [7], where
the authors propose a three-part model consisting of a feature
extractor, a classifier, and domain discriminators. The feature
extractor learns the task-sensitive, but domain-invariant fea-
tures via minimizing the cross-entropy loss with respect to the
task label and maximizing the sum of domain discriminator
losses. The domain discriminator loss is based on an estimate
of the H-divergence between all seen domains [6] and has
roots in the works [11], [14] on Domain Adaptation. Following
a similar idea, the authors of [9] align the representation
distributions from different domains by minimizing their
Maximum Mean Discrepancy. In [8], the authors adopt a
gradient-based episodic training scheme for DG in which the
extracted features are driven to simultaneously preserve global
class information and local task-related clusters across seen
domains by minimizing an alignment loss comprising soft
class confusion matrices and a contrastive loss. The authors
of [15] propose the Invariant Risk Minimization algorithm to
learn features such that the optimal classifiers are matched
across domains. In [16], DG is achieved by disentangling
style variation across domains from learned features. Among
the large body of works on the DG problem, we regard [11],
[14], [15], [17], and [18] as recent exemplars of principled
algorithms that are guided by theory and compare their
performance with our algorithm’s.

Our proposed upper bound is based on the Wasserstein
barycenters. Related to this context are the works [19], [20],
and [10]. In [10], the pairwise Wasserstein-1 distance [13],
[21], is used as a measure of domain discrepancy. Using
the dual form of the Wasserstein-1 distance, the feature
extractor in [10] minimizes a combination of cross-entropy
loss, Wasserstein distance loss, and a contrastive loss to
achieve DG. The works [19], [20] provide upper bounds
for the risk of unseen domain based on the Wasserstein-1
distance. Although they were originally proposed for DA,
they can be adapted to the DG set-up. While the bounds from
[19], [20] share some similarities with ours, their bounds
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are constructed in the input space and therefore do not
explicitly motivate the use of representation functions. By
contrast, our proposed upper bound measures the discrepancy
of domains in the representation space, which naturally
justifies the decomposition of the hypothesis in the practical
implementation. A detailed analysis and comparison of the
bounds in [19], [20] and our proposed bound can be found in
Appendix B.

In addition to the domain-invariant feature learning ap-
proach, which is the main focus of this paper, there are other
noteworthy and emerging directions in domain generalization
research. These are data manipulation techniques [22], meta-
learning strategies [23], use of pre-trained models [24], and
seeking flat minima [25]. For more details, we refer the reader
to [26], [27] which are recent survey articles on DG.

III. THEORETICAL ANALYSIS AND PROPOSED METHOD
We consider a domain v as a triple (µ(v), f (v), g(v)) consisting
of a distribution µ(v) on the input x ∈ Rd, a representa-
tion function f (v) : Rd → Rd′ , from the input space to
the representation space, and a stochastic labeling function
g(v) : Rd′ → Y from the representation space to the label
space. We denote the unseen domain by (µ(u), f (u), g(u)) and
S seen domains by (µ(s), f (s), g(s)), with s = 1, . . . , S.

Let F = {f |f : Rd → Rd′} be the set of representation
functions, G = {g|g : Rd′ → Y} the set of stochastic labeling
functions, H := G ◦ F the set of hypotheses, with each
hypothesis h : Rd → Y obtained by composing a g ∈ G with
an f ∈ F , i.e., h = g◦f , andD = {ψ|ψ : Rd′ → Rd} the set
of reconstruction functions that map from the representation
space back to the input space. In this paper, we limit our
theoretical study to binary classification problems, specifically
hypothesis functions h such that h : Rd → Y = [0, 1]. Note
that a similar set-up is also used in [4] where the hypothesis h
occurs non-deterministically and maps a data point to a label
between zero and one.

The risk of using a hypothesis h in domain v is then defined
by:

R(v)(h) := Ex∼µ(v)

[
ℓ(h(x), h(v)(x))

]
, (1)

where E[·] denotes the expectation, h(v) = g(v) ◦ f (v), and
ℓ(·, ·) is a loss function. We make the following assumptions:
A1: The loss function ℓ(·, ·) is non-negative, symmetric,

bounded by a finite positive number L, satisfies the
triangle inequality, and Q-Lipschitz continuous, i.e., for
any three scalars a, b, c and positive constant Q,

|ℓ(a, b)− ℓ(a, c)| ≤ Q |b− c|. (2)

A2: The optimal hypothesis of the unseen domain h(u) =
g(u) ◦ f (u) is K-Lipschitz continuous. Specifically, we
assume that for any two vectors x,x′ ∈ Rd, and positive
constant K,

|h(u)(x)− h(u)(x′)| ≤ K ∥x− x′∥2, (3)

where ∥x−x′∥2 denotes the Euclidean distance between
x and x′.

The first four conditions in Assumption A1 can be easily
satisfied by any metric or norm truncated by a finite positive
number. Concretely, if d(a, b) is a metric, potentially un-
bounded like Mean Squared Error (MSE), then loss(a, b) :=
min(L, d(a, b)), where L is a positive constant, will satisfy
the first four conditions in A1. The Lipschitz condition in A1
and A2 are also widely used in the theory and practice of DG
[17], [20], [28].

One may find our assumptions bear some similarities
with the assumptions in [19] and [20], but there are some
fundamental differences. Specifically, we assume that the
loss function is non-negative, symmetric, bounded, Lipschitz,
and satisfies the triangle inequality, whereas the loss function
in [19] is required to be convex, symmetric, bounded, obey
the triangle inequality, and satisfy a specific form. We only
assume that the optimal hypothesis function on the unseen
domain is Lipschitz, whereas [20] requires all hypotheses to
be Lipschitz.

A. BOUND FOR UNSEEN DOMAIN RISK
Our analysis starts by considering a single seen domain.
Lemma III.1 below upper bounds the risk R(u)(h) of a
hypothesis h = g ◦ f in the unseen domain u by four terms:
(1) the risk of the seen domain s, (2) the L1 distance between
the distributions of the data representations from the seen and
unseen domain, (3) the reconstruction loss that quantifies how
well the representation can reconstruct its original data input,
and (4) an intrinsic risk term that is free of h and is intrinsic
to the domains and the loss function. We use the notation
f#µ

(v) to denote the pushforward of distribution µ(v) under
the representation function f , i.e., the distribution of f(x)
with x ∼ µ(v).

Lemma III.1. Under assumptions A1 and A2, for any
hypothesis h ∈ H and any reconstruction function ψ ∈ D,
the following bound holds:

R(u)(h) ≤ R(s)(h) + L ∥f#µ(u) − f#µ
(s)∥1

+QK
(
Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+ σ(u,s)

where ∥f#µ(u) − f#µ
(s)∥1 =

∫
z
|f#µ(u) − f#µ

(s)|dz
denotes the L1 distance between (f#µ

(u), f#µ
(s)) in the

representation space and:

σ(u,s) := min { Ex∼µ(u)

[
ℓ(h(u)(x), h(s)(x))

]
,

Ex∼µ(s)

[
ℓ(h(u)(x), h(s)(x))

]
} .

Proof. Please see Appendix C.

In typical DG applications, training data from multiple
seen domains are available and can be combined in various
ways. Therefore, Lemma III.2 below extends Lemma III.1 to a
convex combination of distributions of multiple seen domains.

