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Abstract—Invariance-principle-based methods such as Invariant
Risk Minimization (IRM), have recently emerged as promising
approaches for Domain Generalization (DG). Despite promising
theory, such approaches fail in common classification tasks due to
mixing of true invariant features and spurious invariant features1.
To address this, we propose a framework based on the conditional
entropy minimization (CEM) principle to filter-out the spurious
invariant features leading to a new algorithm with a better
generalization capability. We show that our proposed approach
is closely related to the well-known Information Bottleneck (IB)
framework and prove that under certain assumptions, entropy
minimization can exactly recover the true invariant features. Our
approach provides competitive classification accuracy compared to
recent theoretically-principled state-of-the-art alternatives across
several DG datasets.

I. INTRODUCTION

A fundamental assumption in most statistical machine
learning algorithms is that the training data and the test data
are independently and identically distributed (i.i.d). However,
it is usually violated in practice due to a phenomenon often
referred to as the domain distribution shift where the training
domain and the test domain distributions are not the same.
This leads to an increased risk/error of the trained classifier
on the test domain. Mitigating this issue is the subject of the
area broadly referred to as Domain Generalization (DG).

Over the past decade, many methods have been proposed for
DG, under different settings [3] [4]. Among these, Invariant
Risk Minimization (IRM) [5] [6] has emerged as one of the
promising methods. IRM is constructed based on a widely
accepted assumption that the representations are general and
transferable if the feature representations remain invariant
from domain to domain. However, this approach is shown to
fail in some simple settings where spurious invariant features
exist [2] [7] [8] [9]. A particular example is the problem of
classifying cow and camel images [10] [11] where the label is a
deterministic function of the invariant features, for example, the
shape of animals, and does not depend on the spurious features
such as the background. However, because cows usually appear
in a picture with a greenfield while the camels live in a desert
with a yellow background, the background color could be
incorrectly learned as a spurious invariant feature. This can lead

1We use the terms “spurious invariant features” or just “spurious features”
to denote features that are invariant across all seen domains, but change in
the unseen domain [1] [2].

to classification errors, for example, if the cow is placed in a
yellow field, then it may be misclassified as a camel. Therefore,
even though an invariance-principle-based approach can learn
invariant features, it may still fail in a classification task if the
extracted features contain not only the true invariant features but
also spurious invariant features. These spurious features could
be eliminated if one can observe a sufficiently large number
of domains [1] [2]. For example, if the seen domain contains
a picture of a cow walking in a desert. However collecting
labeled data from all possible domains is impractical.

Several frameworks have been proposed to deal with the
presence of spurious invariant features. For example, in [12]
the entropy of the extracted features is minimized to filter
out spurious features. However, only linear classifiers are
considered and although the approach is motivated by the
Information Bottleneck (IB) framework [13], IB is not directly
utilized in the learning objective. A similar approach directly
based on the IB objective function for eliminating spurious
invariant features appears in [14] [15]. Although numerical
results in [14] [15] significantly outperform the state-of-the-
art methods, the methods are heuristically motivated and lack
theoretical justification.

In contrast to previous works, the key contributions of this
paper are the following:

• We propose a new objective function that is motivated
by the conditional entropy minimization (CEM) principle
and show that it is explicitly related to the Deterministic
Information Bottleneck (DIB) principle [16].

• We theoretically show that under some suitable assump-
tions, minimizing the proposed objective function will
filter-out spurious features.

• Our approach is general in the sense that it is able to
handle non-linear classifiers and may be extended to other
DG methods that employ the invariance-principle.

The key idea of our approach is to adopt the IRM framework
for learning a good representation function that can capture both
the true invariant features and the spurious invariant features,
but penalize the conditional entropy of representations given
labels to filter-out the spurious invariant features.

The remainder of this paper is structured as follows. In
Section II, we summarize relevant work on DG and briefly
introduce the IRM algorithm and the IB framework. In Section
III we formally define the problem and state and discuss the



main assumptions underlying our theoretical analysis. Section
IV provides the main theoretical results which motivate our
practical approach proposed in Section V. Experiments and
their results are described in Section VI with concluding
remarks presented in Section VII.

