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Abstract—Numerous applications rely on implication rules
either as models of causal relations among data, or as components
of their reasoning and inference systems. Although mature and
robust models of implication rules already exist for “perfect” (e.g.,
boolean) scenarios, there is still a need for improving implication
rule models when the data (or system models) are uncertain, am-
biguous, vague, or incomplete. Decades of research have produced
models for probabilistic and fuzzy systems. However, the work
on uncertain implication rules under the Dempster-Shafer (DS)
theoretical framework can still be improved. Given that DS theory
provides increased robustness against uncertain/incomplete data,
and that DS models can easily be converted into probabilistic and
fuzzy models, a DS-based implication rule that is consistent with
classical logic would definitely improve inference methods when
dealing with uncertainty. We introduce a DS-based uncertain
implication rule that is consistent with classical logic. This model
satisfies reflexivity, contrapositivity, and transitivity properties,
and is embedded into an uncertain logic reasoning system that is
itself consistent with classical logic. When dealing with “perfect”
(i.e., no uncertainty) data, the implication rule model renders
the classical implication rule results. Furthermore, we introduce
an ambiguity measure to track degeneracy of belief models
throughout inference processes. We illustrate the use and behavior
of both the uncertain implication rule and the ambiguity measure
in a human-robot interaction problem.

I. INTRODUCTION

Implication rules, which model elementary statements of
the form “if A, then B,” are extensively used for reasoning and
inference in a variety of areas such as target identification [1],
data mining [2], credibility estimation [3], and sensor networks
[4]. Being at the backbone of inference engines in numerous
applications, robust methods for handling implication rules in
“perfect” scenarios (i.e., those scenarios that can be fully char-
acterized without uncertainty) already exist. However, the use
of implication rules in scenarios characterized by ambiguous,
vague, or incomplete information, is still a matter of study.

The most mature models of uncertain implication rules
are based on probabilistic and fuzzy logic theories. More
recent approaches have introduced implication rules in the
interval-based Dempster-Shafer (DS) theoretic models that can
represent upper and lower bounds to probabilistic models, and
that can be converted to probability distributions. DS models
would benefit from enhanced uncertain implication models
that, for example, preserve the characteristics of classical logic
implication rules.

A. Uncertain implication rules

One of the most common models of uncertain implication
rules is based on Bayesian statistics. In particular, conditional
probabilities are often used to model causal relations between
data in a probabilistic context [5]. However, it is widely ac-
knowledged that the use of conditional probabilities as models
for uncertain implication rules is not always appropriate [5],
[6]. Further refinements of probabilistic models, such as the
ones presented in [7] and [8], aim at enhancing consistency of
the uncertain implications.

Fuzzy implications have also been extensively studied,
rendering multiple models such as the Mamdani [9] and
Zadeh [10] implications. Some of these models are tuned
for particular applications. With a wide variety of implication
models, the problem has often translated into selecting the
appropriate implication rule for a given application [11]. In
addition, fuzzy logic reasoning systems usually demand very
specific domain knowledge, as it requires designing the mem-
bership functions that better represent the uncertainties in the
data and/or models.

As an alternative, DS implication models aim at extending
“perfect” and relatively simpler logic reasoning systems with
the capability of modeling uncertainties based on intervals.
Some early approaches include the implication models intro-
duced in [12] and [13]. Based on the Dempster Combination
Rule, these models enable only small fragments of classical
logic inferences under the DS framework. They satisfy some
basic properties such as reflexivity, transitivity, and contrapos-
itivity. These models, however, do not support a wider logic-
consistency analysis that could make them useful to enhance
classical logic inference methods with uncertainty measures.
In this paper, we propose an approach that aims at enhancing
consistency with classical propositional logic operations.

B. Contributions

In this paper we focus on DS-based models for implication
rules. We analyze conditions that may lead to degenerate belief
models when reasoning with existing (DCR-based) uncertain
implication rules. Furthermore, we introduce an ambiguity
measure that can track the degeneracy of belief models, giving
an indication of the usefulness of the inference result. This
ambiguity measure is based on plausibility transformations.
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In addition, we introduce a classically-preserving implica-
tion rule for DS models. This implication rule is based on the
Conditional Fusion Equation [14]. The preservation of classical
logic is attained by ensuring that the implication model and
logic reasoning system satisfy basic properties, inherited from
classical logic, such as reflexivity, transitivity, contrapositivity,
idempotency, associativity, commutativity, and distributivity.
Furthermore, when the uncertainty intervals [α, β] that char-
acterize an implication rule and its operands are such that
they represent a perfect scenario (i.e., α = β ∈ {0, 1}),
the implication rule renders the corresponding classical logic
results.

II. NOTATION AND BASIC DEFINITIONS

DS Theory is defined for a discrete set of elementary
events related to a given problem. This set is called the
Frame of Discernment (FoD). In general, a FoD is defined as
Θ = {θ1, θ2, . . . , θN}, and has a finite cardinality N = |Θ|.
The power set of Θ is defined as a set containing all the
possible subsets of Θ, i.e., 2Θ = {A : A ⊆ Θ}. Next we
introduce some basic definitions of DS Theory, as required for
explaining models for uncertain implication rules. For details
on DS Theory, we refer the reader to [15], [16].