Lemma III.2. For any convex weights λ(1), λ(2), . . . , λ(S)
(non-negative and summing to one), any reconstruction
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function ψ ∈ D, and any hypothesis h ∈ H, the following
bound holds:

R(u)(h) ≤
S∑

s=1

λ(s)R(s)(h)

+ L

S∑
s=1

λ(s)∥f#µ(u) − f#µ
(s)∥1

+QK
( S∑

s=1

λ(s)Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+

S∑
s=1

λ(s)σ(u,s).

Proof. Please see Appendix D.

The upper bound above relies on the L1 distances between
the pushforwards of seen and unseen distributions. However,
accurately estimating L1 distances from samples is hard [6],
[29]. To overcome this practical limitation, we upper bound
the L1 distance by the Wasserstein-2 distance under additional
regularity assumptions on the pushforward distributions.

Definition III.3. [30] A probability distribution on Rd is
called (c1, c2)-regular, with c1, c2 ≥ 0, if it is absolutely
continuous with respect to the Lebesgue measure with a
differentiable density p(x) such that

∀x ∈ Rd, ∥∇ log2 p(x)∥2 ≤ c1∥x∥2 + c2,

where∇ denotes the gradient and ∥ · ∥2 denotes the Euclidean
norm.

Lemma III.4. If µ and ν are (c1, c2)-regular, then:

∥µ− ν∥1 ≤
√
c1
(√

Eu∼µ

[
∥u∥22

]
+

√
Ev∼ν

[
∥v∥22

])
+ 2c2

×
√

W2(µ, ν)

where the Wasserstein-p metric [13], [21] Wp(µ, ν) is defined
as,

Wp(µ, ν) := ( inf
π∈Π(µ,ν)

E(u,v)∼π[∥u− v∥p2])1/p

where Π(µ, ν) is the set of joint distributions with marginals
µ and ν.

Proof. Please see Appendix E.

One may wonder what conditions would guarantee the
regularity of the pushforward distributions. Proposition 2 and
Proposition 3 in [30] show that any distribution ν for which
Ev∼ν∥v∥2 is finite becomes regular when convolved with any
regular distribution, including the Gaussian distribution. Since
convolution of distributions corresponds to the addition of
independent random vectors having those distributions, it is
always possible to make the pushforwards regular by adding a
small amount of independent spherical Gaussian noise in the
representation space.

Combining Lemma III.2, Lemma III.4, and applying
Jensen’s inequality, we obtain our main result:

Theorem III.5. If f#µ(s), s = 1, 2, . . . , S, and f#µ
(u)

are all (c1, c2)-regular, then for any convex weights
λ(1), λ(2), . . . , λ(S), any reconstruction function ψ ∈ D, and
any hypothesis h ∈ H, the following bound holds:

R(u)(h) ≤
S∑

s=1

λ(s)R(s)(h)

+ LC
[ S∑
s=1

λ(s)W2
2(f#µ

(u), f#µ
(s))

]1/4
+QK

( S∑
s=1

λ(s)Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+

S∑
s=1

λ(s)σ(u,s) (4)

where:

C=max
s

√
c1
(√

Ex∼µ(u)

[
∥f(x)∥2

]
+
√

Ex∼µ(s)

[
∥f(x)∥2

])
+2c2.

Proof. Please see Appendix F.

The upper bound in Theorem III.5 consists of four terms:
the first term is the sum of the risk on seen domains, the second
term is the Wasserstein distance between the pushforward of
seen and unseen domains in the representation space, the
third term indicates how well the input can be reconstructed
from its corresponding representation, and the fourth term is
a combined risk that is independent of both the representation
function and the labeling function and only intrinsic to the
domain and loss function.

The form of the upper bound derived above shares some
similarities with previous bounds in [4], [19], [20]. However,
it differs from previous bounds in the following important
aspects:

• Firstly, even though Lemma 1 in [19] and Theorem 1
in [20] employ Wasserstein distance to capture domain
divergence, the corresponding term is constructed in
the data space. By contrast, the corresponding term in
our bound is constructed in the representation space,
which not only provides a theoretical justification when
decomposing the hypothesis into a representation map-
ping and a labeling function, but is also consistent with
the algorithm implementation in practice. Moreover, the
bounds in [19] and [20] are controlled by the Wasserstein-
1 distance, while our upper bound is managed by the
square root of the Wasserstein-2 distance. There are
regimes where one bound is tighter than the other as
discussed in Appendix B.

• Secondly, our third term measures how well the input can
be reconstructed from its representation. This motivates
the use of an encoder-decoder structure in the proposed
algorithm in Section IV to minimize the reconstruction
loss. This is a novel component absent from [4], [19],
[20].

• Finally, the last term in our upper bound is independent
of both the representation function f and the labeling
function g. This contrasts with the previous results in [4],
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where the last term in their upper bound (see Theorem
1 in [4]) depends on the representation function f . We
refer the reader to Appendix A for a detailed comparison.

The bound proposed in Theorem III.5 can also be used
for the DA problem where one can access the unseen/target
domain data and estimate its distribution. However, under the
DG setting, the second and third term in (4) are uncontrollable,
leading to an intractable upper bound due to the unavailability
of the unseen data. This intractability, which cannot be
overcome without making additional specific assumptions
on the unseen domain, is widely accepted in the literature as a
fundamental limitation for all DG methods and analyses.

As a step toward developing a practical algorithm based
on our new bound, we decompose both the second term and
the third term in (4) into two separate terms where one term
completely depends on the unseen distribution and the other
fully depends on the seen distributions.

Corollary III.6. Under the setting and notation of Theo-
rem III.5, for an arbitrary pushforward distribution f#µ, we
have:

R(u)(h) ≤
S∑

s=1

λ(s)R(s)(h)

+ LC
( S∑

s=1

λ(s)W2
2(f#µ, f#µ

(s))
)1/4

+ LC
(
W2

2(f#µ
(u), f#µ)

)1/4

+QK
( S∑

s=1

λ(s)Ex∼µ(s)

[
∥ψ(f(x))− x∥2

])
+QK

(
Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+

S∑
s=1

λ(s)σ(u,s). (5)

Proof. Please see Appendix G.

Motivated by the bound in Corollary III.6, we want
to find a suitable representation function f together
with a reconstruction function ψ to minimize the sec-
ond term

∑S
s=1 λ

(s)W2
2(f#µ, f#µ

(s)) and the fourth term∑S
s=1 λ

(s)Ex∼µ(s)

[
∥ψ(f(x)) − x∥2

]
in (5), while ignor-

ing the third term W2
2(f#µ

(u), f#µ) and the fifth term
Ex∼µ(u)

[
∥ψ(f(x))− x∥2

]
, as both of them are intractable.

Minimizing the second term
∑S
s=1 λ

(s)W2
2(f#µ, f#µ

(s))
in (5) leads to finding the Wasserstein-2 barycenter of the
distributions of seen domains in the representation space. Here,
we assume a uniform weight of λ(s) = 1

S for all s, since there
is no additional information for selecting these weights. For
this choice, the Wasserstein-2 barycenter of the pushforward
distributions of seen domains is defined by:

f#µbarycenter := argmin
f#µ

S∑
s=1

1

S
W2

2(f#µ
(s), f#µ). (6)

We refer the reader to [31], [32] for the definition and proper-
ties (existence, uniqueness) of the Wasserstein barycenter.

On the other hand, minimizing the fourth term∑S
s=1 λ

(s)Ex∼µ(s)

[
∥ψ(f(x)) − x∥2

]
in (5) naturally leads

to an auto-encoder mechanism. With a little abuse of notation,
we denote the encoder, namely the representation function as
f and the decoder, namely the reconstruction function as ψ.
The L2 reconstruction loss should be optimized over all seen
domains.

