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ABSTRACT
Domain generalization aims to learn a model with good gen-
eralization ability, that is, the learned model should not only
perform well on several seen domains but also on unseen
domains with different data distributions. State-of-the-art do-
main generalization methods typically train a representation
function followed by a classifier jointly to minimize both the
classification risk and the domain discrepancy. However, when
it comes to model selection, most of these methods rely on
traditional validation routines that select models solely based
on the lowest classification risk on the validation set. In this
paper, we theoretically demonstrate a trade-off between mini-
mizing classification risk and mitigating domain discrepancy,
i.e., it is impossible to achieve the minimum of these two objec-
tives simultaneously. Motivated by this theoretical result, we
propose a novel model selection method suggesting that the
validation process should account for both the classification
risk and the domain discrepancy. We validate the effective-
ness of the proposed method by numerical results on several
domain generalization datasets.

Index Terms— Domain generalization, model selection.

1. INTRODUCTION AND RELATED WORK

The success of traditional machine learning methods relies on
an important assumption that the training and the test data are
independent and identically distributed (i.i.d). However, in
many real-world scenarios, the distributions of data in the train-
ing set and test set are not identical due to the “distribution-
shift” phenomenon. Mitigating the problem caused by the
distribution shift is the primary goal of the Domain Generaliza-
tion (DG) problem, where a model is trained using data from
several seen domains but later will be applied to unseen (un-
known but related) domains with different data distributions.

To address DG problem, a large number of methods con-
sider training a representation function that can learn domain-
invariant features1 by minimizing the domain discrepancy in
the representation space [1–6]. Though the domain discrep-
ancy has been accounted for at the training step, few works

*These authors contributed equally to this work.
1Domain-invariant features are the features having distributions that are

unchanged and stable across domains.

considered it for model selection at the validation step [7].
Indeed, following traditional machine learning settings, most
of the state-of-the-art DG methods form a validation set using
a small portion of data from all seen domains and select the
model that achieves the lowest classification risk or highest
classification accuracy on it. However, unlike the traditional
machine learning settings where a model with lower classifica-
tion risk on the validation set is likely to perform better on the
test set, we theoretically show that for DG problem, where the
i.i.d assumption does not hold, selecting the model with mini-
mum classification risk may enlarge the domain discrepancy,
subsequently leading to a non-optimal model on the unseen
domain. We thus argue that one needs to consider both the
classification risk and the domain discrepancy for selecting
good models on unseen domains.

We summarize our contributions as follows:

1. We theoretically show that there is a trade-off between
minimizing classification risk and domain discrepancy.
This trade-off leads to the conclusion that only targeting
a model with the lowest classification risk on the valida-
tion set may encourage distribution mismatch between
domains (enlarging domain discrepancy), and reduce
the model’s generalization ability.

2. Based on our theoretical result and considering the lim-
ited attention given to DG-specific validation processes,
we propose a simple yet effective validation/model se-
lection method that integrates both the classification risk
and domain discrepancy as the validation criterion. We
further demonstrate the effectiveness of this approach
on various DG benchmark datasets.

The trade-off between minimizing the classification risk and
domain discrepancy has been mentioned in the literature [8,9]2.
Shai et al. [8] constructed an upper bound on the risk of the
target domain, composed of the risk from the source domain
and the discrepancy between the target and source domains.
The authors suggested that there must be a trade-off between
minimizing the domain discrepancy and minimizing the seen
domain’s risk but did not propose any further details on how

2The works in [8, 9] are for domain adaptation, not domain generaliza-
tion. However, one may derive a similar conclusion by replacing the “source
domain” with seen domain and the “target domain” with unseen domain.IC
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this trade-off is determined and characterized. Zhao et al.
[9] showed that the sum of the risks from source and target
domains is lower bounded by the distribution discrepancy
between domains. If the discrepancy between domains is
large, one can not simultaneously achieve small risks on both
domains. Though sharing some similarities, our theoretical
result differs from [9] since Zhao et al. considered the trade-off
between minimizing the risks of different domains rather than
the trade-off between optimizing the classification risk and
the domain discrepancy. On the other hand, most DG works
adopt the model selection methods following the traditional
machine learning settings, i.e., a validation set is first formed
by combining small portions of data from all seen domains and
the model that produces the lowest classification risk or highest
classification accuracy on the validation set is then selected.
To the best of our knowledge, there are only a few works
that explore new model selection methods under DG settings
[10–14]. The most related work of this study is [13], where the
authors mentioned that they use the training loss (including
both classification risk and adversarial domain discrepancy
loss) on the validation set for model selection. However, it
is not clear from their paper and their released code how the
classification risk and the adversarial domain discrepancy loss
are used to validate the model and how these two terms are
balanced. In contrast, we propose an alternative approach for
combining the classification risk and the domain discrepancy
loss in a meaningful way in light of our theoretical results.