A. Basic Belief Assignment

A Basic Belief Assignment (BBA) or mass assignment is
a mapping mΘ(·) : 2Θ → [0, 1] such that:

∑

A⊆ΘmΘ(A) =
1 and mΘ(∅) = 0. The BBA measures the support assigned
to A ⊆ Θ. Masses in DS theory can be assigned to any
singleton or non-singleton proposition. A belief function is
called Bayesian if each focal element in Θ is a singleton. The
subsets A such that m(A) > 0 are referred to as focal elements
of the BBA. The set of focal elements is the core FΘ. The triple
{Θ,FΘ,mΘ(·)} is referred to as Body of Evidence (BoE).

B. Belief and Plausibility

Given a BoE {Θ,F ,m}, the belief function Bel : 2Θ →
[0, 1] is defined as: BelΘ(A) =

∑

B⊆AmΘ(B). Bel(A) repre-
sents the total belief that is committed to A without also being
committed to its complement AC . The plausibility function
Pl : 2Θ → [0, 1] is defined as: PlΘ(A) = 1 − BelΘ(AC). It
corresponds to the total belief that does not contradict A. The
uncertainty of A is: [BelΘ(A),PlΘ(A)].

C. Combination Rules

Dempster Combination Rule (DCR). For two focal sets
C ⊆ Θ and D ⊆ Θ such that B = C ∩ D, and two
BBA’s mj(·) and mk(·), the combined mjk(B) is given
by: mjk(B) = 1

1−Kjk

∑

C∩D=B;B 6=∅mj(C)mk(D), where

Kjk =
∑

C∩D=∅mj(C)mk(D) 6= 1 is referred to as the
conflict between the two BBAs; Kjk = 1 identifies two
totally conflicting BBAs for which DCR-based fusion cannot
be carried out.

Conditional Fusion Equation (CFE). A combination rule
that is robust when confronted with conflicting evidence is the
Conditional Fusion Equation (CFE) [17], which is based on
the DS theoretic conditional approach [14]. The CFE combines

M BBAs as [17]: m(B) =
∑M

i=1

∑

Ai∈Ai
γi(Ai)mi(B|Ai),

where
∑M
i=1

∑

Ai∈Ai
γi(Ai) = 1. Here Ai = {A ∈ Fi :

Beli(A) > 0}, i = 1, . . . ,M. The conditionals are computed
using Fagin-Halperns’ Rule of Conditioning [18].

III. DCR-BASED UNCERTAIN IMPLICATIONS

As mentioned in Section I above, there are a number of
approaches for modeling uncertain implications. Most of these
models are based on DCR, including the models presented
in [1], [12], and [13]. The latter, introduced by Benavoli,
et. al., has been shown to satisfy important properties from
classical logic. In particular, it satisfies reflexivity, transitivity,
and contrapositivity [13]. These properties make this rule
one of the most complete DS representations of uncertain
implications.

In this section we briefly describe the uncertain implication
in [13], as it applies to a model of uncertain logic reasoning.
Then, we show some limitations of this model, and introduce
a new ambiguity measure of a BBA. This measure can aid
in identifying if inferred BBAs provide useful information for
making decisions given uncertain evidence.

A. Uncertain Logic Inference based on DCR

Consider the propositions ϕ(x), with uncertainty [αx, βx],
and ψ(y), with uncertainty [αy, βy]. DS models for these
propositions can be defined on the FoDs Θϕ,x = {ϕ(x) ×
1, ϕ(x) × 0}, and Θψ,y = {ψ(y) × 1, ψ(y) × 0}. The focal
element ϕ(x) × 1 represents the event “x satisfies property
ϕ”, while the focal element ϕ(x) × 0 represents the event
“x does not satisfy property ϕ”. Similarly, the focal element
ψ(y) × 1 represents the event “y satisfies property ψ”, while
the focal element ψ(y) × 0 represents the event “y does not
satisfy property ψ”. When no confusion can arise, we will
represent the elements of Θϕ,x as {x, x}, and the elements of
Θψ,y as {y, y}. The BBAs that model these propositions are
then:

ϕ(x) : mx(x) = αx;mx(x) = 1 − βx; mx(Θϕ,x) = βx − αx;
(1)

and

ψ(y) : my(y) = αy;my(y) = 1 − βy; my(Θψ,y) = βy − αy.
(2)

Now, consider the uncertain implication rule ϕ(x) =⇒ ψ(y),
with uncertainty [αR, βR]. Benavoli’s implication renders, in
this case:

mxy(C) =







αR, if C = (x× y) ∪ (x× Θψ,y);

1 − βR, if C = (x× y) ∪ (x× Θψ,y);