II. RELATED WORK

A. Domain Generalization

Numerous DG methods have been proposed in the past
ten years which can be broadly categorized into some major
directions, chiefly “data manipulation”, representation learning,
and meta-learning. The performance of a learning model often
relies on the quantity and diversity of the training data and
data manipulation is one of the cheapest methods to generate
samples from a given set of limited data. Data manipulation
can be employed via data augmentation [17] [18], domain
randomization [19], or adversarial data augmentation [20], [21].
The representation learning approach aims to learn a good rep-
resentation feature by decomposing the prediction function into
a representation function followed by a classifier. Over the past
decade, many methods are emerged for better representation
learning which can be categorized into two different learning
principles: domain-invariant representation learning and feature
disentanglement. Domain-invariant representation learning is
based on the assumption that the representations are general and
transferable to different domains if the representation features
remain invariant from domain to domain [22]. Notably, domain-
invariant representation learning has emerged as one of the most
common and efficient approaches in DG and provided many
promising results [5] [6] [12] [14] [15] [23]–[27]. Finally, meta-
learning methods aim to learn the algorithm itself by learning
from previous experience or tasks, i.e., learning-to-learn. Even
though meta-learning is a general learning framework, it has
recently been applied to DG tasks [15] [28] [29]. For more
details, we refer the reader to the recent surveys on DG in [3]
and [4].

B. Information Bottleneck and Invariant Risk Minimization

In this section we review the IB framework [13] [16]
and the IRM algorithm [5] which are directly related to our
proposed method. We use f : X → Z to denote a (potentially
stochastic) representation mapping from the input data space
X to the representation space Z and g : Z → Y to denote a
classifier/labeling function from the representation space Z to
the label space Y .

1) Information Bottleneck Principle: The IB method aims
to find the best trade-off between accuracy and complexity
(compression) when summarizing a random variable [13].
Particularly, IB aims to find a good (stochastic) representation
function f∗ by solving the following optimization problem:

f∗ = argmin
f

I(X;Z)− θI(Y ;Z), (1)

where I(X;Z) denotes the mutual information between the
random variable X corresponding to input data and its repre-
sentation Z = f(X), I(Y ;Z) denotes the mutual information

between the random variable Y corresponding to the label and
Z, and θ is a positive hyper-parameter that controls the trade off
between maximizing I(Y ;Z) and minimizing I(X;Z). Mutual
information is a nonnegative statistical measure of dependence
between random variables with larger values corresponding to
stronger dependence and value zero corresponding to indepen-
dence. Thus, the IB framework aims to find a representation Z
that is weakly dependent on input X , but is strongly dependent
on the prediction label Y . Indirect rate-distortion source coding
in information-theory provides an alternative interpretation of
the IB objective with Z viewed as a “compressed” encoding
of X , I(X;Z) is the number of “bits” needed to compress
X to Z, and I(Y ;Z) is a measure of how well the label Y
can be decoded from Z, i.e., a measure of prediction accuracy
or “inverse-distortion”. The IB problem can then be stated as
a Lagrangian formulation of minimizing the number of bits
needed to compress X to Z while being able to recover Y
from Z to a desired accuracy.

The Deterministic Information Bottleneck (DIB) [16] prob-
lem aims to find f by solving the following optimization
problem which is closely related to (1):

f∗ = argmin
f

H(Z)− θI(Y ;Z). (2)

For θ = 1, H(Z) − θI(Y ;Z) = H(Z|Y ) which is the
conditional entropy of the representation variable Z given
the label Y . Thus, minimizing H(Z|Y ) is a special case of
DIB where the aims of compression, i.e., minimizing H(Z),
and accuracy, i.e., maximizing I(Y ;Z), are equally weighted
(balanced).

2) Invariant Risk Minimization Algorithm: The IRM al-
gorithm [5] aims to find the representation Z = f(X) for
which the optimum classifier g is invariant across all domains.
The implicit assumption is that such representations and
optimum domain-invariant classifiers exist. In practice, this is
approximately realized by solving the following optimization
problem [5]:

min
h∈G◦F

LIRM (h, α) :=

m∑
i=1

[
R(i)(h)+α ∥∇t|t=1.0R

(i)(t · h)∥2
]
,

(3)
where F is a family of representation functions (typically
parameterized by weights of a neural network with a given
architecture), G a family of linear classifiers (typically the
last fully connected classification layer of a classification
neural network), R(i)(g ◦ f) := E(X,Y )∼Di

[ℓ(g(f(X)), Y )]
denotes a classification risk (e.g., error or cross-entropy loss)
of using a representation function f followed by a classifier
g in domain i when using loss function ℓ, and α is a hyper-
parameter associated with the squared Euclidean norm of the
gradients (denoted by ∇) of the risks in different domains.
When restricted to the family of linear classifiers and convex
differentiable risk functions, Theorem 4 of [5] shows (under
certain technical assumptions) that minimizing LIRM will
yield a predictor that not only (approximately) minimizes the
cumulative risk across all domains (the first term in LIRM ),



but is also approximately optimum simultaneously across all
domains, i.e., approximately invariant, and this is captured by
the sum of squared risk gradients across all domains.

