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ABSTRACT

In this paper, we propose a novel domain generalization
(DG) framework based on a new upper bound to the risk on
the unseen domain. Particularly, our framework proposes
to jointly minimize both the covariate-shift as well as the
concept-shift between the seen domains for a better perfor-
mance on the unseen domain. While the proposed approach
can be implemented via an arbitrary combination of covariate-
alignment and concept-alignment modules, in this work we
use well-established approaches for distributional alignment
namely, Maximum Mean Discrepancy (MMD) and covariance
Alignment (CORAL), and use an Invariant Risk Minimization
(IRM)-based approach for concept alignment. Our numerical
results show that the proposed methods perform as well as or
better than the state-of-the-art for domain generalization on
several data sets.

Index Terms— Domain generalization, domain alignment,
out-of-distribution generalization, distribution shift.

1. INTRODUCTION

Domain generalization (DG) has been studied extensively over
the past decade as an important practical problem arising in a
number of areas such as computer vision, signal processing,
and medical imaging [?] [1]. Like standard learning settings,
DG aims to learn a model from several seen domains (training
data) that can generalize well on an unseen domain (test data).
However, in contrast to the standard setting where the test data
is assumed to come from the same distribution as training data,
in DG, the distribution of the test data is different, i.e., there is
a presence of what is referred to as a distribution shift. This
phenomena can be observed in many practical settings [2].

A number of approaches for DG are based on the assump-
tion that there exist domain-invariant features that are transfer-
able and unchanged from domain to domain. Thus, a classifier
designed on top of these features will likely generalize well
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to the unseen domain. In practice, DG methods based on this
assumption consist of two steps: (a) learning a good repre-
sentation function that outputs the domain-invariant features,
and (b) designing a classifier based on these domain-invariant
features.

Different definitions of domain-invariant features have
been proposed and they lead to different feature selection
schemes. In [?, 3–9], a feature is defined as domain-invariant
if its marginal distribution is unchanged over domains. On
the other hand, in [10–17] a feature is considered as domain-
invariant if its conditional distribution of the label given the
representation feature is unchanged from domain to domain.

The differences in the definitions are rooted in the different
modeling assumptions regarding the domains. Particularly,
in the covariate-shift setting [18], the marginal distribution
of data varies across the domains. On the other hand, in the
setting of concept-shift [18], the conditional distribution of the
label (class) conditioned on the data varies from domain to
domain1. We survey related work in this context in Sec. 2.

In this paper, we revisit the seminal upper bound for the
prediction risk in the unseen domain derived in [19] and show
the necessity of jointly designing a representation function that
minimizes both the covariate-shift and the concept-shift risks.
We make the following contributions:

• We derive a novel upper bound for the prediction risk in
the unseen domain that consists of two terms, namely, a
covariate-alignment term and a concept-alignment term.
This theoretical result motivates a domain generalization
algorithm that combines both covariate-alignment and
concept-alignment algorithms.

• We propose two new algorithms MMD-CEM and
CORAL-CEM that combine, respectively, the COR-
relation ALignment algorithm (CORAL) [20] and the
Maximum Mean Discrepancy algorithm (MMD) [3]
with the Conditional Entropy Invariant Risk Minimiza-
tion algorithm (CEM) [21].

1The setting where the conditional distribution of data conditioned on the
label (class) changes from domain to domain is also referred to as concept-shift.
However, we do not consider that scenario in this paper.
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• We compare the proposed algorithms (MMD-CEM,
CORAL-CEM) with six competing DG methods. Our
methods exhibit similar or better performance compared
to the six alternatives on both CS-CMNIST [?] and
CMNIST [10] datasets.

The remainder of this paper is structured as follows. In Sec. 2,
we summarize the recent work on DG dealing with covariate-
shift and concept-shift. Sec. 3 formally defines the problem
and clarifies notation used. Sec. 4 provides the main theoretical
results which motivate the practical algorithms of Sec. 5. Fi-
nally, we provide the numerical results in Sec. 6 and conclude
in Sec. 7.