2. PROBLEM FORMULATION

2.1. Notations

Let X , Z , Y denote the input space, the representation space,
and the label space, D(s) and D(u) represent the seen and un-
seen domain, respectively. f : X → Z and g : Z → Y are
the representation function and the classifier. We use capital
letters for the random variables in different spaces and lower-
case letters for samples. Specifically, we denote X as the input
random variable, Z as the extracted feature random variable,
and Y as the label random variable. The input samples, fea-
ture samples, and labels of input samples are denoted as x, z,
and y(x), respectively. Finally, we use p(s)(·) and p(u)(·) to
denote the distributions or joint distributions corresponding to
the variables inside the bracket on seen domain and unseen
domain, respectively.

2.2. Problem formulation
For a representation function f and a classifier g, the classifi-
cation risk induced by f and g on seen domain is:

C(s)(f, g) =

∫
x∈X

p(s)(x)ℓ(g(f(x)), y(s)(x))dx

=

∫
x∈X

∫
z∈Z

p(s)(x,z)ℓ(g(z), y(s)(x))dxdz (1)

where ℓ(·, ·) is a distance measure that quantifies the mismatch
between the label outputted by classifier g and the true label.

For a representation function f , the distribution discrep-
ancy between seen and unseen domains induced by f is:

D(f) = d(p(u)(Y,Z)||p(s)(Y,Z)) (2)

where d(·||·) is a divergence measure between two distribu-
tions. Indeed, to deal with the “distribution-shift” , one usually
looks for a mapping f such that the discrepancy between dis-
tributions of seen and unseen domains D(f) is small [15, 16].

A large number of DG works focus on training a model
that minimizes both the classification risk C(s)(f, g) and the
discrepancy D(f) using data from seen domains [1–6]. Note
that while C(s)(f, g) can be directly minimized, one usually
need to approximately/heuristically optimize D(f) by optimiz-
ing the distribution discrepancy between several seen domains.
Since there are already well-established theoretical and empir-
ical works on minimizing the classification risk and domain
discrepancy, our work aims to highlight the trade-off between
these two objectives (Sec 3) and argues that taking both objec-
tives into account during model selection can improve model’s
performance on unseen domains (Sec. 4).

3. TRADE-OFF BETWEEN CLASSIFICATION RISK
AND DOMAIN DISCREPANCY

We first begin with a definition.

Definition 1 (Classification risk-domain discrepancy function).
For any representation function f and classifier g, define:

T (∆) = min
f :X→Z

D(f) = min
f :X→Z

d(p(u)(Y,Z)||p(s)(Y,Z))

s.t. C(s)(f, g)=

∫
x∈X

p(s)(x)ℓ(g(f(x)), y(s)(x))dx ≤ ∆
(3)

where ∆ is a positive number, ℓ(·, ·) is a distance measure,
and d(·||·) is a divergence measure.

T (∆) is the minimal discrepancy between the joint distri-
bution of the unseen domain and seen domain if the classifica-
tion risk on seen domain C(s)(f, g) does not exceed a positive
threshold ∆. Next, we formally show that there is a trade-off
between minimizing the distribution discrepancy D(f) and
minimizing the classification risk C(s)(f, g).

Theorem 1 (Main result). If the divergence measure d(a||b) is
convex (in both a and b), for a fixed classifier g, T (∆) defined
in (3) is monotonically non-increasing, and convex.