In this paper, we rely on the IRM algorithm [5] to extract the
invariant features and use the CEM principle to filter out the
spurious invariant features. We note, however, that our approach
is applicable to any method that can learn invariant features.
We chose IRM due to its popularity and good empirical
performance.

III. PROBLEM FORMULATION

In this section, we formulate the minimum conditional
entropy principle, which is a special case of the DIB principle,
and show that it can be used to filter out spurious features. To do
this we first introduce three modeling assumptions underlying
our proposed approach. Our assumptions embrace two key ideas
(i) the learned features are a linear mixture (superposition)
of “true” domain-invariant features and “spurious” domain-
specific features, and (ii) the invariant features are conditionally
independent of spurious features given the label.

A. Notation

Consider a classification task where the learning algorithm
has access to i.i.d. data from the set of m domains D =
{D1, D2, . . . , Dm}. The DG task is to learn a representation
function f : X → Z from the input data space X to the
representation space Z , and a classifier g : Z → Y from the
representation space Z to the label space Y that generalizes
well to an unseen domain Ds /∈ D.

Let X denote the data random variable in input space, Y the
label random variable in label space, and Z the extracted feature
random variable in representation space. Let the invariant and
spurious features be denoted by Zinv and Zsp, respectively. We
denote expectation, variance, discrete/differential entropy, and
mutual information by E[·], Var(·), H(·), and I(·), respectively.

B. Assumptions

Ideally, we want to learn a representation function f such
that f(X) = Zinv. However, due to a finite number of observed
domains, it is possible that the learned features might contain
spurious invariant features which are invariant for all observed
domains, but change in the unseen domain [1] [2]. We model
this situation by assuming that the representation function
extracts features that are (approximately) composed of two
elements: the (true) invariant features and the spurious invariant
features:

f(X) = Z = Θ(Zinv, Zsp).

Next, we state three assumptions on Zinv, Zsp and Θ that we
will use in Section IV to derive our theoretical results.

Assumption 1. The (true) invariant features Zinv are indepen-
dent of the spurious invariant features Zsp for a given label
Y . Formally, Zinv ⊥⊥ Zsp|Y .

Assumption 1 is widely accepted in the DG literature [10]
[2] [12] [30]. For example, in the construction of the binary-
MNIST dataset [10], the class (label) is first selected, then the

color (spurious feature) is independently added to the hand-
written digit (invariant feature) picked from the selected class,
making Zinv ⊥⊥ Zsp|Y . For more details, we refer the reader
to the third constraint in Section 3, page 5 of [10]. In [2] [12]
and [30], this assumption is used but not explicitly stated. It
is, however, implicit in Fig. 2 in [12], Fig. 3.1 in [2], and the
discussion below Fig. 2 in [30].

Assumption 2. The uncertainty of the invariant features is
lower than the uncertainty of the spurious features when the
label is known. Formally, we assume H(Zinv|Y ) < H(Zsp|Y ).

Assumption 2 has the following interesting clustering in-
terpretation: invariant features are better clustered together in
each class (have smaller variability) than spurious features. If
additionally, H(Zinv) = H(Zsp), then I(Zinv;Y ) = H(Zinv)−
H(Zinv|Y ) > H(Zsp)−H(Zsp|Y ) = I(Zsp;Y ), implying that
the invariant features Zinv are more strongly related to the label
Y than the spurious features Zsp.

Assumption 3. f(X) = Z = Θ(Zinv, Zsp) = aZinv + bZsp and
Var(Z|Y ) = Var(Zinv|Y ) = Var(Zsp|Y ) = 1.