2. RELATED WORK

Under the covariate-shift setting, domain alignment methods
focus on aligning the marginal distributions of the representa-
tion from different seen domains by minimizing distributional
divergences or distances [?, 3–9]. For instance, in [8, 9], the
Wasserstein distance between distributions of the seen domains
in representation space is minimized. In [3], Li et al. proposed
the MMD algorithm to minimize the maximum mean discrep-
ancy distance between seen domain distributions in the repre-
sentation space. In a similar vein, the CORAL algorithm [20]
is based on the idea of matching the mean and covariance
of feature distributions from different domains. In [5], the
authors use deep neural networks to minimize the difference
between the variances of transformed features from seen do-
mains to achieve domain generalization. In [7], the authors
aim to learn the domain-invariant features with marginal dis-
tributions unchanged from domain to domain together with
the domain-specific features to enhance the generalization
performance.

Since the conditional distribution of the label given the
representation variable is directly related to the classification
performance, there are many works that aim to deal with
concept-shift, i.e., minimizing the divergence between the
conditional distribution of the labels (concepts) given the rep-
resentation [10–17]. In [10, 16], linear and non-linear IRM
algorithms are proposed for learning the invariant features
such that their conditional distributions are unchanged across
domains, leading to the construction of an optimal classifier
for all seen domains. In [21], Nguyen et al. developed a con-
ditional entropy minimization principle to remove spurious
invariant features from the invariant features learned by the
IRM algorithm [10]. In [11], concept-alignment is achieved
via minimizing the mutual information of the label given the
representation variable for a given domain. In [13], Wang et
al. handle concept-shift by directly aligning the conditional
distribution within each class regardless of domains via the
use of Kullback–Leibler divergence.

To the best of our knowledge, there are only two works in
the DG setting that simultaneously deal with both the covariate-

shift and concept-shift [22, 23]2. In [22], Nguyen et al. pro-
posed an algorithm that is capable of achieving both covariate-
alignment and concept-alignment by enforcing the latent rep-
resentation to be invariant under all transformation functions.
Their algorithm, however, requires the use of invertible and
differentiable transformation functions together with a gener-
ative adversarial network which is known to be hard to train.
In [23], motivated by some examples where using concept-
alignment alone is inadequate for achieving a good generaliza-
tion, a covariate-alignment algorithm is heuristically combined
with a concept-alignment algorithm to achieve a better out-of-
distribution generalization. In contrast to [22, 23], our work
appears to be the first work that uses the upper bound for the
risk in the unseen domain to theoretically motivate the ne-
cessity of achieving both covariate and concept alignment in
DG.

3. PROBLEM FORMULATION

Let x ∈ X ⊆ Rd denote the input data and y ∈ Y denote
the label. The domain generalization task aims to learn a
representation function f : Rd → Rd′

, d′ ≤ d, followed by a
classifier g : Rd′ → Y trained using data from seen domains
D(s), but generalizes well to data from an unseen domain
D(u).

Let z = f(x) denote the latent variable induced by input
data x under the mapping f . We denote the distributions of
data from a seen domain and the unseen domain by p(s)(x)
and p(u)(x), respectively. The distributions of corresponding
latent variables in a seen domain and the unseen domain are
denoted by p(s)(z) and p(u)(z), respectively. We use Z to
denote the latent random variable and Y to denote the label
random variable.