B. PROPOSED METHOD
As the last term in (5) of Corollary III.6 is independent of
both the representation function f and the labeling function
g, and the third and fifth terms are intractable due to their
dependence on unseen domain, we focus on designing f , ψ
and g to minimize the first, second, and fourth terms in (5) of
Corollary III.6.

Following previous works [4], [6], [7], we optimize the
first term by training f together with g using a standard cross-
entropy (CE) loss, such that the empirical classification risk
on seen domains is minimized. The classification loss function
can be written as:

Lc(f, g) =
1

S

S∑
s=1

Ex∼µ(s) [CE(h(s)(x), g(f(x)))] (7)

where CE(h(s)(x), g(f(x))) denotes the cross-entropy (CE)
loss between the output of classifier and the ground-truth label
of seen domain s.

As discussed in Corollary III.6, we propose to use the
Wasserstein-2 barycenter of representation distributions of
seen domains to optimize the second term in (5). Specifically,
the barycenter loss is defined by:

Lbary(f) :=
S∑
s=1

1

S
W2

2(f#µ
(s), f#µbarycenter) (8)

where f#µbarycenter, as defined in (6), denotes the Wasser-
stein barycenter of pushforward distributions of seen domains.

In contrast to the previous Wasserstein distance-based
method [10] where pairwise Wasserstein distance loss is
employed, we motivate the use of Wasserstein barycenter
loss based on our Corollary III.6 and demonstrate its ability
in enforcing domain-invariance in the ablation study of
Section V-D. Notably, the barycenter loss (8) only requires
computing S Wasserstein distances, whereas using pairwise
Wasserstein distance would require S(S− 1)/2 computations.

Furthermore, to handle the fourth term in (5), we utilize the
auto-encoder structure. Specifically, a decoder ψ : Rd′ → Rd
is adopted, leading to the following reconstruction loss term:

Lr(f, ψ) :=
1

S

S∑
s=1

Ex∼µ(s) [∥x− ψ(f(x))∥2]. (9)

From the analysis above, we aim to find a representation
function f , a classifier g, and a decoder function ψ to optimize
the following objective function:

arg min
f,g,ψ

Lc(f, g) + αLbary(f) + βLr(f, ψ) (10)

6 VOLUME 4, 2022



where weights α, β > 0 are hyper-parameters. One can
observe that the terms in our proposed upper bound are
incorporated into our objective function in (10). Specifically,
the first term in our objective function aims to determine a
good classifier g together with a representation mapping f by
minimizing the risk of seen domains, which corresponds to the
first term of the upper bound in (5). The second term in (10)
acts as a domain alignment tool to minimize the discrepancy
between seen domains, aligning with the second term in
the proposed bound in (5). Note that although Lbary itself
requires solving an optimization problem, we leverage fast
computation methods, which are also discussed in Section IV,
to directly estimate this loss without invoking the Kantorovich-
Rubenstein dual characterization of Wasserstein distance [13].
This avoids solving a min-max type problem that is often
plagued by unstable numerical dynamics. Finally, the third
term in the objective function minimizes the mean squared
error between the input and its reconstruction over all seen
domains, which directly minimizes the fourth term in (5).

IV. ALGORITHM
Based on the loss function designed above, we propose
an algorithm named Wasserstein Barycenter Auto-Encoder
(WBAE). The pseudo code of the WBAE algorithm can be
found in Algorithm 1 while its block diagram is shown in Fig.
1.

Algorithm 1 Wasserstein Barycenter Auto-Encoder (WBAE)
Input: Data from S seen domains, m samples from each
domain, learning rate η, parameters α, β, ϵ. Output: Encoder
fθe , decoder ψθd , classifier gθc

1: while training is not end do
2: Randomly choose m samples from each domain, de-

noted as X (s) := {x(s)
i }mi=1 ∼ µ̂(s) and y(s) :=

{y(s)i }mi=1

3: for s = 1 : S and i = 1 : m do
4: z

(s)
i ← fθe(x

(s)
i ) with set Z(s) ∼ f#µ̂(s)

5: end for
6: Calculate the Wasserstein barycenter µ̂bary of

{f#µ̂(s)}Ss=1 and its supporting points with fθe de-
tached from automatic backpropagation

7: Lbary ← 1
S

∑S
s=1 Sinkhornϵ(µ̂bary, f#µ̂

(s))

8: Lc ← − 1
mS

∑S
s=1

∑m
i=1 y

s
i log p(gθc(fθe(x

(s)
i )))

9: Lr ← 1
mS

∑S
s=1

∑m
i=1 ∥x

(s)
i − ψθd(z

(s)
i )∥22

10: L← Lc + αLbary + βLr
11: θc ← θc − η∇θcLc
12: θd ← θd − η∇θdLr
13: θe ← θe − η∇θeL
14: end while

As shown in the pseudo code, we use an encoder f and a
decoder ψ, which are parameterized by θe and θd for feature
extraction and reconstruction, respectively. Here we denote
X (s) as a set of samples from domain s with empirical
distribution µ̂(s) and with x

(s)
i as one of its element. The

corresponding label set of X (s) is denoted as y(s), where
y(s) := {y(s)i } with y

(s)
i as the label for sample x

(s)
i .

The extracted feature z
(s)
i = fθe(x

(s)
i ) in set Z(s) follows

the empirical distribution of f#µ̂(s). The decoder takes the
extracted features as input and outputs the reconstructions as
ψθd(z

(s)
i ) for domain s. The classifier g, parameterized by θc

is then applied to the extracted features for label prediction.
The proposed algorithm requires calculating Wasserstein-

2 barycenter and its supporting points. Here we use an
off-the-shelf python package [33] that implements a free-
support Wasserstein barycenter algorithm described in [32].
This algorithm is executed in the primal domain and avoids
the use of the dual form of Wasserstein distances, which
otherwise would turn the problem into an adversarial (min-
max) type setting that we want to avoid due to its instability.
The barycenter loss is approximated via an average Sinkhorn
divergence [34] between the seen domains and the estimated
barycenter. Sinkhorn divergence is an unbiased proxy for the
Wasserstein distance, which leverages entropic regularization
[35] for computational efficiency, thereby allowing for inte-
grating automatic differentiation with GPU computation. We
incorporate the implementation from [34] into our algorithm
for a fast gradient computation and denote it as Sinkhornϵ
in Algorithm 1, where ϵ is the entropic regularization term.

V. EXPERIMENTS AND RESULTS

TABLE 1. Performance of tested methods on PACS dataset in the DomainBed
setting, measured by accuracy (%). A, C, P, S are left-out unseen domains.

Algorithm A C P S Avg

theory-guided algorithms

ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
WBAE (Ours) 86.9 ± 0.3 81.3 ± 0.4 97.2 ± 0.2 80.5 ± 0.4 86.5

best-performing heuristic algorithm

SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3

TABLE 2. Performance of tested methods on VLCS dataset in the DomainBed
setting, measured by accuracy (%). C, L, S, V are left-out unseen domains.