Assumption 3 states that the extracted (learned) features
are a linear combination of invariant features and spurious
features, i.e., Z = Θ(Zinv, Zsp) = aZinv + bZsp. This is
similar in spirit to the settings in [5] [12] and is inspired
by methods for Blind Source Separation (BSS) such as
Independent Component Analysis (ICA) [31]–[33] which aim
to separate-out statistically independent latent component
sources, say S1, S2, S1 ⊥⊥ S2, from observations of their
linear combination M = a1S1 + a2S2. Our focus on a simple
linear combination model enables us to derive some insightful
theoretical results in the next section and translate them into
a practical algorithm for filtering-out spurious features in the
context of domain generalization which provides substantial
performance improvements over competing alternatives. A
general non-linear dependence relationship Z = Θ(Zinv, Zsp)
could potentially be handled using techniques such as non-
linear ICA [34] or non-linear IRM [6] to filter out the spurious
features. But we leave this to future work.

The assumption Var(Z|Y ) = Var(Zinv|Y ) = Var(Zsp|Y ) =
1 is also motivated by an identical constraint in ICA needed
to overcome the so-called scaling ambiguity: if S1 ⊥⊥ S2

and M = a1S1 + a2S2, then both (S1, S2) and (a1S1, a2S2)
are pairs of independent component sources whose linear
combination is M . Finally, it is worth noting that Assumption 1
and Assumption 3 together imply that a2 + b2 = 1 (see proof
of Lemma 1).

IV. MAIN RESULTS

Our proposed approach is based on two fundamental steps.
The first step is to extract all the invariant features Z from
source domains. These extracted invariant features may include
both the true invariant features Zinv and the spurious invariant
features Zsp. The next step is to remove the spurious features
in order to construct a classifier that purely relies on the true
invariant features Zinv. For example, in the “cow-camel setting”,



the first step is to learn all extracted invariant features which
might contain the color of the background. However, this
spurious feature needs to be removed in the second step. In
this section, we show that the CEM principle, i.e., minimizing
H(Z|Y ), supports filtering-out the spurious invariant features.

Assumption 4. Let

f∗ = argmin
f

Linvariant(f)

s.t. H(f(X)|Y ) ≤ γ.

where Linvariant is the loss function of an invariant representation
learning algorithm. We assume that Linvariant is such that for all
γ, Z = f∗(X) is a linear superposition of both the invariant
feature Zinv and the spurious feature Zsp.

Under Assumption 4, our key idea to “eliminate” the
contribution of Zsp from Z by minimizing Linvariant subject
to a suitable bound on the uncertainty of Z given Y , i.e.,
designing a suitable value of γ. Indeed, we will show that
there exists a suitable choice for γ for which f∗ will extract
only the (true) invariant feature Zinv and filter-out Zsp. The key
result needed to show this is the following lemma.

Lemma 1. If Assumptions 1, 2, 3 hold, then

H(Z|Y ) = H(aZinv + bZsp|Y ) ≥ H(Zinv|Y ) (4)

and equality holds in (4) if, and only if, a = 1 and b = 0.

Proof. Our proof of Lemma 1 is for differential entropy, but
it can be easily extended to discrete entropy (recall that we
use H(·) to denote discrete or differential entropy). Under
Assumptions 1 and 3, we first show that a2 + b2 = 1. Indeed,

1 = Var(Z|Y ) = Var(aZinv + bZsp|Y )

= a2 Var(Zinv|Y ) + b2 Var(Zsp|Y ) (5)
= a2 + b2, (6)

where (5) is because Zinv ⊥⊥ Zsp|Y and (6) is due to the
assumption that Var(Zinv|Y ) = Var(Zsp|Y ) = 1.

Next, we utilize the result in Lemma 1 of [35] which states
that for any two random variables R1, R2, and any two scalars
a, b, if R1 ⊥⊥ R2 and a2 + b2 = 1, then:

H(aR1 + bR2) ≥ a2H(R1) + b2H(R2). (7)

Now, for a given Y = y ∈ Y , we have:

H(aZinv + bZsp|Y = y)

≥ a2H(Zinv|Y = y) + b2H(Zsp|Y = y) (8)
= a2H(Zinv|Y = y) + b2H(Zinv|Y = y)

+ b2H(Zsp|Y = y)− b2H(Zinv|Y = y)

= H(Zinv|Y =y)

+ b2
(
H(Zsp|Y =y)−H(Zinv|Y =y)

)
, (9)

where (8) is due to (7) and a2 + b2 = 1 and (9) is because
a2 + b2 = 1. Next,

H(Z|Y ) = H(aZinv + bZsp|Y )

