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Abstract

First order logic lies at the core of many methods in mathe-
matics, philosophy, linguistics, and computer science. Al-
though important efforts have been made to extend first or-
der logic to the task of handling uncertainty, there is stilla
lack of a consistent and unified approach, especially within
the Dempster-Shafer (DS) theory framework. In this work
we introduce a systematic approach for building belief as-
signments based on first order logic formulas. Further-
more, we outline the foundations ofUncertain Logic, a
robust framework for inference and modeling when infor-
mation is available in the form of first order logic formulas
subject to uncertainty. Applications include data fusion,
rule mining, credibility estimation, and crowd sourcing,
among many others.

Keywords. Uncertain Logic, Uncertain Reasoning, Prob-
abilistic Logic, Dempster-Shafer Theory, Belief Theory.

1 Introduction
Natural language processing, artificial intelligence, and
graph analysis are among a number of applications that
heavily rely on first order logic formulations. Due to its
capability for representing knowledge for inference sys-
tems, first order logic has been gradually enriched to han-
dle imperfections in real-life data. Some approaches in-
clude fuzzy logic and probabilistic logic [1]. These so-
lutions, however, are not well suited for handling scenar-
ios characterized by ranges of uncertainty, or that require
modeling evidence in a very strict manner to minimize the
risk of inference results leading to wrong conclusions.

Dempster-Shafer theory [2] provides an ideal modeling
tool to address this problem. However, although signifi-
cant effort has been dedicated to modeling uncertainty in
logic under DS theory, there is still a need for a unified
approach that is consistent with basic logic operations and
that provides the support for handling variables and quan-
tifiers. To address this problem we introduceUncertain
Logic, which is the extension of first order logic into DS
theory. Consider, for example, an expression of the form:

∃x : ϕ(x), with uncertainty[α, β], whereϕ(x) is a logic
predicate that depends on the variablex. The uncertain
logic framework allows us to model this sentence, and to
combine it with similar ones in order to solve various in-
ference problems. Whenα = β, uncertain logic renders
probabilistic results. Whenα = β ∈ {0, 1}, uncertain
logic converges to first order logic. Unlike existing DS
models for logic that, in general, cannot guarantee logic
consistency for a plurality of logic constructs, uncertain
logic preserves this consistency, and can grow to incorpo-
rate logic rules and properties without loss of uncertainty
measures. By preserving this consistency, it is possible
to seamlessly move between the logic and DS domains,
and to incorporate both the strength of first order logic for
information representation, inference, and resolution, and
the strength of DS for representing and manipulating un-
certainty in the data.

1.1 Existing Methods for Handling Uncertainty in
Logic

The need for reasoning under the presence of uncertainty
has lead to important work aimed at providing logic rea-
soning with uncertainty management capabilities. Re-
search in this area encompasses a number of aims, such
as the investigation of the source and meaning of uncer-
tainty, the enrichment of logic systems with appropriated
formalisms for uncertainty management (e.g., semantics,
axioms), and the creation of appropriate models and oper-
ators to quantify the propagation of uncertainty in reason-
ing and inference problems.

Relevant foundational work, with emphasis on analyzing
the source and representation of uncertainty in logic sys-
tems, can be found in [3]. In this work, the author in-
troduces two different approaches to giving semantics to
first-order logics of probability, the first one incorporating
probability in the domain (for problems involving statis-
tical information), and the second one assigning proba-
bilities to possible worlds. This work is extended in [4],
where the author further discusses the use of a “possible-
worlds” framework to represent and reason about uncer-
tainty. Then, quantification of the uncertainty is accom-



plished by assigning a probability distribution to the pos-
sible worlds. In addition, the author discusses the impor-
tance of considering time in the inference process, i.e.,
possible words should describe states at each time point of
interest. The work in [5] provides insight on how to pro-
cess and combine data-driven (e.g., information obtained
from observed events) and knowledge-driven (e.g., infor-
mation provided by domain experts) using different logic
systems.

In addition to first-order logic, uncertain representations of
logic systems have been extended to other types of logic.
For example, the work in [6] introduces a multi-agent epis-
temic logic able to represent and merge partial beliefs of
multiple agents. This logic system is based on possibility
theory [7], and enhances epistemic logic with parametric
models to obtain lower bounds on the degree of belief of
agents. Similarly, an axiomatization of a modal logic using
fuzzy sets and DS belief functions for measuring probabil-
ities of modal necessity is presented in [8].

When addressing quantification and propagation of uncer-
tainty in logic reasoning systems, one of the most im-
portant approaches is probabilistic logic [9]. Probabilis-
tic logic provides a generalization of logic in which the
truth values of sentences are probability values (between 0
and 1). A related approach, possibilistic logic [10], de-
fines mechanisms (based on possibility theory) to asso-
ciate classical logic formulas with weights. These weights
represent lower bounds of necessity degrees. Other ap-
proaches that extend logic reasoning to address uncertain
scenarios are many-valued and fuzzy logics. Many-valued
logics do not restrict the number of truth values of proposi-
tions to two. The interpretation of the truth values depends
on the actual application. Fuzzy logic can be seen as a type
of many-valued logic. Fuzzy logic is based on the theory
of fuzzy sets [11]. In fuzzy logic, the imprecision in prob-
abilities is modeled through membership functions defined
on the sets of possible probabilities and utilities.

Although useful in some applications, these approaches
are sometimes limited by the way they model uncertainty,
or simply by the complexity of the problem formulation.
Extensions of these approaches could be strengthened by
adding more flexibility in assigning probabilities (e.g.,
through intervals) and a more rigorous method of assign-
ing probability measures (e.g., one that does not require
defining priors or membership functions).