Algorithm C L S V Avg

theory-guided algorithms

ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
WBAE (Ours) 98.3 ± 0.2 65.5 ± 1.0 72.8 ± 0.3 78.6 ± 0.4 78.8

best-performing heuristic algorithm

CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

The proposed method was evaluated on four benchmark
datasets for DG: PACS [36], VLCS [37], Office-Home [38],
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FIGURE 1. An overview of the proposed algorithm. The top, middle, and bottom branches refer to the reconstruction loss term, the Wasserstein barycenter loss term,
and the classification risk (from seen domains), respectively.

TABLE 3. Performance of tested methods on Office-Home dataset in the
DomainBed setting, measured by accuracy (%). A, C, P, R are left-out unseen
domains.

Algorithm A C P R Avg

theory-guided algorithms

ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
WBAE (Ours) 63.7 ± 0.5 56.4 ± 0.8 76.1 ± 0.3 78.8 ± 0.4 68.8

best-performing heuristic algorithm

CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

TABLE 4. Performance of tested methods on TerraIncognita dataset in the
DomainBed setting, measured by accuracy (%). L100, L38, L43, L46 are left-out
unseen domains.

Algorithm L100 L38 L43 L46 Avg

theory-guided algorithms

ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
WBAE (Ours) 55.3 ± 0.4 44.3 ± 0.7 56.4 ± 0.5 39.1 ± 0.6 48.8

best-performing heuristic algorithm

SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6

and TerraIncognita [39] under two different settings: Do-
mainBed setting [1] and Stochastic Weight Averaging Densely
(SWAD) setting [25]. In the DomainBed setting, we imple-
mented our method with the widely used DomainBed package
and compared it with various theory-guided DG algorithms.
Additionally, incorporating the recent advancement in DG-
specific optimization, we conducted separate experiments
using the SWAD [25] weight sampling strategy with the
same experimental setting described in [25]. Furthermore, to

TABLE 5. Performance of theory-guided methods on four datasets in the
DomainBed setting, measured by accuracy (%). The average accuracy is
reported over different tasks per dataset.

Algorithm PACS VLCS Office-Home TerraIncognita Avg

ERM 85.5 77.5 66.5 46.1 68.9
IRM 83.5 78.5 64.3 47.6 68.5
DANN 83.6 78.6 65.9 46.7 68.7
CDANN 82.6 77.5 65.8 45.8 67.9
MTL 84.6 77.2 66.4 45.6 68.5
VREx 84.9 78.3 66.4 46.4 69.0
WBAE (Ours) 86.5 78.8 68.8 48.8 70.7

TABLE 6. Performance of tested methods on four datasets in the SWAD
setting, measured by accuracy (%).

Algorithm PACS VLCS Office-Home TerraIncognita Avg

ERM + SWAD 88.1 ± 0.1 79.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 72.0
CORAL + SWAD 88.3 ± 0.1 78.9 ± 0.1 71.3 ± 0.1 51.0 ± 0.1 72.4
WBAE + SWAD 88.4 ± 0.1 79.5 ± 0.1 71.4 ± 0.2 51.8 ± 0.3 72.8

investigate the impact of different components of the proposed
loss function, we conducted an ablation analysis on the PACS,
VLCS, and Office-Home datasets and reported the results in
Section V-D.

A. DATASETS
The details for the four datasets are described below:

• PACS dataset [36]: PACS contains 9,991 images with 7
classes from 4 domains: Art (A), Cartoons (C), Photos
(P) and Sketches (S), where each domain represents one
type of images.

• VLCS dataset [37]: VLCS consists of 10,729 images
from 4 different domains: VOC2007 (V), LabelMe (L),
Caltech (C), PASCAL (S). A total of 5 classes are shared
by all domains.

• Office-Home dataset [38]: Office-Home contains
15,500 images from 4 different domains: Artistic (A),
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Clipart (C), Product (P), and Real-World (R). Each
domain has 65 object categories.

• TerraIncognita dataset [39]: TerraIncognita contains
four domains {L100, L38, L43, L46} with a total of
24,788 pictures of wild animals belonging to 10 classes.

Example images of the above datasets are shown in Fig. 2,
Appendix H.

B. METHODS FOR COMPARISON
In this paper, we compare the empirical performance of our
method against the state-of-the-art DG methods reported in
[1] under the DomainBed setting. Specifically, the competing
methods include:

• Empirical Risk Minimization (ERM) [40] which aims
to minimize the cumulative training error across all seen
domains.

• Domain-Adversarial Neural Networks (DANN) [11]
which is motivated by the theoretical results from [4].
In particular, to minimize the upper bound of the risk
in the unseen domain, DANN adopts an adversarial
network to enforce that features from different domains
are indistinguishable.

• Class-conditional DANN (C-DANN) [14] is a variant of
DANN that aims to match the conditional distributions
of feature given the label across domains.

• Invariant Risk Minimization (IRM) [15] aims to learn
features such that the optimal classifiers applied to these
features are matched across domains.

• Risk Extrapolation (VREx) [18] is constructed on the
assumption from [15] which assumes the existence of an
optimal linear classifier across all domains. While IRM
specifically seeks the invariant classifier, VREx aims to
identify the form of the distribution shift and propose a
variance penalty, leading to the robustness for a wider
variety of distributional shifts.

• Marginal Transfer Learning (MTL) [5], [17] is proposed
based on an upper bound for the generalization error
under the setting of an Agnostic Generative Model.
Specifically, MTL estimates the mean embedding per
domain and uses it as a second argument for optimizing
the classifier.

• CORrelation ALignment (CORAL) [41] is based on the
idea of matching the mean and covariance of feature
distributions from different domains.

• Style-Agnostic Networks (SagNet) [16] minimizes the
style induced domain gap by randomizing the style
feature for different domains and train the model mainly
on the disentangled content feature.

We can categorize the algorithms provided in [1] into
two groups: (1) heuristic algorithms, which lack theoretical
analysis, and (2) theory-guided algorithms. As the proposed
method in this paper falls into the second category, we
primarily compare it with the theory-guided methods. Here,
ERM acts as the baseline theory-guided model and DANN,
C-DANN, IRM, VREx, MTL are five state-of-the-art theory-

guided algorithms. Besides these six methods, for a complete
comparison, we also include three heuristic algorithms that
achieve the best performances on four evaluated datasets [1].
More specific, SagNet [16] is the best-performing algorithm
for the PACS and TerraIncognita datasets, and CORAL [41]
is the best-performing algorithm for both the VLCS and
Office-Home datasets. In the SWAD setting, following [25]
where CORAL was considered as the representative of the
previous state-of-the-art methods, we compare our method
with both ERM and CORAL, all of which employed the
SWAD strategy. The results for the competing methods above
are sourced from [1] and [25].

C. EXPERIMENT SETTINGS
Model Structure: We used the same feature extractor and
classifier as used in [1] for all four datasets. Specifically,
an ImageNet pre-trained ResNet-50 model with the final
(softmax) layer removed is used as the feature extractor. The
decoder is a stack of 6 ConvTranspose2d layers for all datasets.
The detailed structure of the decoder is described in Table 8,
Appendix I. The classifier is a one-linear-layer model with
the output dimension the same as the number of classes.

Hyper-parameters: In the DomainBed setting, we per-
formed a random search of 20 trials within the joint distri-
bution of 10Uniform[−3.5,−2] for α and 10Uniform[−3.5,−1.5] for
β (see (10)) with other hyper-parameters (e.g., learning rate,
batch size, dropout rate, etc.) set as the default values recom-
mended in [1]. In the SWAD setting, following [25], we per-
formed a grid search for α in {10−3.5, 10−3, 10−2.5, 10−2}
and β in {10−3.5, 10−3, 10−2, 10−1.5}. We chose the value of
ϵ for the Sinkhorn loss (line 7, Algorithm 1) as 20, which is the
smallest value that can produce stable training processes. A
complete description of hyper-parameter tuning in the SWAD
setting and a full list of hyper-parameters can be found in
Table 9, Appendix I.

