
Real-time Evolving Swarms for Rapid Pattern Detection and Tracking

Christopher Middendorff and Matthias Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame, Notre Dame, IN 46556

cmidden1@cse.nd.edu

Abstract

In this paper, we discuss a simple extension to the standard
particle swarm optimization algorithm, inspired by genetic
algorithms that allow swarms to cope better with dynamically
changing fitness evaluations for a given parameter space. We
demonstrate the utility of the extension in an application
system for dynamical facial feature detection and tracking,
which uses the proposed “real-time evolving swarms” for a
continuous dynamic search of the best locations in a two-
dimensional parameter space to improve upon feature detec-
tion with static parameters. We show in several experimen-
tal evaluations that the proposed method is robust to lighting
changes and does not require any calibration. Moreover, the
method works in real time, is computationally tractable, and
not limited to the employed static feature detector, but can be
applied to any n-dimensional search space.

Introduction
Particle swarm optimization (PSO) has been successfully
employed in a variety of applications to quickly find optimal
or close-to-optimal parameters in partly high-dimensional
parameters spaces (e.g., (Kennedy and Eberhart, 1995;
Kennedy et al., 2001)). The idea behind PSO is to use n
particles or agents (that together form the swarm) to explore
different regions of the parameter space in parallel. Agents,
as in a biological swarm, attract each other to varying de-
grees dependent on the value of their location in the param-
eter space, thus causing agents in general to move towards
better places in parameter space. If the value surface of the
parameter space is smooth and there are pronounced peaks,
agents will eventually gather around them. While this is de-
sirable for static value evaluations, it can be problematic in
the dynamic case where fitness surfaces change and peaks
can turn into valleys, in which case swarm agents need to
start their gradient ascent again.

In this paper, we propose a simple mechanism inspired
by genetic algorithms that will allow swarm agents to dy-
namically evolve, thus helping them to find and track fitness
maxima in parameter spaces very quickly based on dynami-
cally changing fitness evaluations. We will demonstrate the
proposed method by applying evolving swarms to the real-
time vision problem of finding and tracking facial features.

Real-time Evolving Swarms
We start with a brief review of swarm agents (or particles)
in PSO systems. An agent or particle is characterized by a
location x in an n-dimensional parameter space P . The pa-
rameter space has an associated (static) evaluation function
E : PD 7→ R (from the parameter space into the real num-
bers) that determines the quality or fitness of a given location
(i.e., set of parameter values) for each location in PD based
on an evaluation domain D. Each agent (located in the pa-
rameter search space) has a velocity in each dimension that
varies with time, depending on its own current and past po-
sition and the current and past positions of other agents.

The velocity vi, j(t) of agent i in dimension j at time t is
given by

vi, j(t) = ω · vi, j(t−1)+ (1)
c1 ·φ1 · (pi, j− xi, j(t−1))+
c2 ·φ2 · (pg, j− xi, j(t−1))

This equation has three components: an inertia compo-
nent ω ·vi, j(t−1), which pulls the agent in its current direc-
tion; a cognitive component pi, j − xi, j(t − 1), which repre-
sents the agent’s memory of its highest-scoring location pi, j
in that dimension (based on E) and its comparison to the
current location; and a social component pg, j − xi, j(t − 1),
which is the distance from the global best location pg, j dis-
covered among all agents (Voss, 2003).

The position of each agent in each dimension is then up-
dated by the equation

xi, j(t) = xi, j(t−1)+ vi, j(t)

Typically, swarm agents in a PSO system are initially
placed in random locations in P and then updated for a cer-
tain number of iterations, either until a stable position of all
agents has been obtained (e.g., all agents end up in the same
location or close-by with little to no movement) or a solution
has been found by at least one agent that is “good enough”.

(Omran et al., 2005) assert that most prior work would
give task-specific values to the coefficients c1, c2 and ω.

However, van den Bergh (van den Bergh, 2002; van den
Bergh and Engelbrecht, 2002) showed that these must solve
the inequality

c1 + c2

2
< ω (2)

to exhibit convergent behavior. Convergent behavior is de-
sirable so swarms are attracted to the best determined value
so that region can be more thoroughly examined for a max-
imum. However, in a non-smooth search space, this is not
true; in a space composed of randomly-placed impulses (sin-
gle points where the fitness function is high), a swarm re-
quires more luck than ability in finding these areas.