Regarding the use of intervals as means of representing
uncertainty, it appears in several methods, such as pos-
sibility theory [12] and DS theory. The latter, in addi-
tion, incorporates a rigorous methodology for assigning
probabilistic measures based on available evidence [13].
Given the direct relation that exists between DS theory
and probability (DS belief and plausibility measures cor-
respond precisely to probabilistic inner and outer mea-

sures [13]), it is possible to simplify DS models to prob-
abilistic models. Considering these advantages, a number
of researchers have studied the relation of DS theory and
logic. In [14], DS theory is formulated in terms of proposi-
tional logic, enabling certain logic reasoning operationsin
the DS framework. Insight into the relationship between
DS theory and probabilistic logic is presented in [14]. A
belief-function logic that uses DS models and operations
to quantify and estimate uncertainty of logic formulas is
introduced in [15]. This logic system allows non-zero be-
lief assignments to the empty set, relies on Dempster’s
combination rule as the method for quantifying the prop-
agation of uncertainty, and is used in deduction systems
where the logic formulas are in Skolemized normal con-
junctive form. An application of this system for inference
is described in [16]. Further analysis on DS-based logic
is presented in [17]. A detailed study on uncertain impli-
cation rules is in [18]. This latter work, however, is not
focused on ensuring consistency with classical logic, but
on modeling causal probabilistic relations.

In spite of existing research to provide logic with uncer-
tainty modeled by DS, efforts to date can be improved by
ensuring consistency with classical logic and reducing the
number of assumptions needed for the logic systems to
work. For example, most of the existing methods are based
on Dempster’s Combination Rule, which, as it is shown in
this manuscript, is not necessarily well suited for logical
reasoning. In addition, inference processes could benefit
from eliminating the condition that logic formulas need to
be expressed in normal conjunctive form or as implication
rules, as well as eliminating the need for allowing non-zero
belief assignments to the empty set in a DS model.

1.2 Our Contribution: Uncertain Logic

To address these issues, and with emphasis on methods to
quantify uncertainty propagation, we introduce uncertain
logic. Uncertain logic deals with logic propositions whose
truth is uncertain. The level of uncertainty is modeled with
DS theory. Uncertain logic allows reasoning and inference
using (conventional) first order logic inference rules, but
also allows for appending uncertainty to the inference pro-
cess.

To describe the uncertain logic framework, we start in Sec-
tion 2 with an overview of DS theory. Basic definitions
and notation of uncertain logic are then introduced in Sec-
tion 3. A set of uncertain logic operators and quantifiers
are described in Sections 4 and 5, respectively. Finally,
inference in uncertain logic is introduced in Section 6.

2 DS Theory: Basic Definitions

DS Theory is defined for a discrete set of elementary
events related to a given problem. This set is called the
Frame of Discernment(FoD). In general, a FoD is de-
fined asΘ = {θ1, θ2, . . . , θN}, and has a finite cardinality



N = |Θ|. Elements (or singletons)θi ∈ Θ represent the
lowest level of discernible information. The power set of
Θ is defined as a set containing all the possible subsets
of Θ, i.e., 2Θ = {A : A ⊆ Θ}. The cardinality of the
power set ofΘ is 2N . Next we introduce some basic def-
initions of DS Theory, as required for building uncertain
logic models. For additional details on DS Theory, we re-
fer the reader to [1, 2].

2.1 Basic Belief Assignment
A Basic Belief Assignment (BBA) ormass assign-
ment is a mappingmΘ(·) : 2Θ → [0, 1] such that:
∑

A⊆ΘmΘ(A) = 1 and mΘ(∅) = 0. The BBA mea-
sures the support assigned to propositionA ⊆ Θ. Masses
in DS theory can be assigned to any singleton or non-
singleton (e.g.,{θ1, θ2}, {θ1, θ3}, {θ1, θ2, θ3}) proposi-
tion. A belief function is called Bayesian if each focal
element inΘ is a singleton. The subsetsA such that
m(A) > 0 are referred to as focal elements of the BBA.
The set of focal elements is the coreFΘ. The triple
{Θ,FΘ,mΘ(·)} is referred to asBody of Evidence(BoE).

2.2 Belief and Plausibility
Given a BoE{Θ,F ,m}, thebelief functionBel : 2Θ →
[0, 1] is defined as:BelΘ(A) =

∑

B⊆AmΘ(B). Bel(A)
represents the total belief that is committed toA with-
out also being committed to its complementAC . The
plausibility function Pl : 2Θ → [0, 1] is defined as:
PlΘ(A) = 1 − BelΘ(AC). It corresponds to the total be-
lief that does not contradictA. Theuncertaintyof A is:
[BelΘ(A),PlΘ(A)].

2.3 Combination Rules
Dempster Combination Rule (DCR). For two focal sets
C ⊆ Θ andD ⊆ Θ such thatB = C ∩ D, and two
BBAs mj(·) andmk(·), the combinedmjk(B) is given
by: mjk(B) = 1

1−Kjk

∑

C∩D=B;B 6=∅mj(C)mk(D),

whereKjk =
∑

C∩D=∅mj(C)mk(D) 6= 1 is referred
to as theconflict between the two BBAs;Kjk = 1 iden-
tifies two totally conflicting BBAs for which DCR-based
fusion cannot be carried out.

Conditional Fusion Equation (CFE). A combina-
tion rule that is robust when confronted with con-
flicting evidence is theConditional Fusion Equation
(CFE) [19], which is based on the DS theoretic condi-
tional approach [20]. The CFE combinesM BBAs as
[19]: m(B) =

∑M
i=1

∑

Ai∈Ai
γi(Ai)mi(B|Ai), where

∑M
i=1

∑

Ai∈Ai
γi(Ai) = 1. Here Ai = {A ∈ Fi :

Beli(A) > 0}, i = 1, . . . ,M. The conditionals are com-
puted using Fagin-Halperns’ Rule of Conditioning [21].

3 From Propositional Logic to Uncertain
First-Order Logic

Propositional Logic. Recall that apropositionis simply
a statement such as “this is an introduction to uncertain

logic”. We will represent formulas in propositional logic
by lower case greek letters (e.g.,ϕ, ψ). In propositional
logic, a proposition can be obtained from other proposi-
tions using connectives like∧ (and),∨ (or), ¬ (not), and
=⇒ (implies). Through (classical)inference, propositions
can be derived from a given a set of propositions (called
premises) using (classical) “rules of inference” such as
“modus ponens”.