Model Selection: We adopted the commonly used training-
domain validation strategy in [1], [18] for hyper-parameter
tuning and model selection. Specifically, we split the data
from each domain into training and validation sets in the
proportion 80% and 20%, respectively. During training, we
aggregated together the training/validation samples from each
seen domain to form the overall training/validation set and
selected the model with the highest validation accuracy for
testing.

All models were trained on a single NVIDIA Tesla V100
16GB GPU. Experiments on each dataset are repeated three
times with different random seeds and the average accuracy
together with its standard error are reported.

D. RESULTS AND ABLATION STUDY
As shown in Table 1, 2, 3, and 4, the proposed method
(WBAE) performs comparably or better than the state-of-
the-art methods. In particular, WBAE achieves the highest
accuracy in three out of the four datasets compared to all
methods, with a moderate improvement over all theory-guided
methods on all four datasets. Additionally, the proposed
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method performs equally well as, or slightly better than, the
best-performing heuristic DG methods.

In Table 1, it is demonstrated that WBAE outperforms
other theory-guided methods by 0.5% and 1.2% points in both
Cartoons (C) and Sketches (S) domains, respectively, and by
at least 1% point on average on the PACS dataset. Similarly,
Table 2 shows that WBAE achieves a performance gain of at
least 0.2% points over all theory-guided comparison methods
on the VLCS dataset. The effectiveness of the proposed
method is further highlighted in Tables 3 and 4, which present
results on the larger and more challenging Office-Home and
TerraIncognita datasets. Specifically, compared to all theory-
guided methods on Office-Home, WBAE boosts the average
accuracy by at least 2.3% points on average and at least 2.2%,
3.4%, 0.3%, and 1.9% points on each task. Regarding the
TerraIncognita dataset, the proposed algorithm still exhibits
superiority by outperforming all theory-guided methods by
at least 1.2% points, as shown in Table 4. A summary of
evaluation results in the DomainBed setting is reported in
Table 5. The proposed method outperforms all theory-guided
methods with a noticeable improvement of 1.7-2.8 percentage
points on average across all tested datasets.

Table 6 presents the results obtained by applying SWAD,
a DG-specific optimizer and weight-averaging technique, in
combination with our proposed algorithm WBAE. It can be
observed that this combination outperforms all comparison
methods on all four evaluated datasets, with an average
improvement of 0.4% point over the previous best-performing
method CORAL as reported in [25].

Based on the results above, it is evident that the proposed
algorithm has a more significant impact on the PACS, Office-
Home, and TerraIncognita datasets compared to the VLCS
dataset. One possible explanation for this, as also suggested
in [42], is that three out of four domains in the VLCS
dataset contain a greater proportion of scenery contents rather
than object information. Unlike the scenery background in
TerraIncognita dataset, the scenery contents in the VLCS
dataset are usually more intricate and sometimes include
multiple objects, making it challenging for the feature ex-
tractor to obtain useful object information for the downstream
classification.

TABLE 7. Ablation study for the proposed algorithm (WBAE) on PACS, VLCS,
and Office-Home datasets.

Dataset no Lbary no Lr WBAE

PACS 85.3 ± 0.3 86.0 ± 0.1 86.5 ± 0.2
VLCS 77.9 ± 0.1 78.4 ± 0.2 78.8 ± 0.2
Office-Home 65.7 ± 0.2 67.7 ± 0.1 68.8 ± 0.1

To study the impact of different components of the loss
function in (10), we conducted an ablation study for WBAE
on all datasets except TerraIncognita due to our limited com-
putational resources. In particular, we consider the following
variants of our method: (1) no Lbary: using the WBAE loss
function without the Wasserstein barycenter term Lbary; (2) no
Lr: using the WBAE loss function without the reconstruction

term Lr. We re-ran all the experiments three times using
the same model architectures, hyper-parameter tuning, and
validation method.

Table 7 demonstrates the performance of the model with
different loss terms removed from the original WBAE loss
function. It can be observed that removing Lr from the
WBAE loss function leads to a decrease in the accuracy of
0.5%, 0.4%, and 1.1% points for PACS, VLCS, and Office-
Home datasets, respectively. The performance deterioration is
more significant when removing Lbary from the WBAE loss
function, leading to a drop of 1.2%, 0.9%, and 3.1% points
for PACS, VLCS, and Office-Home datasets, respectively. Our
ablation study demonstrates the importance of the Wasserstein
barycenter loss and also highlights the auxiliary role of the
reconstruction loss. Specifically, removing the Wasserstein
barycenter loss (Lbary) will result in diminished performance,
and a similar, though less significant, decrease will occur if
the reconstruction loss (Lr) is removed.

VI. CONCLUSION AND FUTURE WORK
In this paper, we revisited the theory and methods for DG
and provided a new upper bound for the risk in the unseen
domain. The proposed upper bound contains four terms:
(1) the empirical risk of the seen domains in the input
space; (2) the discrepancy between the induced representation
distribution of seen and unseen domains, which can be further
represented by the Wasserstein-2 barycenter of representation
in the seen domains; (3) the reconstruction loss term that
measures how well the data can be reconstructed from its
representation; and (4) a combined risk term. The proposed
upper bound provides valuable insights in three aspects.
Firstly, we observed that the combined risk term in previous
bounds relied on the representation function, which made
optimization challenging. By contrast, our combined risk term
in the proposed upper bound is a constant with respect to both
the representation and the labeling function, making optimiza-
tion straightforward, thus bridging the previous gap between
theory and practice. Secondly, compared with other upper
bounds using Wasserstein distance to measure the domain
discrepancy, the proposed bound constructs the discrepancy
term in the representation space rather than in the data
space. This approach offers a theoretical justification for the
decomposition of the hypothesis when bounding the risk and
for practical implementation when designing the algorithm.
Lastly, motivated by the proposed upper bound, our practical
algorithm WBAE demonstrates competitive performance over
state-of-the-art DG algorithms, validating the usefulness of the
proposed theoretical bound for addressing the DG problem. In
addition, our bound encourages minimizing the reconstruction
loss term, which theoretically supports the use of (nearly)
invertible representation mappings in recent works [43], [44].
In terms of algorithm and numerical implementation, it should
be noted that while our theory-guided method is effective in
addressing the DG problem, it may become computationally
expensive if one wants to use a larger batch size for a
more accurate estimation of the Wasserstein-2 barycenter.
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To alleviate this constraint, our future works will focus on
leveraging the recently proposed large-scale-barycenter and
mapping estimators [45], [46] to enable the calculation of
barycenters with a larger number of samples.

APPENDIX.
A. LIMITATIONS OF PREVIOUS UPPER BOUNDS
First, let us recall that a domain v is defined as a triple
(µ(v), f (v), g(v)) consisting of a distribution µ(v) on the input
x ∈ Rd, a representation function f (v) : Rd → Rd′ that
maps an input x from the input space to its representation z
in the representation space, and a stochastic labeling function
g(v) : Rd′ → Y that maps the representation space Rd′ to a
label space Y .