=

∫
y∈Y

p(y)H(aZinv + bZsp|Y = y) dy

≥
∫
y∈Y

p(y)H(Zinv|Y = y) dy (10)

+

∫
y∈Y

p(y)b2
(
H(Zsp|Y =y)−H(Zinv|Y =y)

)
dy

= H(Zinv|Y ) + b2
(
H(Zsp|Y )−H(Zinv|Y )

)
(11)

≥ H(Zinv|Y ) (12)

where (10) follows from (9) and (12) from H(Zsp|Y ) >
H(Zinv|Y ) (Assumption 2). If a = 1 and b = 0 then Z = Zinv
and equality holds. Conversely, if equality holds then a = 1
and b = 0 must hold, because otherwise we would have b2 > 0
which together with H(Zsp|Y ) > H(Zinv|Y ) and (11) would
imply that H(Z|Y ) is strictly larger than H(Zinv|Y ). Thus,
equality H(Z|Y ) = H(Zinv|Y ) occurs if, and only if, a = 1
and b = 0, or equivalently, if, and only if Z = Zinv.

Lemma 1 shows that H(Z|Y ) is always lower bounded by
H(Zinv|Y ) and equality occurs if, and only if, Z = Zinv. We
use Lemma 1 to prove Theorem 1 which states that the CEM
principle can be used to extract the (true) invariant features
Zinv.

Theorem 1. If Assumptions 1, 2, 3, and 4 hold, then there
exits a γ∗ such that f∗(X) = Zinv.

Proof. From Assumption 4, for any γ, minimizing Linvariant
yields Z = aZinv + bZsp for some values of a, b that depend
on γ. We also have γ ≥ H(Z|Y ) ≥ H(Zinv|Y ), where the
first inequality is due to the constraint in the minimization
of Linvariant and the second is from Lemma 1. If we choose
γ = γ∗ := H(Zinv|Y ), then H(Z|Y ) = H(Zinv|Y ). From
Lemma 1, H(Z|Y ) = H(Zinv|Y ) if, and only if, b = 0. Thus,
selecting γ∗ = H(Zinv|Y ) will lead to a representation function
f∗ such that f∗(X) = Z = Zinv.

V. PRACTICAL APPROACH

We propose to find invariant features by solving the following
CEM optimization problem:

min
h∈G◦F

LCE−IRM (h, α, β) := LIRM (h, α) + βH(f(X)|Y ).

(13)
This can be interpreted as the Lagrangian form of the

optimization problem in Assumption 4 with Linvariant replaced
by the IRM loss function LIRM in (3) and the conditional
entropy constraint in Assumption 4 appearing as the second
term with Lagrange multiplier β. The two hyper-parameters α
and β control the trade-off between minimizing the Invariant
Risk loss and minimizing the conditional entropy loss. Here, Y
denotes the label, h = g ◦ f acts as an invariant predictor
with f ∈ F , g ∈ G, and Z = f(X) is the output of
the penultimate layer of the end-to-end neural network that



implements h = g ◦ f , i.e., the layer just before the output
layer. We note that Z and Y represent, respectively, the latent
representations and the labels corresponding to the input data
X from all seen domains combined.

In order to practically solve the optimization problem in
(13), we leverage the implementations in [12] and [36]. Since

H(Z|Y ) = H(Z) +H(Y |Z)−H(Y )

and H(Y ) is a data-dependent constant independent of h =
g ◦ f , the CEM optimization problem in (13) is equivalent to
the following one

min
h∈G◦F

LIRM (h, α) + βH(f(X)) + βH(Y |f(X)). (14)

The first two terms of the objective function in (14) are identical
to the objective function proposed in [12]. We therefore adapt
the implementation in [12], which can be found at this link 2,
to minimize the first two terms in (14). In order to optimize
the third conditional entropy term H(Y |Z), we adopt the
variational characterization of conditional entropy described
in [36]. A simple implementation of the variational method
in [36] for minimizing of conditional entropy is available at
this link3.

VI. EXPERIMENTS

In this section, we evaluate the efficacy of our proposed
method on some DG datasets that contain spurious features.