Predicate Logic. Predicate logic allows us to look into the
structure of propositions. For example, the fact that some
entity a is aboveanother entityb would be expressed as
Above(a, b), where “Above” is a two-place predicate
symbol and “a” and “b” are individual constants. For the
remainder of this paper, we will assume finite domains for
the interpretation of predicate logic formulas (i.e., individ-
ual variables ranges over a finite number of entities).1

First-Order Logic. First Order Logic extends predicate
logic by the universal quantifier(∀) and theexistential
quantifier (∃). Quantified formulas provide a more flex-
ible way of talking about all objects in the domain (i.e.,
elements in our universe of discourse) or of asserting a
property of an individual object.

Uncertain Logic. Uncertain logic deals with propositions
(ϕ1, ϕ2, . . .) whose truth is uncertain. The level of uncer-
tainty is modeled with DS theory and is bounded in the
range[0, 1]. In general, we will consider formulas withk
free variables that range over individuals from some finite
domainΘX = {x1, . . . , xn}, with n ≥ 1, for example

ϕ(x), with uncertainty[α, β], (1)

whereϕ(x) is a formula with the only free variablex rang-
ing over elements inΘX and [α, β] it the corresponding
uncertainty interval with0 ≤ α ≤ β ≤ 1. 2

To emphasize the fact that uncertain logic models uncer-
tainty of the true value of a proposition, we define thelog-
ical FoD as follows.

Definition 1 (Logical FoD) Given a logic proposition
ϕ(x) with x ranging over entities inΘX , and a true-false
FoD Θt–f = {1,0}, the logical FoDΘϕ(x)×{1,0} is given
by:

Θϕ(x)×{1,0} = {ϕ(x) × 1, ϕ(x) × 0}. (2)

1When referring to propositional and predicate logic, we follow the
conventions and definitions provided in [22] and [23].

2We can define this first-order logic expression more formallyas fol-
lows: Consider a quantifier-free first-order formulaϕ(x) from a (not
necessarily finite) set of formulasΦ in some first-order languageL with
x being the only free variable inϕ. Moreover, letΘX = {x1, . . . , xn}
be a non-empty set of individuals under observation with respect to for-
mulas inΦ. Throughout this paper, we may represent the logic for-
mula ϕ(x/xi), the property expressed byϕ for the individualxi, i =
1, . . . , n, with the abbreviated notationϕ(xi), i.e.,ϕ(xi) ≡ ϕ(x/xi).
In addition, the DS models that we define for a quantifier-freefirst-order
formula ϕ(x) extend to the sets of formulasϕ(xi), i = 1, . . . , n, de-
fined on the corresponding logical FoDs. This extension is used in Sec-
tion 5, where we define models for existential and universal quantifiers.



When no confusion can arise, we will employ the follow-
ing notation:

ϕ(x) ≡ ϕ(x)×1;ϕ(x) ≡ ϕ(x)×0; Θϕ(x) ≡ Θϕ(x)×{1,0}.

A DS theoretic model that would capture the information
in (1) is:

ϕ(x) : m(ϕ(x)) = α;

m(ϕ(x)) = 1 − β;

m(Θϕ(x)) = β − α, (3)

defined over the logical FoD{ϕ(x), ϕ(x)}. In order to
simplify the arguments in the mass assignments, we may
use the following alternate notation:

ϕ(x) : mϕ(x) = α;mϕ(x) = 1−β;mϕ(Θϕ(x)) = β−α.
(4)

Semantics. In classical logic there are two truth values,
“true” and “false”. An expression that is true for all inter-
pretations is called a tautology (“⊤”). An expression that
is not true for any interpretation is a contradiction (“⊥”).
Two expressions are semantically equivalent if they take
on the same truth value for all interpretations.

In uncertain logic we extend these definitions. The truth
value of an expression corresponds to the support that
is projected into the true-false FoD,Θt–f = {1,0}. A
BBA (3) defined by[α, β] = [1, 1] corresponds to the clas-
sical logical truth. A BBA (3) defined by[α, β] = [0, 0]
corresponds to the classical logical falsehood.

The notions of tautology and contradiction in uncertain
logic are extended following an approach similar to that
in [24]. In particular, given a generic propositionψ char-
acterized by the uncertainty intervalσ = [α, β], we define
a σ-tautology as⊤σ ≡ ψ ∨ ¬ψ, and aσ-contradiction
as ⊥σ≡ ψ ∧ ¬ψ. It follows that ⊤ ≡ ⊤σ=[1,1], and
⊥≡⊥σ=[0,0].

4 Uncertain Logic Operators

The AND and OR operators are, together with the logical
negation, the basic operators in classical logic. This is also
the case in uncertain logic, as any other operator can be
defined using combinations of these three basic operators.
In order to ensure consistency with classical logic, uncer-
tain logic operators should satisfy at least the following:
(a) (ϕ1(x) ∨ ϕ2(x)) and¬(¬ϕ1(x) ∧ ¬ϕ2(x)) must have
identical DS theoretic models; (b)(ϕ1(x) ∧ ϕ2(x)) and
¬(¬ϕ1(x) ∨¬ϕ2(x)) have identical DS theoretic models;
(c) in the general case, the DS model for AND and OR
operations are distinct; (d) in the absence of uncertainty,
uncertain logic models converge to those of conventional
logic; (e) in a probabilistic scenario (i.e.,α = β), uncer-
tain logic models are also probabilistic; (f) Uncertain logic
AND and OR operators must be idempotent, commutative,
associative, and distributive.

