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First order logic lies at the core of many methods in mathematics, philosophy, linguistics, 
and computer science. Although important efforts have been made to extend first order 
logic to the task of handling uncertainty, existing solutions are sometimes limited 
by the way they model uncertainty, or simply by the complexity of the problem 
formulation. These approaches could be strengthened by adding more flexibility in 
assigning probabilities (e.g., through intervals) and a more rigorous method of assigning 
probability/uncertainty measures. In this paper we present the basic theory of Uncertain 
Logic Processing (ULP), a robust framework for modeling and inference when information 
is available in the form of first order logic formulas subject to uncertainty. Dempster–
Shafer (DS) theory provides the substrate for uncertainty modeling in the proposed ULP 
formulation. ULP can be tuned to preserve consistency with classical logic, allowing it to 
incorporate typical inference rules and properties, while preserving the strength of DS 
theory for representing and manipulating uncertainty.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Due to its richness and versatility for representing and dealing with knowledge, First Order Logic (FOL) is regarded as one 
of the preferred knowledge representation languages for automated reasoning and inference systems. However, an exploding 
amount of typically uncertain data, information sources, and conflicting evidence keeps demanding improvements to FOL 
representations to enhance its capabilities, robustness, and efficiency.

In an effort to enrich FOL for reasoning in the presence of uncertainty, several approaches have focused on extending it 
using probabilistic measures. Examples of these approaches span from the already mature probabilistic logic [1] and fuzzy 
logic [2] theories, to the more contemporary Markov Logic Networks (MLNs) [3] and Probabilistic Soft Logic (PSL) [4] frame-
works. By relying on graphical model structures, the latter approaches (i.e., MLNs and PSL) are perhaps better equipped for 
reasoning with large amounts of data. These approaches, however, may be hampered by scarce training data, conflicting evi-
dence, or when the uncertainty is characterized as intervals. Our goal is to provide a framework that overcomes these issues, 
and complements probability-based logic reasoning systems with the ability of representing uncertainty using intervals. We 
call this framework Uncertain Logic Processing (ULP).
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At its core, ULP extends the scope of FOL by adding uncertainty management via Dempster–Shafer (DS) models. By 
relying on DS theory, ULP inherits the robustness for dealing with conflicting evidence [5] and provides a more flexible 
alternative for representing uncertainty through intervals. With a solid theoretical foundation, ULP is flexible enough to 
support reasoning systems that follow a variety of logic-based inference techniques (e.g., logic inference and satisfiability 
for both classical logic and paraconsistent logic models), and provides a substrate for creating efficient automated reasoning 
frameworks through optimization formulations or graphical model approaches.

1.1. Related research

When addressing quantification and propagation of uncertainty in logic reasoning systems, one of the earliest approaches 
is probabilistic logic [1]. Probabilistic logic provides a generalization of logic in which the truth values of sentences are prob-
ability values (between 0 and 1). A related approach, possibilistic logic [6], defines mechanisms (based on possibility theory) 
to associate logic formulas with weights. To efficiently address the computational complexity of larger problems, two new 
probability-enhanced methods have been recently introduced, namely, MLNs [3] and PSL [4]. MLNs combine FOL and Markov 
networks as undirected graphical models and assign weights to FOL formulas whose truth values are represented through 
probability values. PSL also uses undirected graphical models to represent templates for FOL formulas, and represents truth 
values as a number in the interval [0, 1]. PSL relies on the Lukasiewicz t-norm and its corresponding co-norm to model 
AND and OR operations. Both MLN and PSL are statistical methods that attempt to find uncertainty parameters that ensure 
satisfiability of the logical models specified by the users. Their definition, however, does not insist on being consistent with 
classical logic, as is our goal with ULP, and their accuracy may be compromised when the amount of training data is small.