We now extend the notion of static evaluation to dynamic
evaluation, i.e., to a sequence EI = 〈Ei1 ,Ei2 , . . .〉 of func-
tions Eik : P 7→ R , I := {i1, i2, ...}. Dynamic evaluations
reflect situations where the quality of locations in parameter
spaces can change over time (e.g., the success of a particular
set of parameters that determines the foraging strategy of a
simulated animal might change based on the food distribu-
tion in the environment). We call such a sequence of func-
tions real-time, or real-time evaluation if a metric M is de-
fined for the index set I, i.e., M is defined on {ik|∃Eik ∈EI}.
In other words, real-time sequences can be used to model the
temporal characteristics of changes of parameter evaluations
in an environment (e.g., the shift of shaded locations under
a tree on a sunny day).

Depending on the degree of change in the evaluation be-
tween Eik and Eik+1 , swarm agents will be able to cope to
varying degrees: minor smooth changes in the fitness sur-
face will lead to quick adaptations, but large transitions (e.g.,
from a value peak to a value valley) could render the swarm
system largely immobile or lead to very slow adaptations.
This can be especially problematic in real-time evaluations,
where the number of iterations that swarms can use for adap-
tation is constrained by a real-time interval. Consequently,
it might be useful to add mechanisms to swarms that would
allow them to react to changes more quickly.

A very simple, yet highly effective mechanism is to treat
a swarm system of n agents as performing m-beam search
(with m < n). In this case, as in genetic algorithms, n agents
are initialized in randomly generated states in the search
space. The agents are ranked according to their performance
based on the fitness evaluation Eik . The best m agents are
kept, while the other agents are eliminated and are replaced
by offspring based on a selection strategy (e.g., mutation of
the locations of existing chosen agents, cross-over of their
dimensions, or simply a random location drawn from a ran-
dom distribution of the overall parameter space to reach rel-
atively uniform coverage). This combines the maximum-
seeking tendency of swarm-based search with the strengths
of culling (i.e., faster convergence) and random searching
(as implemented in GAs with mutations and cross-over, e.g.
(Grefenstette, 1999)) to quickly find and converge on peaks

in a multidimensional space.
It is the dual nature of the swarms in the system that al-

lows for rapid feature detection. The highest-performing
swarms, due to their preservation between iterations and be-
tween frames, seek optimal solutions in their current loca-
tion (which corresponds to the best values for the frame).
However, between frames it is possible that their current lo-
cation may no longer be the best location. In these cases, it
is the randomly-placed swarms that can quickly find the best
locations, due to the fact that they are already distributed
throughout the space; they do not need to seek because they
are already in place.

Previous Work
Static approaches to facial feature detection are unsuitable
due to the number of constraints that must be placed on a
subject and his environment, the amount of pre-processing
required, or both. Color blob detection, for example, has
been used to isolate the mouth (Hsu et al., 2002) in an image.
The algorithm works on the assumption that the mouth has
stronger red component (Cr) and weaker blue component
(Cb) than the face. So by determining the average Cr and
Cb of the face, the mouth region can be isolated by boost-
ing the Cr component and taking the difference-squared be-
tween that and the Cr/Cb of each pixel in the face. This
method is dependent on quality of lighting conditions, and
the pre-processing step of skin isolation of the face. These
pre-processing steps also take several seconds per frame,
which is completely useless in real-time applications.

Swarm-based methods have also been used to analyze im-
ages. For example, the edge detection system in (Zhuang,
2004b; Zhuang, 2004a; Ramos and Almeida, 2000) or
the color segmentation system in (White et al., 2004) fea-
tured a swarm system which allocate one agent per pixel
in its method of edge detection. This method, however, is
image-specific as the agents move over the pixels. Unlike
parameter-based methods, where a search range can be ap-
plied to a series of images, the edges would have to be cal-
culated over every frame.