An optimal labeling function for a given domain and a
given representation function f is the labeling function that
minimizes the prediction risk in the domain using the given
representation function. For a given representation function f ,
we denote the optimal labeling functions from representation
space to label space in a seen domain and the unseen domain
by l(s)(z) and l(u)(z) respectively. For a given f , the risks of
using a classifier g (possibly stochastic) in a seen domain and
the unseen domain are defined by:

ϵ(s)(g, l(s)) = E
z∼p(s)(z)

d(g(z), l(s)(z)), (1)

ϵ(u)(g, l(u)) = E
z∼p(u)(z)

d(g(z), l(u)(z)), (2)

where E[·] denotes expectation and d(·, ·) is a loss function
that captures the mismatch between the classifier g and the

2But there are several works that simultaneously handle both covariate-
shift and concept-shift under the Domain Adaptation (DA) setting, for example
the work in [24, 25]. However, DA is not considered in this paper.



optimal labeling functions l(s), l(u). In addition, for a given
representation function f we define the following quantity:

ϵ(s)(g, l(u)) = E
z∼p(s)(z)

d(g(z), l(u)(z)) (3)

which is the loss of using classifier g to input data from a seen
domain s transformed by f and labeled with the optimum label-
ing function of the unseen domain for representation f . Since
p(u)(z) and l(u)(z) depend on f , we want to learn a good rep-
resentation function f together with a classifier g to minimize
the prediction risk in the unseen domain ϵ(u)(g, l(u)).

4. MAIN RESULTS

Theorem 1. If the loss function d(·, ·) is non-negative, sym-
metric and satisfies the triangle inequality, then for a given
representation function f :

ϵ(u)(g, l(u)) ≤ ϵ(s)(g, l(s))

+

∫
z

|p(u)(z)− p(s)(z)| d(g(z), l(u)(z)) dz

+

∫
z

p(s)(z) d(l(u)(z), l(s)(z)) dz. (4)

Proof. We have:

ϵ(u)(g, l(u)) = ϵ(u)(g, l(u))

+ ϵ(s)(g, l(s))− ϵ(s)(g, l(s))

+ ϵ(s)(g, l(u))− ϵ(s)(g, l(u)) (5)

≤ ϵ(s)(g, l(s))

+ |ϵ(u)(g, l(u))− ϵ(s)(g, l(u))|
+ ϵ(s)(g, l(u))− ϵ(s)(g, l(s)) (6)

≤ ϵ(s)(g, l(s))

+

∫
z

|p(u)(z)− p(s)(z)| d(g(z), l(u)(z)) dz

+

∫
z

p(s)(z) d(l(u)(z), l(s)(z)) dz (7)

where (6) follows from the reorganization of (5) and the fact
that a ≤ |a|, ∀a and (7) follows from the definitions of
ϵ(u)(g, l(u)), ϵ(s)(g, l(s)), ϵ(s)(g, l(u)) in (1), (2), (3), the sym-
metry of d(·, ·), and the triangle inequality d(g(z), l(u)(z))−
d(g(z), l(s)(z)) ≤ d(l(u)(z), l(s)(z)).

The bound in (4) characterizes the risk of using a classifier
trained on a seen domain but applied to the unseen domain.
The bound contains three terms: (a) the first term captures
the risk induced by the classifier on a seen domain for a given
representation function f , (b) the second term measures the
discrepancy between the marginal distributions of seen and
unseen domains in the latent space corresponding to represen-
tation function f , and (c) the third term quantifies the mismatch
between optimal classifiers for seen and unseen domains for
the given f .

Our bound shares some similarities with the bound pro-
posed by Ben-David et al. [19]. Particularly, for any represen-
tation function f , the following bound holds [19]:

ϵ(u)(g, l(u))≤ϵ(s)(g, l(s))+dH
(
p(u)(z), p(s)(z)

)
+λ (8)

where dH isH-divergence [26] and:

λ = inf
g

(
ϵ(s)(g, l(s)) + ϵ(u)(g, l(u))

)
. (9)