βR − αR, if C = Θϕ,x × Θψ,y,
(3)

defined over the FoD Θϕ,x × Θψ,y. If the uncertainty pa-
rameters of the antecedent (i.e., [αx, βx]) and the rule (i.e.,
[αR, βR]) are known, then it is possible to fuse mx with mxy,
and marginalize into Θψ,y to obtain the uncertainty parameters
of the consequent, [αy, βy]. Using DCR these parameters are:

αy = αxαR, and βy = 1 − (1 − βx)(1 − βR). (4)

Although (4) can be useful in estimating uncertainty of the
consequent and solving some inference problems, it should
be used carefully, as there may exist conditions that create
problems for this type of inference. For example, the uncer-
tainty of the resulting BBAs could increase if we cascade
several implication rules. In particular, consider the cascaded
rule model ϕ1 =⇒ ϕ2; ϕ2 =⇒ ϕ3; . . .; ϕN−1 =⇒ ϕN .
Also, let [αi,j , βi,j ] be the uncertainty interval of the rule
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ϕi =⇒ ϕj . If we obtain evidence for the truth of ϕ1 defined
as [α1, β1], then it can be shown that the uncertainty interval
[αN , βN ] obtained from (3) and (4) is:

αN = α1

N−1
∏

i=1

αi,i+1, and

βN = 1 − (1 − β1)

N−1
∏

i=1

(1 − βi,i+1). (5)

If αi,i+1 = α, βi,i+1 = β, ∀i, i = 1, 2, · · · , N − 1, and 0 ≤
α < β < 1, (5) becomes:

αN = α1α
N−1, and βN = 1 − (1 − β1)(1 − β)N−1.

Note that as N → ∞, [αN , βN ] → [0, 1]. In this case, the
uncertainty of the consequent is increasing every time we
incorporate one new rule. A similar problem occurs if there
is at least one value αi,i+1 = 0, and one value βi,i+1 = 1.
We call this event a degeneration of the resulting BBAs. In
addition to the cascaded implications, it can also be shown
that other DCR-based logic operations could create problems
when used for logic inference, e.g., DCR models for AND and
OR operations [19].

B. Quantifying the quality of fusion results

To help quantify the degree of degeneracy of BBAs as the
DCR-based model above is applied, we introduce an ambiguity
measure λ of a BBA; 0 ≤ λ ≤ 1; with some important
characteristics, namely: 1) λ→ 0 as the BBA degenerates (i.e.,
as the uncertainty grows); 2) λ → 1 as the BBA represents a
more exact model (i.e., the BBA gets close to a “perfect” model
where α = β ∈ {1, 0}); and 3) λ→ 0 as the values of α and
1 − β get closer to each other.

Definition 1 (Ambiguity measure): Let Θ = {x1, x2,
. . . , xn} be a FoD, and let m be a BBA defined on Θ. Then,
an ambiguity measure λ is defined as:

λ = 1 +
∑

x∈Θ

Pm(x) log (Pm(x)) , (6)

where Pm(x) is the probability of the event x occurring.
Pm(x) is obtained from a DS-to-probability transformation
applied to the BBA m.

Note that this ambiguity measure is similar to the measure
introduced in [20]. However, Definition 1 does not rely on the
pignistic transformation. This gives us flexibility to select the
transformation that renders an ambiguity measure that satisfies
the characteristics mentioned above. From several probability
transformations available (see, for example, [21], [22], [23],
[24], and [25]), we have found that, unlike the others, the
plausibility transformation [25] preserves these characteristics.
For our dichotomous mass functions (true/false events as in (1)
and (2) ), the plausibility transformation is defined as:

P Pl(x) = 1
η

Pl(x) and P Pl(x) = 1
η

Pl(x), (7)

with η = Pl(x) + Pl(x). Then, the ambiguity measure λ
becomes:

λ = 1 + P Pl(x) log2[P Pl(x)] + P Pl(x) log2[P Pl(x)]. (8)

Figure 1 shows how λ changes as a function of the uncertainty
parameters [α, β] that characterize a dichotomous BBA.

λ : Ambiguity Measure

α

β
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Fig. 1. Ambiguity measure λ as a function of the uncertainty parameters
[α, β] that characterize a dichotomous BBA. A higher value of λ indicates
that the BBA provides stronger evidence of the truth (or falseness) of the focal
elements in the corresponding BoE.

IV. CFE-BASED UNCERTAIN IMPLICATIONS

A new method for reasoning with uncertain evidence is
introduced in [19]. This framework is consistent with classical
logic. This means that it inherits fundamental properties such
as idempotency, associativity, commutativity, and distributiv-
ity for the AND and OR operators. Furthermore, under no
uncertainty (i.e., uncertainty intervals defined by either [0, 0]
or [1, 1]), operations in this framework converge to those of
classical logic. We refer to this framework as uncertain logic.
In the remainder of this section, we summarize the basic (NOT,
AND, OR) operations, and then we elaborate on the uncertain
implication rule and its properties. For details and proofs of
properties of the basic operations of uncertain logic, we refer
the reader to [19].