Other approaches that extend logic reasoning to address uncertain scenarios are many-valued logics and fuzzy logic. 
Many-valued logics [7] do not restrict the number of truth values of propositions to two. Fuzzy logic is based on the theory 
of fuzzy sets [2]. In fuzzy logic, the imprecision in probabilities is modeled through membership functions defined on the 
sets of possible probabilities and utilities. Although useful in some applications, these logic reasoning systems introduce 
new design problems: What is the appropriate number of truth levels to be used in an application? How should we define 
the membership functions? As an alternative, in ULP we extend logic reasoning systems with the capability of modeling 
uncertainties based on intervals, without attaching new design requirements such as the definition of membership functions.

Regarding the use of intervals as a means of representing uncertainty, it appears in several methods, such as possibility 
theory [8] and DS theory. The latter, incorporates a rigorous methodology for assigning probabilistic measures based on 
available evidence [9]. Given the direct relation that exists between DS theory and probability (DS belief and plausibility 
measures are closely related to lower and upper probabilities [9]), it is possible to simplify DS models to probabilistic mod-
els. Considering these advantages, a number of researchers have studied the relation of DS theory and logic. The work in [10]
is similar to the probabilistic logic in [1], but uses epistemic logics and interval-based extensions of probability functions 
(e.g., lower and upper probabilities, DS belief and plausibility bounds) instead of probabilities of possible worlds. In [11], 
DS theory is formulated in terms of propositional logic, enabling certain logic reasoning operations in the DS framework. 
Further work in [12] integrates this logic formulation of DS theory in a system for visual recognition. Motivated by the 
need for enhancing expressiveness in DS models, [13] proposes a more general formulation of DS models as propositional 
logic operations than [11]. A belief-function logic that uses DS models and operations to quantify and estimate uncertainty 
of logic formulas is introduced in [14]. This logic system allows non-zero belief assignments to the empty set and relies 
on Dempster’s combination rule as the method for quantifying the propagation of uncertainty. It is also used in deduction 
systems where the logic formulas are in Skolemized normal conjunctive form. An application of this system for inference is 
described in [15]. Another application of DS-based extensions of logic systems is in [16], where information coming from 
sensors is modeled in DS theory, and then input into AgentSpeak [17], a logic-based inference system. Further analysis on 
DS-based logic is presented in [18]. A detailed study on uncertain implication rules is in [19]. This latter work, however, 
is focused on modeling causal probabilistic relations, and does not provide consistency with classical logic, as ULP does. In 
general, existing work on combining DS theory and logic does not necessarily aim to attain consistency with classical logic, 
as is our goal with the ULP, and are still limited to propositional logic models.

1.2. Contributions

In this paper we formalize the fundamental theory of ULP. ULP is an extension of FOL into the DS theoretic framework. In 
ULP, the uncertainty of logic expressions such as ϕ(x) is quantified using an uncertainty interval [α, β], 0 ≤ α ≤ β ≤ 1. The 
ULP framework allows us to model the uncertainty of this expression, and to combine it with similar expressions in order 
to solve various inference and reasoning problems. When α = β , ULP renders probabilistic results. When α = β ∈ {0, 1}, 
ULP converges to FOL. ULP can be used as an adaptive many-valued logic, with the quantization of the truth space varying 
according to the granularity defined by the input data. ULP can preserve consistency with classical logic. By preserving 
this consistency, it is possible to seamlessly move between the classical logic and DS domains, and to incorporate both 
the strength of FOL for information representation and inference, and the strength of DS for representing and manipulating 
uncertainty.
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This paper extends original preliminary work that was outlined in [20,21]. In particular, this paper includes revised ULP 
definitions and notation, a more thorough description of the satisfiability problem in ULP, and a new example that addresses 
a bigger testing scenario.

The remainder of the paper is as follows:

• Sections 2 and 3 provide basic definitions of the DS theoretical framework and the logic models used in ULP, respec-
tively;

• Section 4 provides definitions of basic ULP operators (e.g., NOT, AND, OR), based on generic DS fusion operators;
• Section 5 provides guidelines for the selection of appropriate DS fusion operators, as needed for enforcing particular 

properties of ULP operators; moreover, it defines a DS fusion operator for classically-consistent ULP;
• Section 6 introduces quantifiers for ULP;
• Section 7 provides guidelines for inference using ULP, and illustrates the process with an example;
• Section 8 introduces a method for scalable reasoning in ULP based on satisfiability formulations, and illustrates the 

method with examples;
• Finally, Section 9 concludes the paper.