In [19], the above bound was developed for the DA setting.
We have adapted it to the DG setting by identifying “source”
domains in DA with “seen” domains in DG and the “target”
domain in DA with the “unseen” domain in DG. While the
first two terms of (4) and (8) are quite similar, the main differ-
ence comes from the way that the third term is optimized in
practice. The practical DA algorithm proposed in [19] ignores
optimizing the third term λ of the upper bound in (8) since
the second term of the infimum in (9) cannot be estimated
during training. Moreover, the first term of the infimum in (9)
is already captured in the first term of the upper bound in (8).
In the DG setting too, since the unseen domain samples are
not available during training, one usually optimizes the bound
only over several seen domains as in [?, 1, 21]. In contrast, the
third term in (4) measures the mismatch of optimal classifiers
between domains and, therefore, can be practically optimized
via designing a representation function f followed by a classi-
fier g that is optimal for all (seen) domains. As will be shown
later, finding an optimal classifier over all domains encourages
the use of concept-alignment algorithms. Indeed, designing
a classifier that is optimal over all domains is the principle
behind the recently proposed IRM algorithm [10].

It is also worth comparing our bound with the bound pro-
posed by Lyu et al. [9]. Indeed, Lemma 1 in [9] extends the
work in [19] to establish a new upper bound on the predic-
tion risk in the unseen domain that is a function of both the
representation mapping f and the classifier g. While the first
two terms of the bound in [9] are quite similar to our first
two terms, their third term is a constant which is completely
independent of both f and g. Thus, the bound in [9] does
not encourage the use of concept-alignment algorithms. In
practice, the proposed algorithms in [19] and [9] only aim to
achieve covariate-alignment, i.e., minimizing the discrepancy
of marginal distributions between domains.

Next, to explicitly show that Theorem 1 motivates the com-
bination of both covariate-alignment and concept-alignment
algorithms, we define the following two terms:

∆1 = max
z
|p(s)(z)− p(u)(z)|, (10)

and:

∆2 = max
z

d(l(u)(z), l(s)(z)). (11)

The first quantity ∆1 captures the maximum mismatch of
marginal distributions between domains in latent space. Thus,



minimizing ∆1 supports achieving covariate-alignment. On
the other hand, the second quantity ∆2 measures the maxi-
mum mismatch of optimal classifiers between domains. Since
stochastic classifiers are considered, enforcing a small mis-
match between classifiers leads to a small discrepancy of condi-
tional distributions p(Y |Z) between domains. In other words,
minimizing ∆2 over representation functions supports achiev-
ing concept-alignment.

Corollary 1. Under the settings of Theorem 1, for a given
representation function f :

ϵ(u)(g, l(u)) ≤ ϵ(s)(g, l(s))

+ ∆1

∫
z

d(g(z), l(u)(z)) dz

+ ∆2. (12)

Proof. The proof directly follows by using Theorem 1, the
definitions in (10), (11) and the fact that

∫
z
p(s)(z)dz = 1.

If the representation space is compact and the distance
d(·, ·) is bounded then

∫
z
d(g(z), l(u)(z)) dz is finite. Thus,

minimizing the risk on seen domain ϵ(s)(g, l(s)) together with
the covariate-alignment term ∆1 and the concept-alignment
term ∆2 encourages the trained classifier g to generalize well
on the unseen domain.

5. PRACTICAL APPROACH

Motivated by the theoretical results in Sec. 4, we propose a
framework that combines covariate-alignment algorithms to-
gether with concept-alignment algorithms for minimizing risk
in the unseen domain. There are myriad ways of combining
a given covariate-alignment algorithm with a given concept-
alignment algorithm. For simplicity, we focus on minimizing
the sum of the empirical prediction risk in the seen domains
and a nonnegative weighted combination of the cost functions
for covariate-alignment and concept-alignment algorithms. We
consider two well-studied algorithms for covariate-alignment,
namely CORAL [20] and MMD [3], and one well-studied
concept-alignment algorithm, namely CEM [21]. We propose
two DG algorithms named CORAL-CEM and MMD-CEM
whose objective functions are defined as follows:

RCORAL-CEM(f, g) := R(f, g)+αLCORAL(f)+βLCEM(f, g), (13)

RMMD-CEM(f, g) := R(f, g) + αLMMD(f) + βLCEM(f, g), (14)

where the first term is the summation of the empirical risk
from all seen domains, i.e., summation of ϵ(s)(g, l(s)) over
all seen domains, the second term is the covariate-alignment
term which is implemented via either the CORAL algorithm
[20] or the MMD algorithm [3], the third term is the concept-
alignment term which is implemented via the CEM algorithm
[21], and α, β are two positive hyper-parameters that control
the trade-off between these loss terms.