Proof. The proof of this theorem is mainly based on the
proposed approach in Rate-Distortion theory [17]. Particu-
larly, consider two positive numbers ∆1 and ∆2, and assume
∆1 ≤ ∆2. For a given classifier g, we use F∆1

and F∆2
to

denote the sets of mappings f such that C(s)(f, g) ≤ ∆1 and
C(s)(f, g) ≤ ∆2, respectively. First, we show that T (∆) is
non-increasing. Indeed, from ∆1 ≤ ∆2, F∆1 ⊂ F∆2 :

T (∆1) = min
f∈F∆1

d(p(u)(Y, Z)||p(s)(Y, Z))

≥ min
f∈F∆2

d(p(u)(Y, Z)||p(s)(Y,Z)) = T (∆2).
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Second, to prove the convexity of T (∆), we show that:

λT (∆1)+(1−λ)T (∆2)≥T (λ∆1+(1−λ)∆2),∀λ∈ [0, 1]. (4)

To prove (4), we need some additional notations. Define:

f1 = argmin
f :X→Z

D(f) s.t. C(s)(f, g) ≤ ∆1, (5)

f2 = argmin
f :X→Z

D(f) s.t. C(s)(f, g) ≤ ∆2. (6)

Note that for any f , Y → X → Z forms a Markov chain,
thus:

p(u)(Y,Z) = p(u)(Y |X) p(u)(X,Z), (7)

p(s)(Y,Z) = p(s)(Y |X) p(s)(X,Z), (8)

where p(u)(Y |X) and p(s)(Y |X) are independent of f and
only depend on the conditional distributions of label and data
on seen and unseen domains.

Let p(u)1 (Y,Z), p(s)1 (Y,Z) be the joint distributions of Y
and Z on unseen and seen domain produced by f1, and sim-
ilarly p

(u)
2 (X,Z), p(s)2 (X,Z) be the joint distributions pro-

duced by f2. Define:

p
(u)
λ (X,Z) = λp

(u)
1 (X,Z) + (1− λ)p

(u)
2 (X,Z), (9)

p
(s)
λ (X,Z) = λp

(s)
1 (X,Z) + (1− λ)p

(s)
2 (X,Z). (10)

By definition, the left hand side of (4) can be rewritten by:

λT (∆1) + (1− λ)T (∆2)

= λd(p
(u)
1 (Y,Z) || p(s)1 (Y,Z))

+ (1− λ)d(p
(u)
2 (Y,Z) || p(s)2 (Y,Z))

= λd(p(u)(Y |X)p
(u)
1 (X,Z)||p(s)(Y |X)p

(s)
1 (X,Z)) (11)

+ (1−λ)d(p(u)(Y |X)p
(u)
2 (X,Z)||p(s)(Y |X)p

(s)
2 (X,Z))(12)

≥ d(p(u)(Y |X)p
(u)
λ (X,Z)||p(s)(Y |X)p

(s)
λ (X,Z)) (13)

where (11) and (12) are due to (7) and (8); (13) is due to (9),
(10), and the convexity of d(·||·).

Let fλ be the corresponding function that induces the joint
distribution p

(u)
λ (X,Z) and p

(s)
λ (X,Z). Define:

∆λ =

∫
x∈X

∫
z∈Z

p
(s)
λ (x, z)ℓ(g(z), y(s)(x)) dxdz. (14)

By definition of T (∆) in Definition 1, we have:

d(p(u)(Y |X) p
(u)
λ (X,Z)||p(s)(Y |X) p

(s)
λ (X,Z))≥T (∆λ). (15)

Combine (13) and (15):

λT (∆1) + (1− λ)T (∆2) ≥ T (∆λ). (16)

That said, the left-hand side of (4) is greater or equal to T (∆λ).
Next, we show that:

T (∆λ) ≥ T (λ∆1 + (1− λ)∆2). (17)

Since T (∆) is non-increasing, (17) is equivalent to:

∆λ ≤ λ∆1 + (1− λ)∆2. (18)

Indeed, we have:

∆λ =

∫
x

∫
z

p
(s)
λ (x,z)ℓ(g(z), y(s)(x))dxdz (19)

= λ

∫
x

∫
z

p
(u)
1 (x,z)ℓ(g(z), y(s)(x))dxdz (20)

+ (1− λ)

∫
x

∫
z

p
(u)
2 (x,z)ℓ(g(z), y(s)(x))dxdz (21)

≤ λ∆1 + (1− λ)∆2 (22)

with (19) due to (14), (20) and (21) due to (9), (22) due to (5)
and (6), respectively. From (18) and (22), (17) follows. Finally,
from (16) and (17), (4) follows. The proof is complete.