4.1 Uncertain Logic Negation

Consider a logical FoDΘϕ(x) = {ϕ(x), ϕ(x)} and a BBA
mϕ(·) defined as:

mϕ(x) = α; mϕ(x) = 1−β; mϕ(Θϕ(x)) = β−α. (5)

A complementary BBA for (5) is given by [25]:

mc
ϕ(x) = 1−β; mc

ϕ(x) = α; mc
ϕ(Θϕ(x)) = β−α. (6)

Based on the complementary BBA, we can define an un-
certain logic negation as follows.

Definition 2 (Logical Not in Uncertain Logic) Given an
uncertain propositionϕ(x) as defined in (1), and its cor-
responding DS model defined by (4), the logical negation
ofϕ(x) is given by:

¬ϕ(x), with uncertainty[1 − β, 1 − α]. (7)

We utilize the complementary BBA corresponding to (4) as
the DS theoretic model for¬ϕ(x), i.e.,

¬ϕ(x) : mc
ϕ(x) = 1 − β;

mc
ϕ(x) = α;

mc
ϕ(Θϕ(x)) = β − α. (8)

Definition 2 satisfies an important property: Given a
propositionϕ(x), the BBA corresponding to its double-
negation is the same model as the one associated with
ϕ(x). In other words, Definition 2 satisfies¬¬ϕ(x) =
ϕ(x), which is a basic property in (classical) logic.

4.2 Uncertain Logic AND/OR

Definition 3 (Logical And & Or in Uncertain Logic)
Suppose that we haveM logic propositions, each provid-
ing a statement of the following type regarding the truth
of x with respect to the propositionϕi(·):

ϕi(x), with uncertainty[αi, βi], i = 1, . . . ,M. (9)

The corresponding DS theoretic models are
ϕi(x) : mϕi

(x) = αi; mϕi
(x) = 1−βi; mϕi

(Θϕi(x)) =
βi − αi, for i = 1, 2, . . . ,M . We propose to utilize the
following DS theoretic models for the logical AND and
OR of the statements in(9):

M
∧

i=1

ϕi(x) : m(·) =

M
⋂

i=1

mϕi
(·);

and
M
∨

i=1

ϕi(x) : m(·) =

(

M
⋂

i=1

mc
ϕi

(·)

)c

, (10)

where
⋂

denotes an appropriate fusion operator.3

3A similar model can be obtained for the case of AND/OR opera-
tions of a set of expressions{ϕ(xi)} with uncertainty[αi, βi], xi ∈
{x1, x2, . . . , xn}. In this case,

Vn
i=1 ϕ(xi) : m(·) =

Tn
i=1 mϕ(·),

and
Wn

i=1 ϕ(xi) : m(·) =
`

Tn
i=1 mc

ϕ(·)
´c

. This case represents
AND/OR models applied to the truthfulness of elements{xi} satisfy-
ing a propertyϕ, whereas (10) analyzes the case ofx satisfying multiple
properties{ϕi}.



Table 1: DCR-Based Logical AND and OR. Note that the DS modelsfor AND and OR are identical, which suggests that
DCR is not an appropriate fusion operator for consistent logic operations. Note that, in both cases, the masses should be
normalized by1 −K, withK = 1 −

∑

A∈F m(A) = α1(1 − β2) + (1 − β1)α2.

Focal Set ϕ1(x) ∧ ϕ2(x) ϕ1(x) ∨ ϕ2(x)
x α1β2 + (β1 − α1)α2 α1β2 + (β1 − α1)α2

x (1 − β1)(1 − α2) + (β1 − α1)(1 − β2) (1 − β1)(1 − α2) + (β1 − α1)(1 − β2)
Θ(ϕ1·ϕ2)(x) (β1 − α1)(β2 − α2) (β1 − α1)(β2 − α2)

4.3 DCR-Based Uncertain Logic

When the fusion operator
⋂

in (10) is DCR, the AND op-
eration in this model is equivalent to the conjunctive rule
of combination in [17]. In this subsection we go further
and explore the viability of using DCR as the fusion oper-
ator in uncertain logic.

Consider the two-source/two-propositions (i.e., M = 2)
case. Table 1 contains the DCR-based logical AND and
OR operations for this case. Notice that the mass assign-
ments for the AND operation (i.e.,ϕ1(x)∧ϕ2(x)) are ex-
actly the same as the ones obtained for the OR operation
(i.e., ϕ1(x) ∨ ϕ1(x)). Having identical models for both
AND and OR operators suggests that, although DCR may
work as a fusion operator for certain operations, it does not
render models that satisfy important properties for all the
logical operations defined in this paper. More particularly,
DCR-based uncertain logic does not satisfy the “unique-
ness of the model” property. As an alternative, we propose
using a more appropriate fusion strategy, such as the CFE,
which is analyzed next.

4.4 CFE-Based Uncertain Logic
Recall (from Section 2) that CFE-based fusion requires the
definition of coefficientsγi(·). For uncertain logic, we in-
troduce the Logic Consistent (LC) strategy, which ensures
consistency with logical operations.

Definition 4 (Logic Consistent (LC) Strategy) For the
caseM = 2 in (10), let us defineα = min(α1, α2);
β = min(β1, β2); α = max(α1, α2); β = max(β1, β2);

δ1 = β1 − α1; δ2 = β2 −α2; δ = β −α; andδ = β − α.
Then select the CFE parameters as follows:

γ1(x) = γ2(x) ≡ γ(x); γ1(x) = γ2(x) ≡ γ(x);

γ1(Θ) = γ2(Θ) ≡ γ(Θ),

where the CFE parametersγ(x), γ(x), andγ(Θ) are se-
lected in the following manner.

a. Logical AND:

– If δ1 + δ2 6= 0:

γ(x) =
α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ(x) =
1

2
−

β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2
.

– If δ1 + δ2 = 0, i.e.,α1 = β1 andα2 = β2:

γ(x) =
α − γ(Θ) (α1 + α2)

2
;

γ(x) =
(1 − α) − δ(Θ) (2 − α1 − α2)

2
;

γ(Θ) = arbitrary.

b. Logical OR:

– If δ1 + δ2 6= 0:

γ(x) =
1

2
−

β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ(x) =
α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ(Θ) =
δ

δ1 + δ2
.