(Ramos et al., 2005) presented a method using ant
colonies to explore dynamic spaces, similar to the dynamic
field of the parameter space (described in the following sec-
tion) explored by the swarm agents. All of the memory of an
ant’s position is left on each discrete space as pheromones,
with no knowledge of the actual positions of the other ants.
This certainly provides a very thorough search; however,
this requires thousands of ants to explore the search space
so that pheromones can accumulate and be tracked before
evaporating. (Grefenstette, 1999) offers a genetic algorithm
approach to tracking maxima across dynamic fitness land-
scapes; the fixed hypermutation model is similar to the ran-
dom replacement of the swarm agents in our system, and this
model was shown to perform best over an abruptly-changing
landscape.

We will now demonstrate the utility of evolving swarms
for real-time evaluations in a practical domain that has been
traditionally challenging: real-time facial feature detection
and tracking under changing lighting conditions. In this
task, it is critical to find evaluation peaks quickly (in pa-
rameter space), for lighting conditions can change from one
image frame to the next, and will, thus, likely require ongo-
ing adaptation. Here, evolving swarms can play out their
strengths. Once an evaluation peak is found on a given
frame, m agents will reside in its vicinity (moving only
slowly), while n−m new agents will be placed in other lo-
cations in parameter space (in our case randomly), thus al-
lowing a faster reaction of the swarm to changes in lighting
conditions (for large enough n−m based on the size of the
parameter space), as it is likely that at least some of the n−m
new agents will be in a location with better fitness than the
n agents that lost the feature.

Swarm-based Adaptive Feature Detection and
Tracking

To make the domain-dependence of the evaluation functions
more explicit, we consider the parameters of the visual fea-
ture detection system as variables to a function

f eatures = F(img,k1, ...,km,x1, ...,xn)

where img is the image to be processed, k1, ...,km are non-
variant parameters of the system, x1, ...,xn are parameters
to this system, F is the extraction function, and f eatures is
the set of extracted features. Further, score = g(f eature)
can apply evaluation function g() to a feature that has been
extracted, to provide feedback to the swarm system.

Determining values x1, ...,xn such that score is maximized
for g requires searching an n-dimensional parameter space.
While this can be done manually1, this is not only tedious
but also subject to changes in img.

Using swarms for feature detection grants the adaptability
necessary to perform in a real-world environment. Variable
parameters of a feature detection space can be represented as
dimensions in this parameter space, and the position of each
swarm agent represents values for each of these parameters;
edge detection thresholds can be represented in 1-2 dimen-
sions and color blob detection can be represented in 6 (a
lower and upper bound for each of three color dimensions).
As the algorithm progresses, a fitness function is applied to
the resulting detected features. These are compared to de-
termine the highest-performing swarm, which represents the
best candidate for parameters.

An edge-detection algorithm was chosen over a color-
based method to meet the speed constraints of a real-time

1Certainly, a parameter space may be so large that a “perfect
solution” is impossible to pinpoint; however, it is possible to find
a solution by trial-and-error that is sufficient for a specific feature-
detection task.

system. Edge-detection can be performed on an intensity
image (a black-and-white image obtained by color trans-
formation) using two dimensions, where the dimensions in
space represent the upper and lower thresholds of the Canny
edge detector (Canny, 1986). Straightforward color detec-
tion systems (e.g. (Hsu et al., 2002)) which detect color
regions, would require a six-dimensional search space. In-
tuitively, this will require more agents, more time, or both to
determine the optimal value.

Rather, these will be used to explore a two-dimensional
space representing the upper and lower thresholds of a
Canny edge detector. As seen in (Voss, 2003) and (Om-
ran et al., 2005), swarm agents can be used to quickly ex-
plore multi-dimensional spaces. Each agent is instantiated
at a random point in this 2D space with a random velocity in
each dimension, within the range of [0,1], and fixed attrac-
tion to global and local best values.

A search of parameter space is preferable to directly
searching a specific image; moving between adjacent co-
ordinates in parameter space should provide smooth transi-
tions in the image processing (color blobs and edges should
not suddenly vanish between adjacent points). This concept
is critical for our real-time system, as it requires the re-use
of the determined parameters.

The face is detected using the OpenCV library2, and the
eye region to be searched is defined as 1

3 of this face, start-
ing from the top 1

6 down to the middle. Further, this could
be halved by a vertical line through the center to allow the
swarms to independently process the separate eyes. These
rectangles are the regions searched for features.