A. Datasets

AC-CMNIST [5]. The Anti-causal-CMNIST dataset is a
synthetic binary classification dataset derived from the MNIST
dataset. It was proposed in [5] and is also used in [12]. There are
three domains in AC-CMNIST: two training domains containing
25,000 data points each, and one test domain containing 10,000
data points. Similar to the CMNIST dataset [38], the images
in AC-CMNIST are colored red or green in such a way that
the color correlates strongly with the binary label in the two
seen (training) domains, but is weakly correlated with the label
in the unseen test domain. The goal is to identify whether
the colored digit is less than five or more than five (binary
label). Thus, in this dataset color is designed to be a spurious
invariant feature. For a fair comparison, we utilize the same
construction of AC-CMNIST dataset as in [5] [12].

CS-CMNIST [39]. The Covariate-Shift-CMNIST dataset is
a synthetic classification dataset derived from CMNIST dataset.
It was proposed in [39] and used in [12]. This dataset has three
domains: two training domains containing 20,000 data points
each and one test domain also containing 20,000 data points.
We follow the construction method of [12] to set up a ten-class
classification task, where the ten classes are the ten digits from
0 to 9, and each digit class is assigned a color that is strongly
correlated with the label in the two seen training domains and
is independent of the label in the unseen test domain. Details of
the CS-CMNIST and the model for generating this dataset can

2https://github.com/ahujak/IB-IRM
3https://github.com/1Konny/VIB-pytorch

be found in Section 7.2.1.A of [39]. For a fair comparison, we
utilize the same construction methodology of the CS-CMNIST
dataset as in [12].

Linear unit dataset (LNU-3/3S) [7]. The linear unit (LNU)
dataset is a synthesic dataset that is constructed from a
linear low-dimensional model for evaluating out-of-distribution
generalization algorithms under the effect of spurious invariant
features [7]. There are six sub-datasets in the LNU dataset,
each sub-dataset consists of three or six domains, and each
domain contains 10,000 data points. Due to limited time and
space, we selected two sub-datasets from the LNU dataset
named LNU-3 and LNU-3S to perform the evaluation. From
the numerical results in [12], we note that LNU-3 and LNU-3S
are the most challenging sub-datasets in the LNU dataset.

B. Methods Compared

We compare our proposed method, named Conditional
Entropy and Invariant Risk Minimization (CE-IRM) against the
following competing alternatives: (i) Empirical Risk Minimiza-
tion (ERM) [37] as a simple baseline, (ii) the original Invariant
Risk Minimization (IRM) algorithm in [5], (iii) the Information
Bottleneck Empirical Risk Minimization (IB-ERM) algorithm
in [12], and (iv) the Information Bottleneck Invariant Risk
Minimization (IB-IRM) algorithm in [12]. We omit comparison
with the algorithm proposed in [14] since their implementation
was not available at the time our paper was submitted. Moreover,
with the exception of the CS-CMNIST dataset where our
method improves over theirs about 10% points, they do not
report results for the other datasets that we used.

C. Implementation Details

We use the training-domain validation set tuning procedure in
[12] for tuning all hyper-parameters. To construct the validation
set, we split the seen data into a training set and a validation set
in the ratio of 95% to 5% and select the model that maximizes
classification accuracy on the validation set.

For AC-CMNIST, we utilize the learning model in [12]
which is based on a simple Multi-Layer Perceptron (MLP)
with two fully connected layers each having an output size
256 followed by an output layer of size two which aims to
identify whether the digit is less than 5 or more than 5. The
Adam optimizer is used for training with a learning rate of
10−4, batch size of 64, and the number of epochs set to 500.
To find the best representation, we search for the best values of
weights of the Invariant Risk term and the Conditional Entropy
term, i.e., α, β, respectively, among the following choices:
0.1, 1, 10, 102, 103, 104.

For CS-CMNIST, we follow the learning model in [12]
which is composed of three convolutional layers with feature
map dimensions of 256, 128, and 64. Each convolutional layer
is followed by a ReLU activation and batch normalization
layer. The last layer is a linear layer that aims to classify the
digit to 10 classes. We use the SGD optimizer for training
with a batch size of 128, learning rate of 10−1 with decay
over every 600 steps, and the total number of steps set to
2,000. Similarly to AC-CMNIST, we perform a search for the

https://github.com/ahujak/IB-IRM
https://github.com/1Konny/VIB-pytorch
https://github.com/ahujak/IB-IRM
https://github.com/1Konny/VIB-pytorch


TABLE I: Average accuracy in percentage (%) of compared methods. The number of classes in LNU-3/3S and AC-CMNIST datasets is 2
while the number of classes in CS-CMNIST dataset is 10. “#Domains” denotes the number of domains in the dataset.