– If δ1 + δ2 = 0, i.e.,α1 = β1 andα2 = β2:

γ(x) =
α − γ(Θ) (α1 + α2)

2
;

γ(x) =
(1 − α) − δ(Θ) (2 − α1 − α2)

2
;

γ(Θ) = arbitrary.

When used for the AND operation, the LC strategy renders
the following BBA (see Appendix A for the derivation of
this BBA):

ϕ1(x) ∧ ϕ2(x) : m(x) = α;

m(x) = 1 − β; and

m(Θ(ϕ1∧ϕ2)(x)) = β − α. (11)

When used for the OR operation, the LC strategy renders
the following BBA:

ϕ1(x) ∨ ϕ2(x) : m(x) = α;

m(x) = 1 − β; and

m(Θ(ϕ1∨ϕ2)(x)) = β − α. (12)

In general, the CFE-based models for the logical AND
and OR are not identical (the exception would be a particu-
lar combination of uncertainty parameters[α, β] rendering
identical models), as is the case when DCR is used. There-
fore, CFE-based fusion is better suited for uncertain logic
than DCR. Indeed, referring to the conditions at the begin-
ning of Section 4, the CFE-based operations areconsistent



Table 2: CFE-Based AND/OR Operations: Uncertainty
parameters are defined so that they represent complete cer-
tainty on the truth (or falseness) of each proposition.

Parameters mϕ1∧ϕ2
(·) mϕ1∨ϕ2

(·)
[α1, β1] [α2, β2] x x Θ x x Θ
[0, 0] [0, 0] 0 1 0 0 1 0
[0, 0] [1, 1] 0 1 0 1 0 0
[1, 1] [1, 1] 1 0 0 1 0 0

Table 3: CFE-Based Logical AND/OR Operations: Prob-
abilistic Scenario ([αi, βi] = [αi, αi], i ∈ {1, 2}).

Logical AND Logical OR
m(x) = α m(x) = α

m(x) = 1 − α m(x) = 1 − α

m(Θ(ϕ1∧ϕ2)(x)) = 0 m(Θ(ϕ1∨ϕ2)(x)) = 0

with classical logic. Referring to the same conditions, (a)
and (b) can be verified by checking Definition 3; (c) is ver-
ified by (11) and (12) above; (d) is proved in Table 2; (e)
is shown in Table 3; (f) is proved in Appendix B.

4.5 Other Uncertain Logic Operators
Based on the uncertain logic definitions and operators de-
scribed above, it is possible to extend them and create new
operators. As an example, consider implication rules.

Definition 5 (Logical Implication in Uncertain Logic)
Given two logic statementsϕ1(·) andϕ2(·), an implica-
tion rule in propositional logic has the property:

ϕ1(xi) =⇒ ϕ2(yj) = ¬ϕ1(xi) ∨ ϕ2(yj)

= ¬ (ϕ1(xi) ∧ ¬ϕ2(yj)) ,

wherexi ∈ ΘX andyj ∈ ΘY . Consider the case where
the antecedentϕ1(xi) and/or the consequentϕ2(yj) are/is
uncertain. Furthermore, suppose that said uncertainty is
represented via the DS theoretic modelsmX(·) andmY (·)
over the logical FoDs{ϕ(xi), ϕ(xi)} and{ϕ(yj), ϕ(yj)},
respectively. Then, the implication ruleϕ1(xi) =⇒
ϕ2(yj) is taken to have the following DS theoretic model:

mϕX→ϕY
(·) = (mc

X ∨mY )(·)

= (mX ∧mc
Y )c(·), (13)

over the FoD{ϕ(xi), ϕ(xi)} × {ϕ(yj), ϕ(yj)}.

5 Uncertain Logic Quantifiers

We define existential and universal quantifiers in uncertain
logic as follows.

Definition 6 (Existential Quantifier in Uncertain Logic)
Consider the statement:

∃x ϕ(x), with uncertainty[α, β], (14)

wherex ∈ ΘX = {x1, x2, . . . , xN}. Let us define an ex-
tended logical FoDΘX′ = {ϕ(x1), ϕ(x2), . . . , ϕ(xN )}×
{1,0}. Then, we define the DS theoretic model for (14)
as:

N
∨

i=1

ϕ(xi), (15)

over the FoDΘX′ , subject to the constraint:

m(1) =
∑N

i=1
mϕ(xi) = α;

m(0) =
∑N

i=1
mϕ(xi) = 1 − β;

m(ΘX′) = β − α. (16)

This model is an alternative to Skolemization [23]. This
model, however, does not rule out the use of Skolemiza-
tion, as there might be scenarios where the latter technique
is a better alternative. Note that if the uncertainty of at
least one of the propositionsϕ(xi) in (15) is [α, β], and
the uncertainty of every other proposition is[0, 0] (or, in
general,[αj , βj ], with αj ≤ α, βj ≤ β, andi 6= j), then
the DS model corresponding to (15) is equivalent to the
DS model corresponding to (14) when the OR operations
are computed as indicated by Definitions 3 and 4. Also, al-
though an infinite number of solutions satisfy (16), a use-
ful solution (e.g., for existential instantiation on inference
problems) is given bymϕ(xi) = α; mϕ(xi) = 1− β; and
mϕ({xi, xi}) = β − α, i = 1, 2, . . . , N . This solution
can be proven by successively applying the idempotency
property to the OR operator.
Definition 7 (Universal Quantifier in Uncertain Logic)
Consider the statement:

∀x ϕ(x), with uncertainty[α, β], (17)

wherex ∈ ΘX = {x1, x2, . . . , xN}. Then, we define the
DS theoretic model for (17) as:

N
∧

i=1

ϕ(xi), (18)

over the FoD ΘX′ = {ϕ(x1), ϕ(x2), . . . , ϕ(xN )} ×
{1,0}, subject to the constraint:

m(1) =
∑N

i=1
mϕ(xi) = α;

m(0) =
∑N

i=1
mϕ(xi) = 1 − β;

m(ΘX′) = β − α. (19)

Note that if the uncertainty of every propositionϕ(xi)
in (18) is [α, β], then the DS model corresponding to (18)
is equivalent to the DS model corresponding to (17) when
the AND operations are computed as indicated by Def-
initions 3 and 4. Also, although an infinite number of
solutions satisfy (19), a useful solution (e.g., for univer-
sal instantiation on inference) is given bymϕ(xi) = α;
mϕ(xi) = 1 − β; andmϕ({xi, xi}) = β − α, i =
1, 2, . . . , N . This solution can be proven by applying
idempotency to the AND operator.