A. CFE-based uncertain logic

Uncertain logic deals with propositions (ϕ1, ϕ2, . . .) whose
truth is uncertain. The level of uncertainty is modeled with DS
theory, and is bounded in the range [0, 1]. In general, uncertain
logic deals with expressions of the form:

ϕ(x), with uncertainty [α, β], (9)

where [α, β] refers to the corresponding confidence interval,
0 ≤ α ≤ β ≤ 1, x ∈ Θx, and Θx = {x1, x2, . . . , xn}. A DS
model for expression (9) can be defined over the logical FoD
Θϕ,x = {ϕ(x)×1, ϕ(x)×0}. This FoD contains two mutually
exclusive elements: the extent to which we are confident that
the property/proposition ϕ applies and does not apply to x,
respectively. When no confusion can arise, we will represent
the elements of Θϕ,x as {x, x}. Using this FoD, a DS model
that would capture the information in (9) is:

ϕ(x) : m(ϕ(x) × 1) = α; m(ϕ(x) × 0) = 1 − β;

m({ϕ(x) × 1, ϕ(x) × 0}) = β − α. (10)

Using the alternative notation for the elements in Θϕ,x, this is
equivalent to:

ϕ(x) : m(x) = α; m(x) = 1−β; m(Θϕ,x) = β−α, (11)

defined over the FoD Θϕ,x = {x, x}.
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If we are interested in modeling the uncertainty of a
proposition ϕ applying to particular elements xi ∈ Θx, we
can extend (9) as:

ϕ(xi), with uncertainty [αi, βi], (12)

defined over the FoD Θϕ,xi
= {xi, xi}, with [αi, βi] being the

corresponding confidence interval, and 0 ≤ αi ≤ βi ≤ 1.

Similarly, if we are interested in modeling the uncertainty
of a particular proposition ϕi ∈ {ϕ1, ϕ2, . . . , ϕM} applying to
an element x ∈ Θx, we can extend (9) as:

ϕi(x), with uncertainty [αi, βi], (13)

defined over the FoD Θϕi,x = {x, x}, with [αi, βi] being the
corresponding confidence interval, and 0 ≤ αi ≤ βi ≤ 1.

In a more general case, we could also be interested in
modeling the uncertainty of particular propositions ϕi ∈
{ϕ1, ϕ2, . . . , ϕM} applying to particular elements xj ∈ Θx.
In this case:

ϕi(xj), with uncertainty [αi,j , βi,j ], (14)

defined over the FoD Θϕi,xj
= {ϕi(xj) × 1, ϕi(xj) × 0} =

{xi,j , xi,j}, with [αi,j , βij ] being the corresponding confidence
interval, and 0 ≤ αi,j ≤ βi,j ≤ 1.

Based on the FoDs defined above, we can define logic
operations such as NOT (¬), AND (∧), and OR (∨). In
the following, we define these basic operations. Note that,
whenever possible, we define operations in a simple model
(e.g., based on (9) instead of (14) ). However, the definitions
extend to the more complex cases.

Logical Negation. Given an uncertain proposition ϕ(x)
defined as in (9), and its corresponding DS model defined
by (11), the logical negation of ϕ(x) is given by:

¬ϕ(x), with uncertainty [1 − β, 1 − α], (15)

where we have used the complementary BBA [26] correspond-
ing to (11) as the DS theoretic model for ¬ϕ(x), i.e.,

¬ϕ(x) : mc(x) = 1− β; mc(x) = α; mc(Θϕ,x) = β−α.
(16)

Logical AND/OR. Suppose that we have M logic
predicates, each providing a statement regarding the truth of x
with respect to the proposition ϕi(·) as defined by model (13).
Then, the corresponding DS models are

ϕi(x) : mi(x) = αi;mi(x) = 1 − βi;mi(Θϕi,x) = βi − αi,
(17)

for i = 1, 2, . . . ,M . The DS models for the logical AND and
OR of the statements in (17) are:

M
∧

i=1

ϕi(x) : m(·) =

M
⋂

i=1

mi(·);

and

M
∨

i=1

ϕi(x) : m(·) =

(

M
⋂

i=1

mc
i(·)

)c

, (18)

respectively, where
⋂

denotes an appropriate fusion operator.
In particular, if CFE-based fusion is used, these operators can
be tuned to ensure consistency with classical logic. For the case
M = 2, one way of attaining this consistency is by selecting
the CFE coefficients as: γ1(x) = γ2(x) ≡ γ(x); γ1(x) =
γ2(x) ≡ γ(x); γ1(Θ) = γ2(Θ) ≡ γ(Θ), where γ(x), γ(x),
and γ(Θ) are defined as follows.

i. Logical AND: If δ1 + δ2 6= 0:

γ(x) =
α(β1+β2)−β(α1+α2)

2(δ1+δ2)
;

γ(x) = 1
2
−

β(2−α1−α2)−α(2−β1−β2)

2(δ1+δ2)
; γ(Θ) = δ

δ1+δ2
.