FUNCTION LocateBestFeature(agents, f ace,eyebox,nIters)
for K from 1 to nIters do

for J from 1 to length(agents) do
f eature← DetermineBoundAndScore(agents[J], f ace)
if f eature.score≥ agents[J].previousBestScore then

agents[J].previousBestScore = f eature.score
agents[J].bestLocalPosition = agents[J].curPosition

end if
agents[J].modi f yCumulative(f eature.score)

end for
sort(agents) by cumulative scores
for J from 1 to length(agents) do

agents[J].updateSwarmAgent(agents[0])
agents[J].previousWin← f alse

end for
agents[0].previousWin← true
replace lowest performing replaceNum agents

end for
reward agents[0]
return DetermineBoundAndScore(agents[0], f ace)

Figure 1: The algorithm for locating the best features.

LocateBestFeature, shown in Figure 1, is the
function responsible for determining the best agent to
use for this frame, and subsequently using it to find
the feature. Primarily, it submits agents to the function
DetermineBoundAndScore, which determines the best

2http://www.intel.com/research/mrl/research/opencv/

FUNCTION DetermineBoundAndScore(agent, image, boxratio)
params← agent.currentPosition
edgemap← canny(image, params[0], params[1])
contourlist← findContours(edgemap)
for K from 1 to length(contourlist) do

box← boundingboxo f contour
if box.width > boxratio∗box.height then

potentialboxes.push(box)
end if

end for
prevscore←−∞

boxToReturn← 0
for K from 1 to size(potentialboxes) do

score← DetermineScore(potentialboxes[K])
if score≥ prevscore then

boxToReturn← potentialboxes[K]
prevscore← score

end if
end for
return boxToReturn

Figure 2: The algorithm for determining boundary and
score.

possible feature bound for that agent (as well as that bound’s
score) and returns it. The LocateBestFeature func-
tion determines for each agent whether this new location is
its personal best, and then accumulates the score. Scores
accumulate within an agent but decay with time, giving
each agent a memory which extends several frames into
the past. After each iteration, the agent positions are up-
dated and the process repeated. The lowest-performing
replaceNum agents are replaced after every iteration. The
value previousWin is used as a tiebreaker when sorting the
swarm agents.

After all iterations, the highest-performing agent is used
to determine the bound for the image feature. This agent
is also given a reward (a small increase to score) to help
stabilize agent selection. If one agent does not clearly domi-
nate, feature detection can produce unstable results since the
agents will have differing positions in the parameter space.

The state of the agent-system is preserved between calls,
though it can be reset if necessary. This allows a swarm to
use previously-determined parameters for operation on sub-
sequent frames.

The DetermineBoundAndScore algorithm, shown
in Figure 2, implements the particular method for this
feature-detection system. Canny edge detection is per-
formed to determine the edges, using the coordinates in pa-
rameter space to determine the upper and lower thresholds
of the edge detector. From the detected edges, the contours
(edge points associated into connected curves) defining the
feature can be found and bounded. Each bounding box is
analyzed, comparing the size of the bounding box against
the size of the entire eye region. The highest-scoring box
is returned with its score. The boxratio (the width/height
ratio) is used to eliminate the detection of sideburns which,
like eyebrows, tend to contrast against skin.

For the feature evaluation, shown in Figure 3, the box that
has been found is compared against the maximum box. Be-

FUNCTION score(image, pReg,eReg,minW,maxW,minH,maxH)
shapeFlag← 0
posFlag← 0
if pReg.width > minW · eReg.width and pReg.width < maxW · eReg.width then

shapeFlag← shapeFlag+ pReg.width
maxW ·eReg.width

else
shapeFlag← shapeFlag−1

end if
if pReg.height > minH · eReg.height and pReg.height < maxH · eReg.height then

shapeFlag← shapeFlag+ pReg.height
maxH·eReg.height

else
shapeFlag← shapeFlag−1

end if
shapeFlag← shapeFlag

2

posFlag← 1− 2·pReg.y+pReg.height
eReg.height

if posFlag > 0 then
posFlag← 1− posFlag

end if
return posScale · posFlag+ shapeScale · shapeFlag

Figure 3: The algorithm for determining score.

cause the determined face can be at any distance, the sys-
tem is stronger when performing comparisons to the face
size, instead of fixed pixel dimensions. The values minW ,
maxW , minH and maxH (minimum and maximum width
and height) scale the maximum eye region. In this case, fea-
tures are rewarded for having dimensions within a certain
size range, which is relative to the size of the maximum box.