6 Inference in Uncertain Logic
Inference in uncertain logic shares the fundamental prin-
ciples of classical logic, and adds the possibility of attach-
ing, tracking, and propagating uncertainties that may arise
on premises and/or rules. Due to the extensive number of
methods for logic inference, the scope of this section is
limited to the introduction of some of the most fundamen-
tal inference rules, along with some basic examples that
illustrate uncertain logic inference. For an extended defi-
nition of these rules and their application for inference in
the context of classical logic, we refer the reader to [22].

Modus Ponens (MP). This rule states that, whenever the
logic sentencesϕ =⇒ ψ andϕ have been established,
then it is acceptable to infer the sentenceψ as well. MP
extends to uncertain logic as follows. Consider:

ϕ1(x), with uncertainty[α1, β1];

ϕ2(y), with uncertainty[α2, β2]; and

ϕ1(x) =⇒ ϕ2(y), with uncertainty[αR, βR]. (20)

Then, given the uncertain premisesϕ1(x) =⇒ ϕ2(y)
andϕ1, MP allows us to infer the uncertain expression
ϕ2(y). Note that, if the uncertainty parameters[α2, β2]
are unknown, their value should be obtained by apply-
ing the methodology introduced in Section 4 above. It
can be shown that uncertain MP (as well as the infer-
ence rules introduced this section) lead to⊤σ, with σ =
[max(αR, 1 − βR),max(αR, 1 − βR)].

To better understand MP in uncertain logic, consider an
example whereα1 = β1 = α2 = β2 = 1. By using
the model in Definition 5, we can obtainαR = βR = 1.
Furthermore, given theϕ1(x) =⇒ ϕ2(y) andϕ1(x),
then we can inferϕ2(y) with uncertainty[α2 = β2] =
[1, 1]. This case represents a scenario with no uncertainty.

Now consider a scenario where there is uncertainty in the
rule, in such a way that[αR, βR] = [0.5, 1.0], and assume
that we have a model for the uncertainty ofϕ1(x) such that
α1 = β1 = 1. Then, MP allows us to inferϕ2(y), with
the uncertainty[α2, β2] obtained from the equationsαR =
max(1 − β1, α2) andβR = max(1 − α1, β2). Solving
these equations we obtainα2 = 0.5 andβ2 = 1.

Modus Tolens (MT). This rule states that, if we know that
ϕ =⇒ ψ, then we can infer¬ϕ if we believe thatψ
is false. MT extends to uncertain logic as follows. As-
sume that the uncertainty on each of the expressions in-
volved in MP are defined by (20). Then, given the uncer-
tain premisesϕ1(x) =⇒ ϕ2(y) and¬ϕ2, MT allows
us to infer the uncertain expression¬ϕ1(y). As with MP
above, if the uncertainty parameters[α2, β2] are unknown,
their value should be obtained by applying the methodol-
ogy introduced in Section 4.

Other rules of inference. Uncertain logic can be extended
by incorporating new rules of inference that already exist
in conventional logic inference. Some examples of new

rules of inference are: AND elimination (AE), AND intro-
duction (AI), universal instantiation (UI), and existential
instantiation (EI). The definition of these rules of infer-
ence is straightforward based on their definition for con-
ventional logic, and is not included in this manuscript.

Example. Consider the following problem, originally in-
troduced in [22]. We know that horses are faster than dogs
and that there is a greyhound that is faster than every rab-
bit. We know that Harry is a horse and that Ralph is a
rabbit. We also know that greyhounds are dogs and that
our speed relationship is transitive. Then:

∀x ∀y Horse(x) ∧ Dog(y) ⇒ Faster(x, y) (21a)

∃y Greyhound(y) ∧ (∀z Rabbit(z) ⇒ Faster(y, z)) (21b)

∀y Greyhound(y) ⇒ Dog(y) (21c)

∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z) ⇒ Faster(x, z) (21d)

Horse(Harry) (21e)

Rabbit(Ralph). (21f)

Using these logic statements, it can be inferred that Harry
is faster than Ralph (i.e., Faster(Harry, Ralph)) [22].

Now, let us introduce uncertain logic operations by assum-
ing that the logic premise (21a) is uncertain, with uncer-
tainty [α1, β1], and that there is no uncertainty in premises
(21b)-(21f). This represents some uncertainty in the sen-
tence “horses are faster than dogs”, which may occur if
we consider cases such as sick or old horses compared
to healthy dogs. The steps that are used for inferring
Faster(Harry, Ralph), as well as the uncertainty in each of
the steps of this process are in Table 4. It is easy to verify
that, ifα1 = β1 = 1. The initial steps in the inference pro-
cess are simply the reproduction of (21a)-(21f) as premises
1 to 6. Steps 7 to 13 can be obtained from applying EI, AI,
UI, and MP rules to premises 2 to 6. In our initial exam-
ple (only the first premise is uncertain), the uncertainty in
premises 2 to 6 is[αi, βi] = [1, 1], i = 2, 3, . . . , 6. Uncer-
tain logic operations become relevant in steps 14 to 19. For
example, the uncertainty in premise 16 is obtained from
solving the system of equations shown in the correspond-
ing row in Table 4. This system of equations is derived
from Definition 5. As a consequence, any change in the
uncertainty[α1, β1] directly affects[α16, β16]. Figure 1
illustrates the result in a probabilistic scenario. Note that,
for us to be able to conclude “Faster( Harry, Ralph )” given
the initial uncertainty,α4 must be larger thanα1. Similar
results can be further verified by modifying uncertainties
on the premises, whose values can be computed as indi-
cated in Table 4.