2. Preliminaries: Dempster–Shafer theory

DS Theory is defined for a discrete set of events related to a given problem. This set is called the Frame of Discernment
(FoD). For our purposes, we take the FoD to be defined on the finite set � = {θ1, θ2, . . . , θN }, N being the cardinality |�|
of the FoD. Elements θi ∈ � represent the lowest level of discernible information. The power set of � is defined as a 
set containing all the possible subsets of �. The cardinality of the power set of � is 2N . Next we introduce some basic 
definitions of DS theory. For additional details on DS theory, we refer the reader to [22,23].

Basic belief assignment and focal sets. A Basic Belief Assignment (BBA) or mass assignment is a mapping m�(·) : 2� →
[0, 1] such that: 

∑
A⊆� m�(A) = 1 and m�(∅) = 0. The BBA measures the support assigned to A ⊆ �.

The subsets A ⊆ � such that m(A) > 0 are the focal elements of the BBA. The set of focal elements is the core F . The 
triple {�, F , m�} is called the Body of Evidence (BoE).

The state of complete ignorance is captured via m(A) = 1� ≡ 1 if A = �; 0 if A ⊂ �.

Belief, plausibility, and uncertainty. The belief and plausibility functions are associated with a BBA m. When focal ele-
ments are constituted of singletons only, the BBA, belief, and plausibility, all reduce to a probability assignment.

Given a BoE {�, F , m}, the belief function Bel : 2� → [0, 1] is defined as: Bel�(A) = ∑
B⊆A m�(B). Bel(A) represents the 

total belief that is committed to A without also being committed to its complement AC . The plausibility function Pl : 2� →
[0, 1] is defined as: Pl�(A) = 1 − Bel�(AC ), where AC denotes the complement of A in �, i.e., AC = � \ A. It corresponds 
to the total belief that does not contradict A. The uncertainty of A is captured by the interval: UnA = [Bel�(A), Pl�(A)].

Combination rules. Information from distinct sources can be fused using combination (or fusion) rules. Perhaps the most 
widely used rule is Dempster’s Combination Rule (DCR). For two focal sets C ⊆ � and D ⊆ � such that B = C ∩ D , and the 
two BBAs m j(·) and mk(·), the fused mass BBA m jk(B) generated by the DCR is given by:

m jk(B) = 1

1 − K jk

∑
C∩D=B;B �=∅

m j(C)mk(D), (1)

where K jk = ∑
C∩D=∅ m j(C) mk(D) �= 1 is referred to as the conflict between the two BBAs.

The DCR is not defined for conflicting BBAs (i.e., when K jk = 1). As an alternative, a combination rule that is robust in 
the presence of conflicting evidence is the Conditional Fusion Equation (CFE) in [24] which is based on the Conditional Update 
Equation (CUE) in [25]. For M BoEs, each possessing an identical FoD �, CFE-based fusion is defined by [24]

m(B) =
M∑

i=1

∑
Ai∈Fi

γi(Ai)mi(B|Ai), (2)

where γi are non-negative real parameters which satisfy 
∑M

i=1
∑

Ai∈Fi
γi(Ai) = 1. The conditional masses above are com-

puted using Fagin–Halperns’ Rule of Conditioning [26]. For CFE-based fusion, the use of Fagin–Halperns’ conditional is 
preferred over other DS theoretic conditionals because it provides a more natural and fluid transition to Bayesian mod-
els [27,25].