If δ1 + δ2 = 0, i.e., α1 = β1 and α2 = β2:

γ(x) = α−γ(Θ) (α1+α2)
2

;

γ(x) = (1−α)−δ(Θ) (2−α1−α2)
2

; γ(Θ) = arbitrary.

ii. Logical OR: If δ1 + δ2 6= 0:

γ(x) = 1
2
−

β(2−α1−α2)−α(2−β1−β2)
2(δ1+δ2)

;

γ(x) = α(β1+β2)−β(α1+α2)
2(δ1+δ2)

; γ(Θ) = δ
δ1+δ2

.

If δ1 + δ2 = 0, i.e., α1 = β1 and α2 = β2:

γ(x) = α−γ(Θ) (α1+α2)
2

;

γ(x) = (1−α)−δ(Θ) (2−α1−α2)
2

; γ(Θ) = arbitrary.

In the equations above: α = min(α1, α2); β = min(β1, β2);

α = max(α1, α2); β = max(β1, β2); δ1 = β1 − α1; δ2 =
β2 − α2; δ = β − α; and δ = β − α.

When used for the AND operation, this selection of coef-
ficients renders:

ϕ1(x) ∧ ϕ2(x) : m(x) = α; m(x) = 1 − β; and

m(Θϕ1,x × Θϕ2,x) = β − α. (19)

When used for the OR operation, this selection of coefficients
renders:

ϕ1(x) ∨ ϕ2(x) : m(x) = α; m(x) = 1 − β; and

m(Θϕ1,x × Θϕ2,x) = β − α. (20)

B. CFE-based implication rules

An uncertain logic implication that is consistent with
classical logic can be defined by extending the (classical)
definition for the implication rule based on AND/OR operators
to the uncertain logic framework. The classical logic definition
is: Given two statements ϕ1(·) and ϕ2(·), an implication rule
in propositional logic has the property:

ϕ1(x) =⇒ ϕ2(y) ≡ ¬ϕ1(x) ∨ ϕ2(y)

≡ ¬ (ϕ1(x) ∧ ¬ϕ2(y)) ,

where xi ∈ Θx and yj ∈ Θy. Now, consider the case where the
antecedent ϕ1(x) and/or the consequent ϕ2(y) are/is uncertain,
with uncertainty intervals [αϕ1,x, βϕ1,x] and [αϕ2,y, βϕ2,y],
respectively. Furthermore, suppose that said uncertainty is
represented via the DS theoretic models m1(·) and m2(·) over
the logical FoDs Θϕ1,x and Θϕ2,y , respectively (as in (13)).
Then, the implication rule ϕ1(·) =⇒ ϕ2(·) is taken to have
the following DS model:

mϕ1→ϕ2
(·) = (mc

1 ∨m2)(·) = (m1 ∧m
c
2)
c(·), (21)

over the FoD Θϕ1,x × Θϕ2,y. This model renders the BBA:

ϕ1(x) =⇒ ϕ2(y) :

mϕ1→ϕ2
(x× Θϕ2,y) = 1

2αR;

mϕ1→ϕ2
(Θϕ1,x × y) = 1

2αR;

mϕ1→ϕ2
(x× Θϕ2,y) = 1

2 (1 − βR);

mϕ1→ϕ2
(Θϕ1,x × y) = 1

2 (1 − βR);

mϕ1→ϕ2
(Θϕ1,x × Θϕ2,y) = βR − αR, (22)
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with αR = max(1−β1, α2) and βR = max(1−α1, β2). Note
that αR and βR define the uncertainty interval [αR, βR] of the
implication rule. This interval is obtained from projecting the
BBA defined in (22) into the true-false BoE {1,0}, i.e.,:

mϕ1→ϕ2
(1) = mϕ1→ϕ2

(x× Θϕ2,y)

+mϕ1→ϕ2
(Θϕ1,x × y) = αR;

mϕ1→ϕ2
(0) = mϕ1→ϕ2

(x× Θϕ2,y)

+mϕ1→ϕ2
(Θϕ1,x × y) = 1 − βR;

mϕ1→ϕ2
({1,0}) = mϕ1→ϕ2

(Θϕ1,x × Θϕ2,y) = βR − αR.
(23)

The DS models for implication rules defined by (21) provide
us with an important inference tool. For example, given two
models m1(·) and m2(·) we could model the uncertainty of
an implication rule ϕ1(x) =⇒ ϕ2(y). Also, if we know a
model mϕ1→ϕ2

(·) for the implication rule, but we do not know
one of the arguments (e.g., we do not know m2(·)), we could
obtain models for the unknown argument. In this case:

α2 =







αR, if αR > 1 − β1;

[0, αR], if αR = 1 − β1; and

no solution, otherwise,

(24)

and

β2 =







βR, if βR > 1 − α1;

[0, βR], if βR = 1 − α1; and

no solution, otherwise.