7 Conclusions
We have introducedUncertain Logic, a DS theoretic ap-
proach for first order logic operations. Uncertain logic
provides support for handling variables and quantifiers,
in addition to fundamental logic operations (i.e.,¬,∧,∨).
The framework introduced in this paper allows system-
atic generation of mass assignments based on uncertain



Table 4: Steps followed for the inference of the sentence Faster(Harry, Ralph) based on the premises defined in (21). The
uncertainty is obtained from applying uncertain logic definitions and rules to the example described in Section 6.

Logic Formula Premises & Rule Uncertainty

1 ∀x ∀y Horse(x) ∧ Dog(y) ⇒ Faster(x, y) ∆ [α1, β1]
2 ∃y Greyhound(y) ∧ (∀z Rabbit(z) ⇒ Faster(y, z)) ∆ [α2, β2] = [1, 1]
3 ∀y Greyhound(y) ⇒ Dog(y) ∆ [α3, β3] = [1, 1]
4 ∀x ∀y ∀z Faster(x, y) ∧ Faster(y, z) ⇒ Faster(x, z) ∆ [α4, β4]
5 Horse(Harry) ∆ [α5, β5]
6 Rabbit(Ralph) ∆ [α6, β6] = [1, 1]
7 Greyhound(Greg) ∧ (∀z Rabbit(z) =⇒ Faster(Greg, z)) 2, EI [α7, β7] = [1, 1]
8 Greyhound(Greg) 7, AE [α8, β8] = [1, 1]
9 ∀z Rabbit(z) =⇒ Faster(Greg, z) 7, AE [α9, β9] = [1, 1]
10 Rabbit(Ralph) =⇒ Faster(Greg, Ralph) 9, UI [α10, β10] = [1, 1]
11 Faster(Greg, Ralph) 10, 6, MP [α11, β11] = [1, 1]
12 Greyhound(Greg) =⇒ Dog(Greg) 3, UI [α12, β12] = [1, 1]
13 Dog(Greg) 12, 8, MP [α13, β13] = [1, 1]
14 Horse(Harry) ∧ Dog(Greg) =⇒ Faster(Harry, Greg) 1, UI [α14, β14] = [α1, β1]
15 Horse(Harry) ∧ Dog(Greg) 5, 13, AI [α15, β15] = [α5, β5]
16 Faster(Harry, Greg) 14, 15, MP [α16, β16] obtained from solving

(

α14 = max(1 − β15, α16)

β14 = max(1 − α15, β16)

17 Faster(Harry, Greg) ∧ Faster(Greg, Ralph) =⇒ Faster(Harry, Ralph) 4, UI [α17, β17] = [α4, β4]
18 Faster(Harry, Greg) ∧ Faster(Greg, Ralph) 16, 11, AI [α18, β18] = [α16, β16]
19 Faster(Harry, Ralph) 17, 18, MP [α19, β19] obtained from solving

(

α17 = max(1 − β18, α19)

β17 = max(1 − α18, β19)

α
1
 = β

1

α 4 =
 β

4

Uncertainty (α
19

 = β
19

) when premises 1 and 4 are uncertain (probabilistic scenario)
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Figure 1: Uncertainty in Premise 19 of Table 4.

first order logic formulas. Furthermore, by using appropri-
ate fusion operators, higher-level applications are possible
within this framework, such as inference and resolution
based on uncertain data models.
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Appendix A. BBA for LC CFE-based AND

Based on the definition of the CFE fusion operator:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (22)

Substituting the CFE coefficients for the AND operation, as in-
dicated by Definition 4, in (22):

m(x) = 2γ(x) + 2γ(Θ)(α1 + α2).

• Whenδ1 + δ2 6= 0:

m(x) =
α(β1 + β2) − β(α1 + α2)

δ1 + δ2
+

δ(α1 + α2)

δ1 + δ2

= 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β + δ(α1 + α2)).

Sinceδ = β − α:

m(x) = 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β

+ α1β + α2β − α1α − α2α)

= 1
δ1+δ2

(αβ1 + αβ2 − α1α − α2α)

= 1
δ1+δ2

(α(β2 − α2 + β1 − α1)). (23)

Substitutingδ1 = β1 − α1 and δ2 = β2 − α2 in (23):
m(x) = α.

• Whenδ1 + δ2 = 0, and makingγ(Θ) = 0:

m(x) = 2γ(x) = α.

The massm(x) is given by:

m(x) = γ1(x) + γ1(Θ)m1(x) + γ2(x) + γ2(Θ)m2(x). (24)

Substituting the CFE coefficients as indicated by Definition4
in (24):

m(x) = 2γ(x) + 2γ(Θ)(2 − β1 − β2).

• Whenδ1 + δ2 6= 0:

m(x) =
δ1 + δ2 − β(2 − α1 − α2) + α(2 − β1 − β2)

δ1 + δ2

+
δ(2 − β1 − β2)

δ1 + δ2

= 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + δ(2 − β1 − β2)).



Sinceδ = β − α:

m(x) = 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + (β − α)(2 − β1 − β2))

= 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2 − 2 + β1 + β2))

= 1
δ1+δ2

(δ1 + δ2 − β(β1 − α1 + β2 − α2)).

Substitutingδ1 = β1 − α1 andδ2 = β2 − α2 in (24):

m(x) = 1 − β.

• Whenδ1 + δ2 = 0, and makingγ(Θ) = 0:

m(x) = 2γ(x) = 1 − α = 1 − β.

Finally, m(Θ) = 1 − m(x) − m(x) = β − α.