As will be explained later, in addition to DCR and CFE, ULP definitions described in this paper can be easily extended to 
incorporate other combination rules, as needed for the application at hand.
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3. From propositional logic to uncertain logic processing: basic definitions of ULP expressions

3.1. Propositional logic

To introduce terminology and notation employed in our presentation of ULP, let us first recall that, in propositional logic, 
a proposition or a sentence is a statement that could take a truth-value. “The apple is on the table” or “if it rains then I get 
wet” are examples of propositions. Propositions are typically represented by lower case Greek letters (e.g., ϕ , ψ ).

A proposition can be combined with other propositions using connectives. In this paper we only consider the following 
connectives: ∧ (AND), ∨ (OR), ¬ (NOR), and =⇒ (implies).

Through inference, a group of propositions (called premises) are used to derive conclusions. Inference is typically a multi-
step process, where each step must be sanctioned by an acceptable rule of inference.

In general, when referring to propositional logic, we follow the conventions and definitions provided in [28] and [29].

3.2. First-Order Logic (FOL)

FOL extends the scope of propositional logic and provides a more expressive framework for logic. FOL allows one to work 
with objects, relations, and functions. These can be expressed through predicates. Predicates could be described as strings 
of characters arranged according to rules of grammar. For example, if we want to express the relation a is above b, we can 
use Above(a,b) [28]. We could also express a predicate using symbols. For example, in the expression above, we can make 
ϕ = “Above” and obtain ϕ(a, b). Note that, in this example, we are allowing ϕ to have arguments. These arguments could 
be either constants or variables.

FOL also introduces the use of quantifiers. Quantified sentences provide a more flexible way of talking about objects. 
There are two types of quantifiers: the universal (∀) and the existential (∃) quantifiers. A universally quantified sentence is 
formed by combining the universal quantifier ∀, a variable x, and a sentence ϕ , as follows: ∀x ϕ(x). The intended meaning is 
that the sentence ϕ is true, no matter what object the variable x represents. An existentially quantified sentence is formed 
by combining the existential quantifier ∃, a variable x, and a sentence ϕ as follows: ∃x ϕ(x). The intended meaning is that 
the sentence ϕ is true, for at least one object in the universe of discourse.

3.3. Uncertain Logic Processing (ULP)

ULP is an extension of FOL that allows one to deal with expressions whose truth is uncertain. The level of uncertainty 
is modeled with DS theory, and is bounded in the range [0, 1]. In our presentation of ULP, we define the basic operators 
and symbols enumerated for propositional logic above (i.e., ¬, ∧, ∨, and =⇒ ), and incorporate the symbols and quantifiers 
defined for FOL in Section 3.2, namely ∀ and ∃.

As an extension of FOL, we must also define the set of objects that ULP deals with, i.e., its domain. Furthermore, we need 
means for specifying exactly which objects are referred to by constants and variables in ULP expressions. For the purpose 
of the description herein, these basic components are defined as follows.

Definition 1 (Domain and interpretation of a generic ULP model). Let D = {d1, d2, . . . , dn} be a non-empty set of individuals. 
Then, we define an interpretation function I as a function that maps an arbitrary variable x into an element d ∈ D . Further-
more, the interpretation function I maps uncertainty intervals [α, β] in ULP expressions into properly defined DS models 
(i.e., into BBA or mass functions). �

Definition 2 (Uncertain FOL expressions). Consider a quantifier-free first-order formula ϕ(x) from a finite set of formulas 	
in some first-order language L, with x being the only free variable in ϕ .1 Then, an uncertain first-order logic expression 
relates the uncertainty associated with the truth of ϕ(x) as:

ϕ(x), with uncertainty [α,β], (3)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x is interpreted over individuals in D =
{d1, . . . , dn}, with n ≥ 1, i.e., I(x) ∈ D . The uncertain logic expression (3) can be abbreviated as ϕ(x)[α,β] . �

The uncertainty interval [α, β] in Definition 2 indicates the support that we have for the expression ϕ(x) being true or 
false. In addition, this interval can be used to characterize the level of ignorance that we have on the event ϕ(x) being either 
true or false. In particular, the value of α quantifies the evidence or belief that we have on ϕ(x) being true; β accounts 
for the plausibility of ϕ(x) being true; and β − α accounts for the level of ignorance that we have on the event ϕ(x) being 
either true or false. This concept also applies to groundings of ULP expressions, which are defined next.