We denote the unseen domain by (µ(u), f (u), g(u)) and the
seen domain by (µ(s), f (s), g(s)). Let F = {f |f : Rd →
Rd′} be a set of representation functions, G = {g|g : Rd′ →
Y} a set of stochastic labeling functions. Here, the label space
Y is considered as binary. A hypothesis h : Rd → Y is
obtained by composing each g ∈ G with each f ∈ F , i.e.,
h = g ◦ f . Next, we rewrite Theorem 1 in [4] using our
notations.
Theorem 1 in [4]. Let f be a fixed representation function
from the input space to representation space and G be a
hypothesis space of VC-dimension k. If random labeled
samples of sizem are generated by applying f to i.i.d. samples
from the seen domain, then with probability at least 1− δ, for
every g ∈ G:

R(u)(g) ≤ R(s)(g) + dH(f#µ
(u), f#µ

(s)) + λ (11)

≤ R̂(s)(g) +

√
4

m

(
k log

2em

k
+ log

4

δ

)
+ dH(f#µ

(u), f#µ
(s)) + λ (12)

where e is the base of the natural logarithm, dH is H-
divergence (please see Definition 1 in [6], Definition 2.1 in
[12] or Definition 1 in [29]), R(u)(g) = Ez∼f#µ(u)

[
|g(z)−

g(u)(z)|
]

denotes the risk in the unseen domain, R(s)(g) =

Ez∼f#µ(s)

[
|g(z) − g(s)(z)|

]
and R̂(s)(g) denote the risk in

the seen domain and its empirical estimation, respectively,
and:

λ = inf
g∈G

(
R(s)(g) +R(u)(g)

)
(13)

is the combined risk.
Although the bound in Theorem 1 of [4] was originally con-

structed for the domain adaptation problem, it has significantly
influenced past and recent works in domain generalization as
discussed earlier in Section I. To highlight the differences
between our work and previous theoretical bounds (the bound
in Theorem 1 of [4] and Theorem 4.1 of [12]), we provide a
detailed comparison below:

• Firstly, [4] defines the risk induced by labeling function
g from the representation space to the label space based
on the disagreement between g and the optimal labeling
function g(u):

R(u)(g) = Ez∼f#µ(u)

[
|g(z)− g(u)(z)|

]
. (14)

On the other hand, we define the risk induced by using a
hypothesis h from the input space to the label space by
the disagreement between h and the optimal hypothesis
h(u) via a general loss function ℓ(·, ·):

R(u)(h) = Ex∼µ(u)

[
ℓ(h(x), h(u)(x))

]
. (15)

Since the empirical risk measures the probability of
misclassification of a hypothesis that maps from the input
space to the label space, minimizing R(u)(g) does not
guarantee to minimize the empirical risk. Though there
are some cases for the causality to hold, for example,
if the representation function f is invertible i.e., there
is a one-to-one mapping between x and z, and the
loss function has the form of ℓ(a, b) = |a − b|, it is
possible to verify that R(u)(g) = R(u)(h). In general,
the representation mapping might not be invertible. For
example, let us consider a representation function f
that maps f(x1) = f(x2) = z, x1 ̸= x2, with
corresponding labels as y1 = 0 and y2 = 1. In this
case, the risk defined in (14) will introduce a larger error
than the risk introduced in (15) since g(z) cannot be
mapped to both “0” and “1”. That said, the risk defined
in (15) is more precise to describe the empirical risk. In
addition, the risk defined in (14) is only a special case of
(15) when the representation mapping f is invertible and
the loss function satisfies ℓ(a, b) = |a− b|.

• Secondly, using the setting in [4], for a given hypothesis
space, the ideal joint hypothesis g∗ is defined as the
hypothesis which globally minimizes the combined error
from seen and unseen domains [4], [6]:

g∗ = argmin
g∈G

(
R(s)(g) +R(u)(g)

)
.

In other words, this hypothesis should work well in both
domains. The error induced by using this ideal joint
hypothesis is called combined risk:

λ = inf
g∈G

(
R(s)(g)+R(u)(g)

)
=

(
R(s)(g∗)+R(u)(g∗)

)
.

Note that the labeling function g is a mapping from
the representation space to the label space, therefore,
the ideal labeling function g∗ depends implicitly on the
representation function f , hence, λ depends on f . Simply
ignoring this fact and treating λ as a constant may loosen
the upper bound. By contrast, our goal is to construct
an upper bound with the combined risk term σ(u,s)

independent of both the representation function and the
labeling function, which can be seen from Lemma III.1
and Theorem III.5.

• Finally, it is worth comparing our upper bound with
the bound in Theorem 4.1 of [12] which also has the
combined risk term free of the choice of the hypothesis
class. However, note that the result in Theorem 4.1 of
[12] does not consider any representation function f , i.e.,
their labeling function directly maps from the input space
to the label space, while our hypothesis is composed of
a representation function from the input space to the
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representation space followed by a labeling function
from the representation space to the label space. Since
it is possible to pick a representation function f that
maps any input to itself, i.e., f(x) = x which leads to
h = g ◦ f = g, the bound in [12] can be viewed as a
special case of our proposed upper bound in Lemma III.1.

B. COMPARISON WITH UPPER BOUNDS IN [19] AND [20]
The form of the proposed upper bound derived in Theo-
rem III.5 shares some similarities with Lemma 1 in [19]
and Theorem 1 in [20], for example, all of them introduce
Wasserstein distance between domain distributions. However,
they differ in the following key aspects.

1) The term containing Wasserstein distance in our upper
bound is constructed in the representation space, not in
the data (ambient) space, which provides a theoretical
justification when decomposing the hypothesis into a
representation mapping and a labeling function. This is
also consistent with the algorithmic implementation in
practice.

2) The bounds in Lemma 1 of [19] and Theorem 1 of
[20] are controlled by the Wasserstein-1 distance while
our upper bound is managed by the square-root of
the Wasserstein-2 distance. There are regimes where
one bound is tighter than the other. It is well-known
that W1(µ, ν) ≤ W2(µ, ν), if W2(µ, ν) ≤ 1, then
W1(µ, ν) ≤

√
W2(µ, ν). However, based on Jensen’s

inequality, it is possible to show that
√
W2(µ, ν) ≤

[Diam(f(X))W1(µ, ν)]
1/4 where Diam(f(X)) de-

notes the largest distance between two points in the
representation space Rd′ generated by input X via
mapping f . To guarantee

√
W2(µ, ν) ≤ W1(µ, ν), a

sufficient condition is [Diam(f(X))W1(µ, ν)]
1/4 ≤

W1(µ, ν) which is equivalent to Diam(f(X)) ≤
W1(µ, ν)

3. In fact, for a givenDiam(f(X)), the larger
the value of W1(µ, ν), the higher the chance that this
sufficient condition will hold.