It is worth noting that the convexity of d(·||·) is not a
restricted condition, indeed, most of the divergence functions,
for example, the Kullback-Leibler (KL) divergence is convex.

Theorem 1 shows that only enforcing a small distribution
discrepancy between domains will increase the classification
risk and vice-versa.

4. A NEW VALIDATION METHOD
Based on Theorem 1, we argue that to select a good model
for unseen domains, one must account for both the classifica-
tion risk and the domain discrepancy not only in the training
process but also in the validation process. Note that state-of-
the-art model evaluation methods for DG are mainly based
on the classification risk or, equivalently, the classification
accuracy [7] [18] on the validation set to select the models.
Given this fact, we propose to select a model that minimizes
the following objective function on the validation set:

LValidation loss = β(1−α)LClassification risk +αLDomain-discrepancy loss (23)

where α is the convex combination hyper-parameter and β is
the scale hyper-parameter that supports the combination of
objectives with different scales.

It is pretty clear that the cross-entropy loss is a good repre-
sentation of classification risk. However, it is hard to choose
the measure for quantifying the domain-discrepancy loss. In-
deed, there exist various definitions of domain discrepancy.
Several works characterize the domain-discrepancy via the
difference in the marginal distributions [5,6], other works mea-
sure it by the mismatch in conditional distributions [1]. We
believe that finding a good measure for domain discrepancy
is still an open problem. Therefore, in this short paper, we de-
cide to use the widely accepted Maximum Mean Discrepancy
(MMD) loss [6] in the feature space to quantify the domain
discrepancy. We also acknowledge that though MMD measure
is extensively used, it may not be the optimal choice.

In practice, we found that MMD loss is at the same scale
as the cross-entropy loss when the training process is stable,
we thus choose β as 1. For α, we consider the classification
performance as the more important goal and thus heuristically
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Table 1. Classification accuracy of 12 tested algorithms on PACS, VLCS, and C-MNIST datasets using the Training-domain
validation method (Traditional) proposed in [18] vs. using our new validation method.

Algorithm Fish [19] IRM [1] GDRO [12] Mixup [20] CORAL [5] MMD [6] DANN [21] CDANN [22] MTL [23] VREx [24] RSC [25] SagNet [26] Wins

PACS
(Traditional) 84.6 84.9 84.2 83.3 85.1 83.6 84.6 86.4 83.0 84.5 85.2 83.7

PACS
(Ours) 82.0 85.3 84.3 85.3 84.9 85.0 84.9 82.0 84.2 84.2 81.3 85.1 7/12

VLCS
(Traditional) 79.4 76.0 78.1 77.4 76.8 78.5 77.8 79.2 77.3 76.4 78.6 80.5

VLCS
(Ours) 77.5 79.2 79.6 77.6 78.8 78.0 78.5 80.3 78.2 78.6 76.1 79.3 8/12

CMNIST
(Traditional) 10.0 10.0 10.2 10.4 9.7 10.4 10.0 9.9 10.5 10.2 10.2 10.4

CMNIST
(Ours) 9.7 10.9 12.6 10.3 11.2 9.9 11.1 10.2 11.5 15.6 13.8 10.5 9/12

choose α as 0.2. From our experiments, we found that the
performance of our validation method is robust to small values
of α within the range of [0.1, 0.3]. One more insight from
Theorem 1 is that it is advisable to avoid extreme points in ∆
(classification error) to maintain a balance between the model’s
generalization and prediction capabilities. This means the
classification error should not be too small or too large. Thus,
for each hyper-parameter configuration, we sort the validation
cross-entropy loss in ascending order and only pick the models
that produce 5% to 50% percentile of the validation cross-
entropy loss as a subset of candidates for model selection. Our
implementation is released at this link3.