Datasets #Domains ERM [37] IRM [5] IB-ERM [12] IB-IRM [12] CE-IRM (proposed)

CS-CMNIST 3 60.3 ± 1.2 61.5 ± 1.5 71.8 ± 0.7 71.8 ± 0.7 85.7 ± 0.9

LNU-3 6 67.0 ± 18.0 86.0 ± 18.0 74.0 ± 20.0 81.0 ± 19.0 84.0 ± 19.0

LNU-3S 6 64.0 ± 19.0 86.0 ± 18.0 73.0 ± 20.0 81.0 ± 19.0 90.0 ± 17.0

LNU-3 3 52.0 ± 7.0 52.0 ± 7.0 51.0 ± 6.0 52.0 ± 7.0 52.0 ± 7.0

LNU-3S 3 51.0 ± 6.0 51.0 ± 7.0 51.0 ± 6.0 51.0 ± 7.0 52.0 ± 7.0

AC-CMNIST 3 17.2 ± 0.6 16.5 ± 2.5 17.7 ± 0.5 18.4 ± 1.4 17.5 ± 1.3

weights of Invariant Risk and Conditional Entropy terms with
α, β ∈ {0.1, 1, 10, 102, 103, 104}.

For the LNU dataset, we follow the procedure described in
[12]. Particularly, 20 pairs of α in the range [1− 10−0.3, 1−
10−3], β in the range [1 − 100, 1 − 10−2], learning rate in
the range [10−4, 10−2], and weight of decay in the range
[10−6, 10−2] are randomly sampled and trained. The best model
is selected based on the training-domain validation set tuning
procedure.

We repeat the whole experiment five times by selecting five
random seeds, where for each random seed, the whole process
of tuning hyper-parameters and selecting models is repeated.
Finally, the average accuracy and standard deviation values
are reported. The source code of our proposed algorithm is
available at this link.4

D. Results and Discussion

The results of all our computer experiments are shown in
Table I. The numerical results of ERM, IRM, IB-ERM, and
IB-IRM reported in Table I are taken from [12]. On the CS-
CMNIST dataset, the four competing algorithms we tested
achieve a classification accuracy in the range 60%− 72%. But,
our proposed CE-IRM algorithm vastly improves over the best
alternative by almost 14% points. This can be explained by the
way the CS-CMNIST is generated. Indeed, by construction,
the colors (spurious features) are added independently into
the digits (invariant features) for a given label. Therefore our
assumption Zsp ⊥⊥ Zinv|Y holds for the CS-CMNIST dataset.

For the LNU dataset, we followed the procedures in [12] to
compute the classification error (equivalently accuracy) of the
tested algorithms. We report the average accuracy together with
its standard deviation in Table I. Similarly to [12], we compare
all algorithms on the LNU-3 dataset and the LNU-3S dataset
with the number of domains set to 6 or 3 (we used the same 3
domains as in [12]). For six domains, our CE-IRM algorithm
outperforms all four competing methods by more than 4%
points on the LNU-3S dataset, but is only second-best on the
LNU-3 dataset about 2% point below the IRM algorithm. For
three domains, the performance of all methods is very similar
on both the LNU-3 and LNU-3S datasets. The results for the

4https://github.com/thuan2412/Conditional entropy minimization for
Domain generalization

LNU-3 and LNU-3S datasets show that having more domains
during training can improve the test accuracy of all algorithms.

Compared to the CS-CMNIST and the LNU-3/3S datasets,
our results indicate that the AC-CMNIST is, by far, the most
challenging dataset where none of the methods work well.
Indeed, by construction, the AC-CMNIST contains strong
spurious correlations between data and label leading to the
failure of all tested algorithms. These results are consistent
with those reported in [5], [12], and [14].

VII. CONCLUSIONS

We proposed a new DG approach based on the CEM
principle for filtering-out spurious features. Our practical
implementation combines the well-known IRM algorithm and
the CEM principle to achieve competitive or better performance
compared to the state-of-the-art DG methods. In addition,
we showed that our objective function is closely related to
the DIB method, and theoretically proved that under certain
conditions, our method can truly extract the invariant features.
We focused on the simple model where the features learned by
an IRM algorithm are a linear combination of true and spurious
invariant features. Our future work will focus on combining the
non-linear IRM algorithm [6] with a nonlinear Blind Source
Separation method, e.g., non-linear ICA [34], to accommodate
non-linear mixture models of invariant features and spurious
features.
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