A principled approach to model validation in domain generalization

Boyang Lyu*, Thuan Nguyen*, Matthias Scheutz*, Prakash Ishwar**, and Shuchin Aeron*

*Tufts University, **Boston University

May 7, 2023

Domain Generalization (DG)

- Given: labeled samples from several "seen" domains
- Goal: learn a classifier that can generalize well to "unseen" domains
- Challenge: distribution-shift

DG Methodology

Key idea:

- learn *domain-invariant* features via a representation function: $f : \mathcal{X} \rightarrow \mathcal{Z}$
- jointly train a classifier $g: \mathcal{Z} \to \mathcal{Y}$ to minimize DG loss¹:

 $\mathsf{L}_{\mathsf{Training}}(f,g) = \beta \, \mathsf{L}_{\mathsf{Classification}}(f,g) + \mathsf{L}_{\mathsf{Domain-discrepancy}}(f) \tag{1}$

¹Ben-David, Shai, et al. "A theory of learning from different domains," in Machine learning 79 (2010): 151-175. $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi = \langle \Xi \rangle + \langle \Xi \rangle + \langle \Xi = \langle \Xi$

DG Methodology

Classification risk:

$$\mathsf{L}_{\mathsf{Classification}}(f,g) = \mathbb{E}_{(\mathbf{x},y) \sim p^{(s)}(\mathbf{x},y)} \big[\ell(g(f(\mathbf{x})), y) \big] \tag{2}$$

- p^(s)(x, y): seen-domain joint distribution in *input space*
- $\ell(\cdot, \cdot)$: classification loss function

Oomain discrepancy:

$$\mathsf{L}_{\mathsf{Domain-discrepancy}}(f) = d\left(p^{(u)}(f(\mathbf{x}), y) || p^{(s)}(f(\mathbf{x}), y)\right) \tag{3}$$

- ▶ $p^{(u)}(f(\mathbf{x}), y)$, $p^{(s)}(f(\mathbf{x}), y)$: joint distributions in representation-space
- ▶ d(·||·): discrepancy measure

Fundamental Trade-off between Classification Risk and Domain Discrepancy

Theorem

Let

$$T(\Delta) := \min_{f: \mathcal{X} \to \mathcal{Z}} \mathsf{L}_{\mathsf{Domain-discrepancy}}(f)$$

s.t. $L_{Classification}(f,g) \leq \Delta$

If d(a||b) is a convex function of (a, b), then for any classifier g, $T(\Delta)$ is

non-increasing and

2 convex

(4)

Training, Validation, and Testing in DG

• Training: minimize training loss over the training set:

$$\mathsf{L}_{\mathsf{Training}}(f,g) = \beta \, \mathsf{L}_{\mathsf{Classification}}(f,g) + \mathsf{L}_{\mathsf{Domain-discrepancy}}(f), \tag{5}$$

- $\blacktriangleright~\beta$ controls the trade-off between classification risk and domain discrepancy
- Validation: select hyper-parameters (models) that *only* minimize classification risk on validation set (domain discrepancy ignored)

$$L_{Validation}(f,g) = L_{Classification}(f,g)$$
(6)

6/9

A New Model Validation Method in DG

New validation loss:

$$\mathsf{L}_{\mathsf{Validation}} = \beta(1-\alpha)\mathsf{L}_{\mathsf{Classification}} + \alpha \underbrace{\mathsf{L}_{\mathsf{Domain-discrepancy}}}_{\mathsf{New criterion}}$$

- α: convex combination hyper-parameter
- β : scale hyper-parameter for combining objectives with different scales
- Practical implementation:
 - Cross-entropy to approximate L_{Classification}
 - Maximum Mean Discrepancy loss² to approximate L_{Domain-discrepancy}
 - β = 1, and α = 0.2

(7)

Experimental Results

- Datasets: PACS, VLCS, and C-MNIST³
- Algorithms: 12 SOTA DG algorithms in DomainBed package⁴
- Operation of the second sec

Datasets	Algorithms												Wins
	Fish	IRM	GDRO	Mixup	CORAL	MMD	DANN	CDANN	MTL	VREx	RSC	SagNet	
PACS (Traditional) PACS (Ours)	84.6	84.9	84.2	83.3	85.1	83.6	84.6	86.4	83.0	84.5	85.2	83.7	
	82.0	85.3	84.3	85.3	84.9	85.0	84.9	82.0	84.2	84.2	81.3	85.1	7/12
VLCS (Traditional) VLCS (Ours)	79.4	76.0	78.1	77.4	76.8	78.5	77.8	79.2	77.3	76.4	78.6	80.5	
	77.5	79.2	79.6	77.6	78.8	78.0	78.5	80.3	78.2	78.6	76.1	79.3	8/12
CMNIST (Traditional) CMNIST (Ours)	10.0	10.0	10.2	10.4	9.7	10.4	10.0	9.9	10.5	10.2	10.2	10.4	
	9.7	10.9	12.6	10.3	11.2	9.9	11.1	10.2	11.5	15.6	13.8	10.5	9/12

³https://github.com/facebookresearch/DomainBed

Thank you for your attention!