C. PROOF OF LEMMA III.1
Note that in this paper, we assume that any hypothesis function
h(·) outputs a value in [0, 1], i.e., h : Rd → [0, 1], and ℓ(·, ·) is
a bounded distance metric. In addition, we assume that h(u)(·)
is K-Lipschitz continuous and ℓ(·) is Q-Lipschitz continuous.
Particularly, we assume that for any two vectors x,x′ ∈ Rd
and any three scalars a, b, and c, the following inequalities
hold:

|h(u)(x)− h(u)(x′)| ≤ K∥x− x′∥2, (16)

|ℓ(a, b)− ℓ(a, c)| ≤ Q|b− c|, (17)

where ∥x− x′∥2 and |b− c| denote the Euclidean distances
between x and x′, and b and c, respectively.
Lemma 2.1. If h(u)(·) is K-Lipschitz continuous and ℓ(·) is
Q-Lipschitz continuous. Then, for any hypothesis h ∈ H and

any function (decoder) ψ : Rd′ → Rd, the following bound
holds:

R(u)(h) ≤ R(s)(h) + L ∥f#µ(u) − f#µ(s)∥1
+QK

(
Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+ σ(u,s)

where ∥f#µ(u) − f#µ
(s)∥1 =

∫
z
|f#µ(u) − f#µ

(s)|dz
denotes the L1 distance between (f#µ

(u), f#µ
(s)) and:

σ(u,s) := min {Ex∼µ(u)

[
ℓ(h(u)(x), h(s)(x))

]
,

Ex∼µ(s)

[
ℓ(h(u)(x), h(s)(x))

]
} .

Proof. First, we want to note that our approach is motivated by
the proof of Theorem 1 in [6]. Next, to better demonstrate the
relationship between the hypothesis, input distribution, true
representation and labeling functions, we use inner product
notation ⟨·, ·⟩ to denote expectations. Specifically,

R(v)(h) := Ex∼µ(v)

[
ℓ(h(x), h(v)(x))

]
= ⟨ℓ(h, h(v)), µ(v)⟩.

(18)
From the definition of risk,

R(u)(h) = ⟨ℓ(h, h(u)), µ(u)⟩
=⟨ℓ(h, h(s)),µ(s)⟩−⟨ℓ(h, h(s)),µ(s)⟩+⟨ℓ(h, h(u)),µ(u)⟩
= R(s)(h) +

(
⟨ℓ(h, h(u)), µ(u)⟩ − ⟨ℓ(h, h(s)), µ(u)⟩

)
+

(
⟨ℓ(h, h(s)), µ(u)⟩ − ⟨ℓ(h, h(s)), µ(s)⟩

)
≤ R(s)(h) + ⟨ℓ(h(u), h(s)), µ(u)⟩
+ ⟨ℓ(h, h(s)), µ(u) − µ(s)⟩ (19)

where the inequality of (19) follows from the triangle inequal-
ity ℓ(h, h(u)) ≤ ℓ(h, h(s))+ℓ(h(s), h(u)) and ℓ(h(s), h(u)) =
ℓ(h(u), h(s)).

In an analogous fashion, it is possible to show that:

R(u)(h) ≤ R(s)(h) + ⟨ℓ(h(u), h(s)), µ(s)⟩
+ ⟨ℓ(h, h(u)), µ(u) − µ(s)⟩. (20)

Next, we will bound the third term in the right-hand-side of
(20). Specifically,
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⟨ℓ(h, h(u)), µ(u) − µ(s)⟩

= Ex∼µ(u)

[
ℓ
(
h(x), h(u)(x)

)]
− Ex∼µ(s)

[
ℓ
(
h(x), h(u)(x)

)]
≤max

{
Ex∼µ(u)

[
ℓ
(
h(x), h(u)(ψ(f(x)))+K∥ψ(f(x))−x∥2

)]
,

Ex∼µ(u)

[
ℓ
(
h(x), h(u)(ψ(f(x)))−K∥ψ(f(x))−x∥2

)]}
−min

{
Ex∼µ(s)

[
ℓ
(
h(x), h(u)(ψ(f(x)))+K∥ψ(f(x))−x∥2

)]
,

Ex∼µ(s)

[
ℓ
(
h(x), h(u)(ψ(f(x)))−K∥ψ(f(x))−x∥2

)]}
(21)

≤
(
Ex∼µ(u)

[
ℓ
(
h(x), h(u)(ψ(f(x)))

)]
+ Ex∼µ(u)

[
QK∥ψ(f(x))− x∥2

])
−

(
Ex∼µ(s)

[
ℓ
(
h(x), h(u)(ψ(f(x)))

)]
− Ex∼µ(s)

[
QK∥ψ(f(x))− x∥2

])
(22)

=
(
Ez∼f#µ(u)

[
ℓ
(
g(z), h(u)(ψ(z))

)]
− Ez∼f#µ(s)

[
ℓ
(
g(z), h(u)(ψ(z))

)])
+

(
Ex∼µ(u)

[
QK∥ψ(f(x))− x∥2

]
+ Ex∼µ(s)

[
QK∥ψ(f(x))− x∥2

])
(23)

= ⟨ℓ
(
g(z), h(u)(ψ(z))

)
, f#µ

(u) − f#µ
(s)⟩

+QK
(
Ex∼µ(s)

[
∥ψ(f(x))−x∥2

]
+Ex∼µ(u)

[
∥ψ(f(x))−x∥2

])
≤ L⟨1, |f#µ(u) − f#µ

(s)|⟩

+QK
(
Ex∼µ(s)

[
∥ψ(f(x))−x∥2

]
+Ex∼µ(u)

[
∥ψ(f(x))−x∥2

])
.

(24)

Note that in this paper, any hypothesis function h(·) is
assumed to output a scalar value in [0, 1], i.e., h : Rd → [0, 1],
and ℓ(·, ·) is a distance metric. With all these assumptions,
we get (21) due to min{ℓ(a, c), ℓ(a, d)} ≤ ℓ(a, b) ≤
max{ℓ(a, c), ℓ(a, d)}, ∀b ∈ [c, d], a, b, c, d ∈ R and the fact
for Lipschitz function h(u)(·) that:

h(u)(ψ(f(x)))−K∥ψ(f(x))− x∥2 ≤ h(u)(x), (25)

h(u)(x) ≤ h(u)(ψ(f(x))) +K∥ψ(f(x))− x∥2. (26)

Next, (22) is due to the Lipschitzness of ℓ(·):

max
{
ℓ
(
h(x), h(u)(ψ(f(x))) +K∥ψ(f(x))− x∥2

)
,

ℓ
(
h(x), h(u)(ψ(f(x)))−K∥ψ(f(x))− x∥2

)}
≤ ℓ

(
h(x), h(u)(ψ(f(x)))

)
+QK∥ψ(f(x))− x∥2, (27)

min
{
ℓ
(
h(x), h(u)(ψ(f(x))) +K∥ψ(f(x))− x∥2

)
,

ℓ
(
h(x), h(u)(ψ(f(x)))−K∥ψ(f(x))− x∥2

)}
≥ ℓ

(
h(x), h(u)(ψ(f(x)))

)
−QK∥ψ(f(x))− x∥2. (28)

Finally, we get (23) due to h = g ◦ f , f(x) = z, and (24)
due to ℓ(·, ·) is bounded by L.

The proof of Lemma follows by combining (19), (20), (24),
and note that:

σ(u,s) = min
{
⟨ℓ(h(u), h(s)), µ(u)⟩, ⟨ℓ(h(u), h(s)), µ(s)⟩

}
,

and

⟨1, |f#µ(u) − f#µ(s)|⟩ = ∥f#µ(u) − f#µ(s)∥1.

D. PROOF OF LEMMA II.2
Apply Lemma III.1 S times for S seen domains, then for any
hypothesis h ∈ H and function (decoder) ψ : Rd′ → Rd, the
following bound holds:

R(u)(h) ≤ R(s)(h) + L ∥f#µ(u) − f#µ
(s)∥1

+QK
(
Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+ σ(u,s), ∀s = 1, . . . , S.