By this method, the position is rewarded based on the lo-
cation of its median. If the median of the detected box is
above the median of the eye region, the reward is from [0,1],
based on distance from the top (a reward of zero at the top,
ranging to a reward of 1 at the center). In the bottom half,
however, the reward ranges from [0,-1], with zero at the cen-
ter, down to -1 at the bottom.

This is a somewhat unusual reward system, though not
without meaning. In the bottom half of the region, a box
bounding the eye tends to meet the geometric criteria, so the
score needs to be decreased for falling below the height-wise
median. In the top half of the region, however, a shadow
above the eyebrow (on the eyebrow ridge) should not be re-
warded over the eyebrow itself.

The values posScale and shapeScale are determined ex-
perimentally, to scale the contribution of each factor to the
final score.

Experiments and Results
To test the system, two subjects with differing facial at-
tributes were used. One had dark skin and prominent fa-
cial features (for the purposes of this example, this means
thick eyebrows). The other had light skin and less promi-
nent features. The different subjects served several purposes
for testing the system:

1. The different colors of the subjects’ hair and skin will
change the effect of light on both subjects. A change
in lighting resulted in stronger changes in the contrast
between the illuminated and darkened faces of the fair-
skinned subject, than in the dark-skinned subject. This

Figure 4: Top row: full lighting, Middle row: dimmed lighting, Bottom row: ambient lighting only.

stronger change results in a sharper change in the inten-
sity difference between the skin and eyebrow, which in
turn results in a change in the parameters necessary for
edge detection.

2. Different facial-feature prominence has a twofold effect:
the contrast between the feature and the skin, which af-
fects the parameters of the edge detection; and the dimen-
sions of the feature, which will affect the evaluation of
eyebrows of differing shapes.

A gallery for each subject was recorded with a lamp shining
to the left. Each subject raised and lowered his eyebrows
throughout the recording. Approximately halfway through
recording, the light was switched off. Afterwards, the lo-
cation of each eyebrow in all pictures was determined for
the purpose of comparison against the features found by the
swarm system.

Two feature-detection systems were applied to each sub-
ject gallery, composed of 98 images of the dark-skinned
subject and 93 of the fair-skinned subject. The first used
the DetermineBoundAndScore algorithm for a fixed
value (by submitting a single, immobile agent with a pre-
determined location to the algorithm). The second used
the agent system, replacing the lowest-performing 80%
of agents on each iteration. Other parameters were cho-
sen to optimize the accuracy of the detector against its
speed to ensure real-time performance for the vision system:
length(agentList)= 20, nIters = {minIters,30}, minIters =
1, maxFC = 5, bottomFC = 5, thresh = 0.7, replaceNum =
0.8 · length(agentList), boxRatio = 0.8, minWidth = 0.05,
maxWidth = 0.65, minHeight = 0.15, maxHeight = 0.4,
posScale = 0.3, shapeScale = 0.7, replaceNum = 0.8 ·

length(agentList).

• The number of agents (length(agentList)) and number of
iterations (nIters) performed determine the speed of the
algorithm, and the swarm’s ability to explore the space.
The maximum value of nIters is the number of iterations
the swarms will spend analyzing a frame when the opti-
mal value is originally sought. For this implementation,
it was determined that a small number of agents explor-
ing the space for a small number of iterations can deter-
mine sufficient feature-tracking parameters. The value
of minIters is the number of iterations performed over
length(agentList) on each image when the values are be-
ing used; this value must be small for real-time operation.

• The values maxFC and bottomFC were defined to de-
note the number of consecutive frames to spend originally
seeking the optimal, and the number of frames for which
error (a returned score below thresh was allowed. When
the number of erroneous frames exceeded bottomFC, the
swarm was re-initialized and the optimum re-sought.