(25)

Note that, unlike the DCR-based uncertain implication de-
scribed in Section III, if there is not enough evidence in m1(·)
to support a conclusion on m2(·), then there is no solution for
[α2, β2] in the CFE-based implication described above. Then,
a metric such as the ambiguity measure (λ) introduced in Sec-
tion III becomes less necessary. Other important observations
regarding the CFE-based implication are:

1) In the perfect case (i.e., α1 = β1 ∈ {1,0} and α2 =
β2 ∈ {1,0}), the CFE-based uncertain implication rule
converges to the conventional logic result (see Table I).

2) Given a pair of uncertainty intervals [α1, β1] and
[αR, βR], it is not always possible to infer anything about
a model for the consequent (i.e., m2(·)). This is consistent
with the application of the Modus Ponens (MP) rule,
according to which, if we know ϕ1(x) =⇒ ϕ2(y),
and also that ϕ1(x) is true, then we can infer that ϕ2(y)
is true. However, if we know that ϕ1(x) is false (i.e.,
¬ϕ1(x) is true), we cannot say anything about ϕ2(y).

3) Furthermore, once we have enough support in m1(·) to
infer something regarding m2(·), the only conclusion that
we can provide is that m2(·) is as uncertain as mR(·).
That is, after we have gathered a certain amount of
evidence regarding the truth of the antecedent, getting
more evidence is not going to affect the confidence we
have on the truth of the consequent (α2 is bounded by
αR, and β2 is bounded by βR).

4) When αR = 1−β1 and βR = 1−α1, an infinite number
of solutions exist for [α2, β2]. In this case, we could use
the minimum commitment criterion to decide α2 = 0 and
β2 = βR.

TABLE I. CFE-BASED IMPLICATION: UNCERTAINTY PARAMETERS

ARE DEFINED SO THAT THEY REPRESENT COMPLETE CERTAINTY ON THE

TRUTH (OR FALSITY) OF EACH PROPOSITION. IN THIS CASE, THERE IS

COMPLETE CERTAINTY OF THE TRUTH OF THE OUTPUT MODEL (AS

OCCURS WITH CLASSICAL LOGIC.)

Parameters Uncertainty of the rule

[α1, β1] [α2, β2] [αR, βR]
[0, 0] [0, 0] [1, 1]
[0, 0] [1, 1] [1, 1]
[1, 1] [0, 0] [0, 0]
[1, 1] [1, 1] [1, 1]

C. Semantics

In classical logic there are two truth-values, “true” and
“false”. An expression that is true for all interpretations is
called a tautology (“⊤”). An expression that is not true for
any interpretation is a contradiction (“⊥”). Two expressions
are semantically equivalent if they take on the same truth value
for all interpretations.

In uncertain logic we extend these definitions. The truth
value of an expression corresponds to the support that is
projected into the true-false FoD, Θt−f = {1,0}. A BBA (10)
defined by [α, β] = [1, 1] corresponds to the classical logical
truth. A BBA (10) defined by [α, β] = [0, 0] corresponds to
the classical logical falsehood.

The notions of tautology and contradiction in uncertain
logic are extended following an approach similar to that
in [27]. In particular, given a generic dichotomous BBA ψ
characterized by the uncertainty interval σ = [α, β], we define
a σ-tautology as ⊤σ ≡ ψ ∨ ¬ψ, and a σ-contradiction as
⊥σ≡ ψ ∧ ¬ψ. It follows that ⊤ ≡ ⊤σ=[1,1], and ⊥≡⊥σ=[0,0].

D. Properties of the implication rule

The uncertain implication rule defined in subsection B
satisfies the reflexivity, contrapositivity, and transitivity prop-
erties:

1) Reflexivitiy. Consider a proposition (9) (i.e., ϕ(x), with
uncertainty [α, β]), and its corresponding DS model (10).
Then ϕ(x) =⇒ ϕ(x). Note that, from (21) ϕ(x) =⇒
ϕ(x) ≡ ¬ϕ(x) ∨ ϕ(x) ≡ ⊤σ=[α,β].

2) Contrapositivity. Consider two propositions ϕ1(x) and
ϕ2(x), with uncertainty intervals defined as in (13). Then
(ϕ1(x) =⇒ ϕ2(x)) =⇒ (¬ϕ2(x) =⇒ ¬ϕ1(x)).
Note that, from (21) ϕ1(x) =⇒ ϕ2(x) ≡ ¬ϕ1(x) ∨
ϕ2(x) , ψ(x). Also, from (21) ¬ϕ2(x) =⇒ ¬ϕ1(x) ≡
ϕ2(x)∨¬ϕ1(x) ≡ ψ(x). Then, (ϕ1(x) =⇒ ϕ2(x)) =⇒
(¬ϕ2(x) =⇒ ¬ϕ1(x)) ≡ ψ(x) =⇒ ψ(x), which is a
σ-tautology due to the reflexivity property.