(29)

Next, multiplying (29) with its corresponding convex weight
λ(s), for s = 1, 2, . . . , S, and summing them up, we have:

S∑
s=1

λ(s)R(u)(h) ≤
S∑

s=1

λ(s)

[
R(s)(h) + L ∥f#µ(u) − f#µ

(s)∥1

+QK
(
Ex∼µ(s)

[
∥ψ(f(x))− x∥2

]
+ Ex∼µ(u)

[
∥ψ(f(x))− x∥2

])
+ σ(u,s)

]
.

(30)

Note that
∑S
s=1 λ

(i) = 1, thus, the left-hand side of (30) is
R(u)(h), and by re-arranging the terms on the right-hand side
of (30), the proof follows.

E. PROOF OF LEMMA III.4
From Pinsker’s inequality [47], the L1 distance can be
bounded by Kullback–Leibler (KL) divergence as follows:

∥µ− ν∥21 ≤ 2dKL(µ, ν) (31)

where ∥µ − ν∥1 and dKL(µ, ν) denote L1 distance and
Kullback–Leibler divergence between two distributions µ and
ν, respectively. Since ∥µ−ν∥1 = ∥ν−µ∥1, applying Pinsker’s
inequality to (µ, ν) and (ν, µ),

2∥µ−ν∥21 = ∥µ−ν∥21+∥ν−µ∥21 ≤ 2dKL(µ, ν)+2dKL(ν, µ)
(32)

which is equivalent to,

∥µ− ν∥1 ≤
√
dKL(µ, ν) + dKL(ν, µ). (33)

Next, if µ and ν are (c1, c2)-regular distributions, their
Kullback–Leibler divergences can be bounded by their
Wasserstein-2 distance as follows (please see equation (10),
Proposition 1 in [30]),

dKL(µ, ν) + dKL(ν, µ)

≤ 2W2(µ, ν)
(c1
2

√
Eu∼µ

[
∥u∥22

]
+
c1
2

√
Ev∼ν

[
∥v∥22

]
+ c2

)
.

(34)
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Combining (33) and (34), we have:

∥µ− ν∥1

≤
[
W2(µ, ν)

]1/2√
c1
(√

Eu∼µ

[
∥u∥22

]
+
√

Ev∼ν

[
∥v∥22

])
+2c2.

(35)

F. PROOF OF THEOREM III.5
Under the assumption that f#µ(s) and f#µ(u) are (c1, c2)-
regular, ∀s = 1, 2, . . . , S, we can derive the following
inequality from Lemma III.4,

∥f#µ(u) − f#µ
(s)∥1

≤
√
c1
(√

Ex∼µ(s)

[
∥f(x)∥22

]
+

√
Ex∼µ(u)

[
∥f(x)∥22

])
+ 2c2

×
[
W2(f#µ

(u), f#µ
(s))

]1/2
. (36)

Let:

C :=max
s

√
c1
(√

Ex∼µ(s)

[
∥f(x)∥22

]
+
√
Ex∼µ(u)

[
∥f(x)∥22

])
+2c2.

(37)
Multiplying (36) by λ(s) and summing over all s, we get:
S∑

s=1

λ(s)∥f#µ(u)−f#µ(s)∥1≤C
S∑

s=1

λ(s)[W2(f#µ
(u),f#µ

(s))
]1/2

.

(38)
By Jensen’s inequality,
S∑

s=1

λ(s)[W2(f#µ
(u),f#µ

(s))
]1/2≤[ S∑

s=1

λ(s)W2
2(f#µ

(u),f#µ
(s))

]1/4
.

(39)
From (38) and (39),
S∑

s=1

λ(s)∥f#µ(u)−f#µ(s)∥1≤C
[ S∑
s=1

λ(s)W2
2(f#µ

(u), f#µ
(s))

]1/4
.

(40)
Finally, combining the upper bound in Lemma III.2 and (40),
the proof follows.

G. PROOF OF COROLLARY III.6
We begin with the second term in the upper bound of Theorem
III.5. Indeed, for any arbitrary pushforward distribution f#µ,
we have:[ S∑

s=1

λ(s)W2
2(f#µ

(u), f#µ
(s))

]1/4
(41)

≤
[ S∑

s=1

λ(s)
(
W2

2(f#µ
(u), f#µ) +W2

2(f#µ, f#µ
(s))

)]1/4
(42)

=
[ S∑
s=1

λ(s)W2
2(f#µ

(u), f#µ)+
S∑

s=1

λ(s)W2
2(f#µ, f#µ

(s))
]1/4

(43)

=
[
W2

2(f#µ
(u), f#µ) +

S∑
s=1

λ(s)W2
2(f#µ, f#µ

(s))
]1/4

(44)

≤
[ S∑
s=1

λ(s)W2
2(f#µ, f#µ

(s))
]1/4

+
[
W2

2(f#µ
(u), f#µ)

]1/4
(45)

with (42) due to the triangle inequality, (44) due to∑S
s=1 λ

(s) = 1, (45) due to the fact that for any a, b ≥ 0
and 0 < p ≤ 1, (a+ b)p ≤ ap + bp.

Combining (4) in Theorem III.5 and (45), the proof of
Corollary III.6 follows.

H. EXAMPLE IMAGES OF FOUR TESTED DATASETS
Example images of each dataset are shown in Fig. 2.

I. ARCHITECTURE AND HYPER-PARAMETERS
• The model structure of the decoder used in all four

datasets can be found in Table 8.
• A list of hyper-parameters used in our proposed method

is shown in Table 9.

TABLE 8. Model structure of the decoder.

Layer

ConvTranspose2d (in=2048, out=512, kernel_size=4, stride= 1, padding=0)
BatchNorm2d + ReLU
ConvTranspose2d (in=512, out=256, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=256, out=128, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=128, out=64, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=64, out=32, kernel_size=4, stride=2, padding=1)
BatchNorm2d + ReLU
ConvTranspose2d (in=32, out=3, kernel_size=4, stride=2, padding=1)
Tanh + Interpolate (size=(224, 224))

TABLE 9. Hyper-parameters of the proposed method.

Parameters DomainBed Setting SWAD Setting

Optimizer Adam [48] Adam [48]
Learning rate 5× 10−5 {10−5, 3× 10−5, 5× 10−5}
Batch size 32 32
ResNet dropout 0 {0.0, 0.1, 0.5}
Weight decay 0 {10−4, 10−6}
Training steps 2000 5000
ϵ 20 20
α 10Uniform(−3.5,−2) {10−3.5, 10−3, 10−2.5, 10−2}
β 10Uniform(−3.5,−1.5) {10−3.5, 10−3, 10−2, 10−1.5}

Following [25], in the SWAD setting, we first fixed all
algorithm-agnostic hyper-parameters (HPs) and only tuned the
algorithm-specific HPs. Specifically, we first fixed the learning
rate as 5× 10−5, Resnet dropout rate and weight decay both
as 0, and grid searched α, β in {10−3.5, 10−3, 10−2.5, 10−2}
and {10−3.5, 10−3, 10−2, 10−1.5} with the batch size as 32.
Then we searched learning rate, Resnet dropout rate, and
weight decay in {10−5, 3× 10−5, 5× 10−5}, {0.0, 0.1, 0.5}
and {10−4, 10−6}, with the selected α, β, as performed in
[25]. We used the same values for SWAD-specific hyper-
parameters as those used in [25], without any further tuning.

J. CODE AVAILABILITY
The code used to generate the results and tables is available
in the GitHub repository: https://github.com/boyanglyu/DG_
via_WB.
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