• Inside the agent system, the replacement value was set at
80%, leaving the top 6 agents untouched on every iter-
ation. To prevent these from completely dominating the
other agents (due to their higher cumulative values), the
cumulative values decrease by 1

3 on every iteration.

• The values of the ratios between the eyebrow size and
the eye region size were determined experimentally; the
values have to be restricted in some way to prevent the
bounding box from expanding to cover the entire region.
Larger boxes tend to be superior to smaller ones, since
smaller boxes mean that the edge detection values are too

high, and that the eyebrow has been eroded. However,
very low threshold values will find contours over the en-
tire area, which would result in the entire area being found
as a feature.

• positionScale and shapeScale were decidedly weighed to
emphasize shape more than position. Because eyebrow
position in the image could vary so easily (head tilting,
expression changes), it could not be the sole determinant.
On the other hand, it needed enough weight to prevent an
eye (with its similar geometry) from being found as an
acceptable eyebrow.

Results can be seen in Figure 4. The top three rows illus-
trate the fair-skinned subject under changing lighting condi-
tions; the first row is with a lamp on, the second row is just
after the lamp was turned off, the third is 1-2 seconds after
the lamp has been turned off. The bottom three rows are the
dark-skinned subject under the same conditions. The first
column is the original image, the second is that image af-
ter processing with the swarm-based system, and the third is
the first image after being processed by a static detector us-
ing the same evaluation system as the swarm-based detector.
The white box represents the actual eyebrow (as annotated
by hand), and the black line is the eyebrow approximation
detected by the swarm system.

To evaluate the performance of each system, the metric
defined was dsum =

∑n
k=1(tk + bk) , where tk is the distance

from the top-left point of the determined eyebrow to the
top-left point of the actual eyebrow, and bk is the distance
from the bottom-right point of the determined eyebrow to
the bottom-right point of the actual eyebrow. The sum is
taken over the gallery, which contains n images. By this
metric, a lower dsum is desired because it represents a small
difference from the actual eyebrow.

The static detector had a dsum of 977 for the left eye and
2013 for the right. By comparison, the dynamic detector
had a dsum of 749, and 1321 for the right eye. The difference
between the two detectors is significant (t = 4.411, d f =
182.937, p < .0001).

Discussion
The score was calculated for all possible agents on each im-
age. This produced the surface the swarm agents explored
for each image in the gallery. For an individual, this surface
can change for two reasons: lighting, and motion. Lighting
affects this feature surface because the peaks will shift, de-
pending on the amount of light that is added/removed and
the physical properties of the subjects. Motion will have a
much more subtle effect, due to the evaluation function. The
results earn their scores based on their shapes and positions;
as these change, the scores will change slightly as well.

It is apparent in Figure 5 that this search space is not
completely continuous, but has several discontinuous jumps
throughout the space. This is a side-effect of trying to make

 0 50 100
 150 200 250 300 0

 50
 100

 150
 200

 250
 300

-1

-0.5

 0

 0.5

 1

corresponding score

frame 045

score
agents

lower threshold

higher threshold

corresponding score

 0 50 100
 150 200 250 300 0

 50
 100

 150
 200

 250
 300

-1

-0.5

 0

 0.5

 1

corresponding score

frame 048

score
agents

lower threshold

higher threshold

corresponding score

 0 50 100
 150 200 250 300 0

 50
 100

 150
 200

 250
 300

-1

-0.5

 0

 0.5

 1

corresponding score

frame 049

score
agents

lower threshold

higher threshold

corresponding score

Figure 5: Top: full lighting, Center: dimmed lighting, Bot-
tom: ambient lighting only.

discrete evaluations continuous; evaluations are discrete in
this case since, for example, the dimensions of this eyebrow
have certain size ranges, and anything inside this size range
will be equally acceptable. Similarly, the sizes are integral
because they are measured in pixels. In order to provide gra-
dients for the swarms to follow, this had to be “smoothed”.
The result is a discrete approximation of a curve.