6. EXPERIMENTS

6.1. Datasets

In this section, we examine our proposed methods on two
datasets CMNIST [10] and CS-CMNIST [?]. To illustrate how
CMNIST and CS-CMNIST datasets are generated, we use e to
denote domain index, e = 1, 2, 3, Xe

g to denote the gray image
in domain e, Y e

g to denote the corresponding label of Xe
g , Xe

to denote the colored image in domain e, and Y e to denote
the corresponding label of Xe. Each domain is specified by a
bias parameter θe changing from domain to domain. We use
Ce to denote the color index, i.e., the color assigned to Xe

g

to produce Xe. Let ⊕ denote the XOR operator, and Bern(p)
denote the Bernoulli distribution with parameter p. Of these
three domains, two are selected as seen domains while the rest
is unseen domain.

Colored MNIST (CMNIST) [10] is a variant of the gray
MNIST handwritten digit dataset. The task is to classify a
colored digit (in red or blue color) into two classes: the digit is
strictly less than five or the digit is greater or equal five. There
are two seen domains each contains 25,000 images and one
unseen domain contains 20,000 images. By adding the color
(spurious feature) to the digit, the label is more correlated with
the color than with the digit, thus, any algorithm simply aims
to minimize the training error will tend to discover the color
rather than the shape of the digit and fail at the testing phase.

Fig. 1. Graphical model for CMNIST.

The graphical model for CMNIST dataset is illustrated in
Fig. 1 that contains the following steps:

1. Y e
g ← L(Xe

g ): from 10 digits, we construct a binary
classification problem by labeling Y e

g = 0 if the digit
is less than or equal to four and labeling Y e

g = 1, other-
wise.

2. Y e ← Y e
g ⊕N , N ∼ Bern(0.25): noise is added to the

label Y e of the colored image.

3. Ce ← Y e ⊕ θe, θe ∼ Bern(pe): the index color Ce

is selected with a domain bias parameter θe. For e =
1, 2, 3, pe = 0.1, 0.2, 0.9, respectively.

4. Xe ← T (Xe
g , C

e): the gray image Xe
g is colored with

the index color Ce to produce the colored image Xe.

Covariate-Shift-CMNIST (CS-CMNIST) [?] is a syn-
thetic dataset derived from CMNIST. This dataset contains
three domains (two training domains and one test domain) hav-
ing 20,000 images each. There are ten classes in CS-CMNIST
where each class corresponds to a digit from one to nine. Each



Datasets ERM [27] IRM [10] IB-ERM [12] IB-IRM [12] MMD-IRM [23] CEM [21] MMD-CEM (our) CORAL-CEM (our)
CMNIST [10] 51.2 ± 0.1 51.4 ± 0.1 51.2 ± 0.3 52.1 ± 0.2 51.4 ± 0.1 52.5 ± 0.3 52.0 ± 0.2 52.5 ± 0.1

CS-CMNIST [?] 60.3 ± 1.2 62.5 ± 1.1 71.5 ± 0.7 71.9 ± 0.7 77.2 ± 0.9 86.1 ± 0.8 90.7 ± 0.9 89.9 ± 0.6

Table 1. Average accuracy of the compared methods.

class is associated with one color that is strongly correlated
with the digits in the two seen (training) domains but is weakly
correlated with the digits in the unseen (test) domain.

Fig. 2. Graphical model for CS-CMNIST.

The graphical model for CS-CMNIST dataset is illustrated
in Fig. 2 that contains the following steps:

1. Y e
g ← L(Xe

g ): the label of gray image is a function of
gray image. There are 10 classes with labels from 0 to
9.