Appendix B. Properties of the LC CFE-based
Uncertain Logic operations

Consider logic expressions of the formϕ(xi), with 1 ≤ i ≤ N.

Then, the following properties are satisfied:

1. Idempotency: This property is defined by: ϕi(x) ∧
ϕi(x) = ϕi(x) ∨ ϕi(x) = ϕi(x). In this case:

m∧(x) = α = min(αi, αi) = αi

= max(αi, αi) = α = m∨(x);

m∧(x) = 1 − β = 1 − min(βi, βi) = 1 − βi

= 1 − max(βi, βi) = 1 − β = m∨(x);

m∧(Θ) = β − α = βi − αi

= β − α = m∨(Θ).

2. Commutativity: This property refers to satisfying:ϕ1(x)∧
ϕ2(x) = ϕ2(x) ∧ ϕ1(x),
and ϕ1(x) ∨ ϕ2(x) = ϕ2(x) ∨ ϕ1(x). Let us call
mϕi∧ϕj

(·) the BBA resulting fromϕi(x) ∧ ϕj(x), i =
{1, 2}. Then, for the AND operation:

mϕ1∧ϕ2
(x) = min(α1, α2)

= min(α2, α1) = mϕ2∧ϕ1
(x)

mϕ1∧ϕ2
(x) = 1 − min(β1, β2)

= 1 − min(β2, β1) = mϕ2∧ϕ1
(x)

mϕ1∧ϕ2
(Θ) = min(β1, β2) − min(α1, α2)

= min(β2, β1) − min(α2, α1)

= mϕ2∧ϕ1
(Θ).

A proof for commutativity for the logical OR operation is
obtained by following a similar procedure.

3. Associativity: The associative property is defined by:
ϕ1(x) ∧ [ ϕ2(x)∧ϕ3(x) ] = [ϕ1(x)∧ϕ2(x) ] ∧ ϕ3(x),
and ϕ1(x) ∨ [ ϕ2(x) ∨ ϕ3(x) ] = [ ϕ1(x) ∨
ϕ2(x) ] ∨ ϕ3(x). Let us call ϕ4(·) the model gener-
ated byϕ2(x) ∧ ϕ3(x), andϕ5(·) the model generated by
ϕ1(x)∧ϕ2(x). Also, let us callmϕi∧ϕj

(·) the BBA result-
ing fromϕi(x)∧ ϕj(x), i = {1, . . . , 5}. Our goal (for the

AND operation) is to show that the model forϕ1(·)∧ϕ4(·)
is equivalent to the model forϕ5(·) ∧ ϕ3(·):

mϕ1∧ϕ4
(x) = min(α1, min(α2, α3))

= min(min(α1, α2), α3) = mϕ5∧ϕ3
(x)

mϕ1∧ϕ4
(x) = 1 − min(β1, min(β2, β3))

= 1 − min(min(β1, β2), β3)

= mϕ5∧ϕ2
(x)

mϕ1∧ϕ4
(Θ) = min(β1, min(β2, β3))

− min(α1, min(α2, α3))

= min(min(β1, β2), β3)

− min(min(α1, α2), α3) = mϕ5∧ϕ3
(Θ).

A proof for associativity for the logical OR operation is
obtained by following a similar procedure.

4. Distributivity: Distributive operations satisfy:
ϕ1(xi) ∧ [ ϕ2(xj) ∨ ϕ3(xk) ] = [ ϕ1(xi) ∧
ϕ2(xj) ] ∨ [ ϕ1(xi)∧ϕ3(xj) ], andϕ1(xi) ∨ [ ϕ2(xj)∧
ϕ3(xk) ] = [ ϕ1(xi) ∨ ϕ2(xj) ] ∧ [ ϕ1(xi) ∨ ϕ3(xj) ].
Let us call ϕ4(·) the model generated by
ϕ1(x) ∧ [ϕ2(x) ∨ ϕ3(x)], and ϕ5(·) the model gen-
erated by[ϕ1(x) ∧ ϕ2(x)] ∨ [ϕ1(x) ∧ ϕ3(x)]. Our goal is
to show that the model forϕ4(·) is equivalent to the model
for ϕ5(·). In general, these two models are:

mϕ4
(x) = min(α1, max(α2, α3));

mϕ4
(x) = 1 − min(β1, max(β2, β3));

mϕ4
(Θ) = min(β1, max(β2, β3));

− min(α1, max(α2, α3)); and

mϕ5
(x) = max(min(α1, α2), min(α1, α3));

mϕ5
(x) = 1 − max(min(β1, β2), min(β1, β3));

mϕ5
(Θ) = max(min(β1, β2), min(β1, β3))

− max(min(α1, α2), min(α1, α3)).

Now, consider the focal setx. We have three cases (other
possible cases are equivalent to these three after applying
the commutativity rule): (a)α1 ≤ α2 ≤ α3; (b) α2 ≤
α1 ≤ α3; and (c)α2 ≤ α3 ≤ α1. The mass associated to
the focal setx is:

(a) mϕ4
(x) = α1 = mϕ5

(x);

(b) mϕ4
(x) = α1 = mϕ5

(x); and

(c) mϕ4
(x) = α3 = mϕ5

(x);

i.e., mϕ4
(x) = mϕ5

(x) in all the cases. For the focal set
x we also have three basic cases: (a)β1 ≤ β2 ≤ β3; (b)
β2 ≤ β1 ≤ β3; and (c)β2 ≤ β3 ≤ β1; which render:

(a) mϕ4
(x) = 1 − β1 = mϕ5

(x);

(b) mϕ4
(x) = 1 − β1 = mϕ5

(x); and

(c) mϕ4
(x) = 1 − β3 = mϕ5

(x);

Based on the cases above, it can be shown that also
mϕ4

(Θ) = mϕ5
(Θ), proving distributivity for the logical

AND operation. A proof for distributivity for the logical
OR operation is obtained by following a similar procedure.
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