Because lighting changes will alter the parameter space,
the system is augmented by the randomly-located swarms,
located by the black points in Figure 5. Over the course of
only a few frames, the shape of the graph changes dramati-
cally, as the domain of the peaks decreases with the amount
of light (as the difference between pixels will decrease with
less lighting, the necessary threshold to separate them will
decrease). The peak in the first frame, over the course of
only a few frames (about 60-130 for the low threshold), be-
came a low plateau. What was formerly a low plateau in the
first frame (about 20-40 for the low threshold) became the
peak.

The swarms in the region with a low “lower threshold”,
which are lower-ranked in the system when light is on, take
priority almost immediately when the light is turned off. The
result is that features are tracked consistently throughout the
transition. In a traditional swarm system, however, there is
no mechanism that will allow the swarms to easily move out
of the valley they suddenly find themselves in. While these
agents do have velocities and inertia to carry them through
the space, they will lack the well-performing agents that can
pull them towards a superior region.

Conclusion
While swarms are suitable for exploring multidimensional
space, they were not suited to the demands of seeking peaks
in a dynamic space in real time. For the problem of real-
time feature detection and tracking, it is important to have
a system that can quickly adapt to changes in the environ-
ment. Static methods are insufficient due to time complexi-
ties, but the evolving swarms provide adaptability; while the
best agents converge on the maximum point in the parame-
ter space, randomly-placed agents throughout the parameter
space will rapidly respond to a sudden field change in their
favor, resulting in the seamless track of a feature over the en-
vironmental change. Biodiversity increases the performance
of the system in two ways: the convergence on a high fea-
ture is helpful in the case of minor changes to the shape of
the field, while the scattered agents quickly take advantage
of sudden peaks caused by major changes in the field.

References
Canny, J. (1986). A computational approach for edge de-

tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(6):679–698.

Grefenstette, J. J. (1999). Evolvability in dynamic fitness

landscapes: A genetic algorithm approach. In Proceed-
ing of the 1999 Congress on Evolutionary Computa-
tion, pages 2031–2038. IEEE Press.

Hsu, R.-L., Abdel-Mottaleb, M., and Jain, A. K. (2002).
Face detection in color images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(5):696–
706.

Kennedy, J. and Eberhart, R. C. (1995). Particle swarm op-
timization. In Proc. IEEE Int. Conf. Neural Networks,
volume 4, pages 1942–1948.

Kennedy, J., Eberhart, R. C., and Shi, Y. (2001). Swarm
Intelligence. Academic Press.

Omran, M., Engelbrecht, A. P., and Salman, A. (2005). Par-
ticle swarm optimization method for image clustering.
International Journal of Pattern Recognition and Arti-
ficial Intelligence, 19(3):297–321.

Ramos, V. and Almeida, F. (2000). Artificial ant colonies
in digital image habitats: A mass behavior effect study
on pattern recognition. In Dorigo, M., Middendorf, M.,
and Stuzle, T., editors, From Ant Colonies to Artificial
Ants - 2nd Int. Wkshp. on Ant Algorithms, pages 113–
116.

Ramos, V., Fernandez, C., and Rosa, A. C. (2005). Social
cognitive maps, swarm collective perception and dis-
tributed search on dynamic landscapes. Brains, Minds
and Media - Journal of New Media in Neural and Cog-
nitive Science.

van den Bergh, F. (2002). An analysis of particle swarm
optimizers. PhD thesis, University of Pretoria.

van den Bergh, F. and Engelbrecht, A. P. (2002). A new
locally convergent particle swarm optimizer. In Proc.
IEEE Conf. Systems, Man, and Cybernetics.

Voss, M. S. (2003). Social programming using functional
swarm optimization. In Proceedings of the IEEE
Swarm Intelligence Symposium 2003, pages 103–109.

White, II, C. E., Tagliarini, G. A., and Narayan, S. (2004).
An algorithm for swarm-based color image segmenta-
tion. In Proceedings of the IEEE SOUTHEASTCON -
2004 “Engineering Connects”, pages 84–89.

Zhuang, X. (2004a). Edge feature extraction in digital im-
ages with the ant colony system. In IEEE International
Conference on Computational Intelligence for Mea-
surement Systems and Applications, pages 133–136.

Zhuang, X. (2004b). Image feature extraction with the per-
ceptual graph based on the ant colony system. In 2004
IEEE International Conference on Systems, Man and
Cybernetics, pages 6354–6359.