2. Ce ← Uniform({0, . . . , 9}): 10 colors are picked up
randomly (from color 0 to color 9).

3. Ue ← Bern
(
(Ce⊕Y e

g )θ
e+(1− (Ce⊕Y e

g ))(1−θe)
)

:
a pair of image and its color (Xe

g , C
e) is selected with

probability θe if Y e
g = Ce, else if Y e

g ̸= Ce, select
(Xe

g , C
e) with probability 1 − θe. For e = 1, 2, 3, the

bias parameter θe = 0.1, 0.2, 0.9, respectively.

4. Xe ← T (Xe
g , C

e)|Ue = 1, Y e ← Y e
g |Ue = 1: the

gray image Xe
g is colored with color Ce to produce

colored image Xe. The colored image is labeled by Y e
g .

From the graphical models in Fig. 1 and 2, it is worth
noting that while concept-shift is common in both CMNIST
and CS-CMNIST, CS-CMNIST also suffers from covariate-
shift (the third steps in its data generating process).

6.2. Compared Methods
We compare our proposed algorithms CORAL-CEM and
MMD-CEM to ERM [27], IRM [10], IB-ERM [12], IB-
IRM [12], MMD-IRM [23], and CEM [21]. Since the code
for MMD-IRM algorithm was not released by its authors,
we implemented this algorithm according to the description
in [23].

6.3. Implementation
For the CS-CMNIST dataset, we follow the learning model
in [12] that contains three convolutional layers with the cor-
responding feature dimensions of 256, 128, and 64. We use
a stochastic gradient descent optimizer for training, the batch
size is set to 128, the learning rate is 10−1 and decays after 600

steps while the total number of steps is 2, 000. 25 trials corre-
sponding to 25 pairs of hyper-parameters (α, β) are uniformly
selected from [10−1, 104].

For the CMNIST dataset, we follow the setting in [28]
and use MNIST-ConvNet with four convolutional layers as
the learning model. The details of MNIST-ConvNet can
be found in Table 7 of [28]. 10 trials corresponding to 10
pairs of hyper-parameters (α, β) are uniformly selected in
[10−1, 104]. For each trial, the learning rate is randomly se-
lected in [10−4.5, 10−3.5] while the batch size is randomly
selected in [23, 29].

We use the training-domain validation set tuning proce-
dure [28] for model selection, i.e., selecting the model with
the highest validation accuracy on the validation set sampled
from seen domain data. We repeat our entire experiment five
times for CS-CMNIST dataset and three times for CMNIST
dataset. Finally, the average accuracy and its standard devia-
tion are reported. Due to the limited space, the details of our
implementation together with the source code can be found at
this link3.

6.4. Results and Discussion
Table 1 shows the average accuracy of the compared methods.
As seen, our proposed algorithms outperform the rest of the
tested methods with a margin of nearly 4% for CS-CMNIST
dataset. However, when evaluating on a more challenging
CMNIST dataset, the proposed algorithms only achieve com-
parable or slightly better performance than other tested meth-
ods. The substantial gain on CS-CMNIST can be explained
by the way the data is generated. Indeed, by construction,
CS-CMNIST suffers from both covariate-shift and concept-
shift, therefore, it is necessary for achieving both covariate
and concept alignment for better DG on CS-CMNIST. On the
other hand, because CMNIST is designed in a way such that
there exists a strong spurious correlation between colors and
labels, no algorithm works on this dataset. This observation is
also confirmed by the numerical results in [28].

7. CONCLUSIONS

In this paper, by revisiting the upper bound of generalization
error of the unseen domain, we motivate a domain generaliza-
tion framework that combines covariate-alignment algorithms
together with concept-alignment algorithms to simultaneously
handle both the covariate distribution shift and the concept
distribution shift. Our numerical results show a gain on gener-
alization performance which confirms our theoretical results.

3https://github.com/thuan2412/Joint-covariate-alignment-and-concept-
alignment-for-domain-generalization

https://github.com/thuan2412/Joint-covariate-alignment-and-concept-alignment-for-domain-generalization
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