3) Transitivity. Consider three propositions ϕ1(x), ϕ2(x),
and ϕ3(x), with uncertainty intervals defined as in (13).
Consider also the implication rules ϕ1(x) =⇒ ϕ2(x),
ϕ2(x) =⇒ ϕ3(x), and ϕ1(x) =⇒ ϕ3(x), with uncer-
tainty intervals [αR1, βR1], [αR2, βR2], and [αR3, βR3],
respectively. Then, (i) assume ϕ1(x) is true (in classical
logic this means: α1 = β1 = 1; in general, this is:
αR1 > 1 − β1 and βR1 > 1 − α1, which are the
conditions for obtaining a solution [α2, β2] = [αR1, βR1]
based on (24) and (25)); (ii) ϕ2(x), with uncertainty
[α2, β2] = [αR1, βR1] is obtained from MP of ϕ1(x) =⇒
ϕ2(x) and ϕ1(x); (iii) ϕ3(x), with uncertainty [α3, β3] =
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[αR2, βR2] is obtained from MP of ϕ2(x) =⇒ ϕ3(x)
and (ii); (iv) by conditional introduction ((i) and (iii)) we
obtain ϕ1(x) =⇒ ϕ3(x), with uncertainty [αR3, βR3] =
[max(1 − β1, α3),max(1 − α1, β3)]. Note that, in the
general case, α3 ≥ α1, and β3 ≥ β1, which is consistent
with the implication rule model in classical logic.

E. Rules of Inference

Inference in uncertain logic shares the fundamental prin-
ciples of classical logic, and adds the possibility of attaching,
tracking, and propagating uncertainties that may arise on
premises and/or rules. One of the basic rules of inference
is Modus Ponens (MP). An uncertain logic model for MP is
provided by (24) and (25). Similarly, as described in [19], it
is possible to obtain uncertain logic models for other rules
of inference, such as Modus Tollens (MT), AND elimination
(AE), AND introduction (AI), universal instantiation (UI), and
existential instantiation (EI).

V. CASE STUDY: HUMAN-ROBOT INTERACTION

In this section we illustrate, through an example, how the
ambiguity measure and the CFE-based implication rule can
be used in a practical application. In particular, we show
an application on human-robot interaction, as this type of
application allows the inference engine to actively request
more information/data for refining conclusions when existing
evidence does not lead to a final conclusion.

Consider a human H giving an implicit instruction to robot
R with uncertainty boundaries [α1, β1]. This interval reflects
the degree to which R believes that H’s statement is true. Note
that this uncertainty may change depending on the parsing
process, as well as on the actual instruction provided by H. For
example, in a real-life scenario, H may use words (or indicate
rules to R) that entail uncertainty, such as usually, typically,
or generally.

In this example, the instruction provided by H is: “Com-
mander Z really needs a medkit”. The robot then runs an
inference process in which R needs to find if it needs to get the
medkit for Z or not. If the conclusion is very precise (i.e., low
uncertainty), then R could simply execute the required action,
which could be either get the medkit for Z or not. However,
if the conclusion is highly ambiguous, then the robot R could
respond “Should I get it for him?” and solve the ambiguity
problem.

An inference process to solve R’s problem could be as
follows. Suppose that the following rules were given (in natural
language) to R:

1) “if x needs y, then x has a goal to have y”, with uncertainty
[α2, β2];

2) “Commander Z is likely of higher rank than robot R”,
with uncertainty [α3, β3];

3) “usually, if x is of higher rank than y and x has goal g,
then y should have the goal for x to have goal g, with
uncertainty [α4, β4]; and

4) “if the robot has a goal for x to have a goal to have y,
then the robot should have the goal to get y for x”, with
uncertainty [α5, β5].

TABLE II. INFERENCE PROCESS FOR THE HUMAN-ROBOT

INTERACTION PROBLEM OF THE CASE STUDY (M = MEDKIT).

Logic Formula Premises Uncert.

1 Needs(Z,M) ∆ [α1, β1]
2 ∀x ∀y : Needs(x, y)

=⇒ Goal(x,Have(x, y)) ∆ [α2, β2]
3 Rank(Z) > Rank(R) ∆ [α3, β3]
4 ∀x ∀y ∀g : Rank(x) > Rank(y)

´

∧Goal(x, g) =⇒ Goal(y, Goal(x, g) ∆ [α4, β4]
5 ∀x ∀y : Goal

`

R, Goal(x,Have(x, y))
´

=⇒ GetFor(R, y, x) ∆ [α5, β5]
6 Goal(Z, Have(Z,M)) 1, 2, MP [α6, β6]
7 Rank(Z) > Rank(R) ∧ Goal(Z, Have(Z,M)) 3, 6, AI [α7, β7]
8 Goal

`

R, Goal(Z, Have(Z,M))
´

4, 7, MP [α8, β8]
9 GetFor(R,M, Z) 5, 8, MP [α9, β9]

Note that all these expressions entail some uncertainty, which
may be due uncertain information already known to the
robot, or by imprecise words that were used to describe the
instructions, such as “likely”, “usually”, and “should have”.