5. NUMERICAL RESULTS

We compare the proposed model selection method with the
Training-domain validation method described in [18] on three
datasets: PACS, VLCS, and Colored-MNIST (C-MNIST) us-
ing DomainBed package and 12 different DG algorithms pro-
vided there [18]. Recall that the Training-domain validation
method chooses the model that produces the highest validation
accuracy, while our method selects the model that minimizes
the objective function in (23). For PACS and VLCS datasets,
we report the average test accuracy over 4 different tasks with
each time leaving one domain out as the unseen domain. For
the C-MNIST dataset, we only focus on the most difficult
domain, where the correlation between the label and the color
of the unseen domain is completely different from the seen
domains and no algorithm can achieve more than 10.5% points
accuracy [18].

The validation set is formed using 20% data from each
seen domain, denoted as the training-domain validation set
in [18]. We follow exactly the same settings and training
routine used in DomainBed and conduct 20 trials of random
search over a joint distribution of hyper-parameters for each
task per algorithm. For the MMD loss implementation, we
directly use the code provided in DomainBed package. We
train each model for 5000 steps. The validation cross-entropy
loss, MMD loss, and validation accuracy are recorded every

3https://github.com/thuan2412/A-principled-approach-for-model-
validation-for-domain-generalization

100 steps for VLCS dataset and every 300 steps for PACS and
C-MNIST datasets.

With α = 0.2, β = 1, the performance of each algo-
rithm under different validation methods on PACS ,VLCS and
Colored-MNIST datasets is shown in Table 1. We refer to the
Training-domain validation method as “Traditional” and the
proposed method as “Ours”. For the PACS dataset, the pro-
posed validation method can select slightly better models for
seven out of twelve DG algorithms. For the remaining five DG
algorithms, our method achieves comparable performance with
the “Traditional” method on CORAL [5] and VREx [24]. How-
ever, for Fish [19], CDANN [22] and RSC [25], we observe a
performance deterioration. The effectiveness of the proposed
method can be more easily observed on VLCS dataset, where
eight out of twelve DG algorithms get an improved model
selected, with the improvement varies from 0.2% to 3.2%. For
the C-MNIST dataset, the proposed validation method consis-
tently selects models with better performance compared with
the “Traditional” validation method. Accuracy improves for
nine out of twelve tested algorithms with the most significant
improvement for VREx [24] method by 5.4%.

6. CONCLUSION

By showing the trade-off between minimizing the classifica-
tion risk and domain discrepancy, we demonstrate that the
traditional model selection methods may not be suitable for
DG problem and propose a new model selection method that
considers both objectives. While our approach outperforms
traditional methods on several DG algorithms and datasets, it
lacks an automatic hyper-parameter tuning strategy. Note that
the domain discrepancies may vary across different datasets,
one may not expect the same optimal values of α and β for
all datasets. Determining the “optimal” ones could be a hard
problem both practically and theoretically. We thus leave it
as an open problem for future work. Despite this limitation,
we believe our approach provides insight and initial results
for exploring new model selection methods specific for DG
problem.
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sibility theorems for domain adaptation,” in Proceedings of the
Thirteenth International Conference on Artificial Intelligence
and Statistics. JMLR Workshop and Conference Proceedings,
2010, pp. 129–136.

[17] Thomas M Cover, Elements of information theory, John Wiley
& Sons, 1999.

[18] Ishaan Gulrajani and David Lopez-Paz, “In search of lost do-
main generalization,” in International Conference on Learning
Representations, 2020.

[19] Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun,
Nicolas Usunier, and Gabriel Synnaeve, “Gradient matching
for domain generalization,” in International Conference on
Learning Representations, 2022.

[20] Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang,
Qi Tian, and Wenjun Zhang, “Adversarial domain adaptation
with domain mixup,” in Proceedings of the AAAI Conference
on Artificial Intelligence, 2020, vol. 34, pp. 6502–6509.

[21] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Ger-
main, Hugo Larochelle, François Laviolette, Mario Marchand,
and Victor Lempitsky, “Domain-adversarial training of neural
networks,” The journal of machine learning research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[22] Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang
Liu, Kun Zhang, and Dacheng Tao, “Deep domain generaliza-
tion via conditional invariant adversarial networks,” in Proceed-
ings of the European Conference on Computer Vision (ECCV),
2018, pp. 624–639.

[23] Gilles Blanchard, Aniket Anand Deshmukh, Ürun Dogan,
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