These instructions can be expressed in first-order logic as
is shown in rows 1 to 5 of Table II. These rows represent the
premises of our inference process. Based on these premises,
an inference process could continue as shown in rows 6 to 9 of
Table II. For simplicity, we assume that the required inference
rules carry over from classical logic to the uncertainty case
(we refer the reader to [19] for details on inference rules
and quantifiers in the DS uncertain logic model used in this
example).

In order to better understand how the uncertainty prop-
agates in this example, we analyze four cases: A) Perfect
scenario (i.e., no uncertainty); B) Probabilistic scenario (i.e.,
αi = βi, i = 1, 2, . . . , 5); C) Probabilistic scenario with
insufficient evidence; and D) General scenario.

A. Perfect scenario (i.e., no uncertainty)

Figure 2 illustrates a scenario where all the premises and
rules are taken as truth. This is, the uncertainty intervals
[αi, βi], i = 1, 2, . . . , 5, for the premises A1 to A5 is [1, 1]. In
this case, the uncertainty of every step in our reasoning process
is defined by the uncertainty interval [1, 1], which is consistent
with classical logic results. Note that the result is the same for
both of the models analyzed, namely, the CFE-based inference
model (top), and the DCR-based inference model (center). The
figure also shows, at the bottom, the output of our ambiguity
measure λ, which, as expected, remains at 1 throughout all the
inference process.

B. Probabilistic scenario

Figure 3 illustrates a scenario where all the premises
and rules are probabilistic. That is, the uncertainty intervals
[αi, βi], i = 1, 2, . . . , 5, for the premises A1 to A5 are
characterized by αi = βi. In this case, the CFE-based
model (top) maintains the probabilistic behavior throughout
the inference process. The DCR-based model (center), on the
contrary, departs from the probabilistic model and, in this case,
the uncertainty increases as the inference process progresses.
This is also seen in the ambiguity measure (bottom), as it
is always decreasing for the DCR-based inference (becoming
more ambiguous).
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Fig. 2. DS-based uncertain logic inference on a perfect (i.e., no uncertainty)
scenario. In this case, there is no uncertainty on any of the inferred premises.
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Fig. 3. DS-based uncertain logic inference on a probabilistic scenario. In
this case, CFE-based inference maintains the probabilistic behavior throughout
the inference process, while DCR-based inference cannot maintain it. The
uncertainty of the DCR-based inference increases as the inference process
progresses.
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Fig. 4. DS-based uncertain logic inference on a probabilistic scenario with
insufficient evidence. In this case, CFE-based inference stops providing results
when there is not enough evidence to support them. DCR-based inference, on
the contrary, keeps providing results without any indication about the risk of
making a decision based on these results.

C. Probabilistic scenario with insufficient evidence

Figure 4 illustrates a scenario where all the premises
and rules are probabilistic, but in which the support for the
premises makes the inference process stop after a certain
number of steps. Note that, as expected, CFE-based inference
(top) stops rendering results when the evidence is not enough
to provide a conclusion. DCR-based inference (center), on the
contrary, keeps delivering results without indicating the risk
of making a decision based on the output results. Thus, the
ambiguity measure could be incorporated into decision-making
processes.

D. General-case scenario

Figure 5 illustrates a general-case scenario where there are
no restrictions regarding the uncertainty intervals [αi, βi], i =
1, 2, . . . , 5, for the premises A1 to A5. In this case, the CFE-
based model (top) renders more “certain” results than the
DCR-based model (center), as evidenced from the ambiguity
measure (bottom).

VI. CONCLUSION

We introduced a CFE-based uncertain implication rule for
reasoning and inference in the DS framework. This implication
rule has the ability of capturing the indefiniteness involved in
the data, as well as in the knowledge models (e.g., language).
It is also consistent with classical logic, rendering the conven-
tional implication results when the scenario represents “per-
fect” (i.e., without uncertainty) data/models. In addition, we
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Fig. 5. DS-based inference on a general-case scenario. In this case, although
both CFE and DCR-based inference provide uncertain results, the ambiguity
measure on the resulting BBAs is higher for the CFE-based inference, as
indicated by λ.

introduced an ambiguity measure for tracking degeneracy of
belief models throughout the inference process. This measure
can indicate if the uncertainty in a particular belief model has
grown beyond a threshold that makes the inference result either
unreliable or not conclusive.

ACKNOWLEDGMENT

This work is based on research supported by the US Office
of Naval Research (ONR) via grants #N00014-10-1-0140. and
#N00014-11-1-0493, and the US National Science Foundation
(NSF) via grant #1038257.

REFERENCES

[1] B. Ristic and P. Smets, “Target identification using belief functions
and implication rules,” IEEE transactions on Aerospace and Electronic

Systems, vol. 41, July 2005.

[2] M. J. Zaki, “Scalable algorithms for association mining,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 12, no. 3, pp. 372–390,
2000.
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