1 We assume a single free variable for ease of description. However, extending the definition to any number of finite variables in ϕ is straightforward. 
This extension will be used later in this paper, as new operators are introduced.
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Definition 3 (Grounded FOL expressions). Consider an uncertain first-order logic expression ϕ(x)[α,β] for I(x) ∈ D =
{d1, . . . , dn}, n ≥ 1. The grounding of this expression for an individual di ∈ D , i ∈ {1, . . . , n}, is represented by (ϕI(I(x) =
di))[α,β] . When no confusion can arise, we may use the alternative notations (ϕI (I(x) = di))[α,β] ≡ (ϕ(I(x) = di))[α,β] ≡
(ϕ(x/di))[α,β] ≡ (ϕ(di))[α,β] . Note that the uncertainty of this grounding can be indicated explicitly (i.e., ϕ(di), with uncer-
tainty [α, β]), or appended as a subindex of the grounded expression (e.g., ϕ(di)[α,β]). �

To properly quantify the support that we have for each of the three possible events in ϕ(di) (i.e., “true”, “false”, “do not 
know if either true/false”), we need to build a DS model for the expression ϕ(di)[α,β] . This model must be defined on a 
proper FoD. A proper FoD for the expression ϕ(di)[α,β] is defined next. Its extension for the expression ϕ(x) is straightfor-
ward.

Definition 4 (Basic FoD). Given a grounded logic expression (ϕ(d))[α,β] , with d ∈ D , a FoD is defined as:

�ϕ(d) = {ϕ(d),ϕ(d)}, (4)

where the first element (i.e., ϕ(d)) represents the event in which ϕ(d) is true, and the second element (i.e., ϕ(d)) represents 
the event in which ϕ(d) is false. �

An alternative definition of the basic FoD that may be appropriate for some applications appears in [20]. This alternative 
definition creates �ϕ(d) as the cross product of �ϕ(d) with a true–false set {1, 0}, that is to say, �ϕ(d) = ϕ(d) × {1, 0} =
{ϕ(d) × 1, ϕ(d) × 0} = {ϕ(d), ϕ(d)}. Although not formally rigorous like the definitions in this manuscript, the alternative 
definition in [20] provides an intuitive way of generating FoDs and propagating uncertainties through DS-based logic infer-
ence.

When considering grounded logic expressions where more than one element of D becomes relevant, the basic FoD must 
be extended. An alternative is using Cartesian products of basic FoDs to obtain proper FoDs for this scenario. As an example, 
the comprehensive FoD, which is defined next, considers all the elements of D in a single FoD.

Definition 5 (Comprehensive FoD). Given a set of grounded logic expressions {(ϕ(d1))[α1,β1], (ϕ(d2))[α2,β2], . . . , (ϕ(dn)))[αn,βn]}, 
we define �ϕ(D) to be the Cartesian product of all basic frames of discernment �ϕ(di ) = {ϕ(di), ϕ(di)}, i = 1, 2, . . . , n, i.e., 
�ϕ(D) = {{ϕ(d1), ϕ(d1)} × . . . × {ϕ(dn), ϕ(dn)}}. �

Based on the FoDs in Definitions 4 and 5, we can model uncertain FOL expressions in the DS theoretic framework as 
follows.

Definition 6 (DS theoretic model for uncertain logic expressions). Consider an uncertain logic expression ϕ(d)[α,β] , with d ∈ D . 
Then, a DS theoretic model that would capture the uncertain information in this logic expression is the following mass 
assignment:

ϕ(d) : m(ϕ(d)) = α;
m(ϕ(d)) = 1 − β;
m(�ϕ(d)) = β − α, (5)

defined over the basic FoD �ϕ(d) = {ϕ(d), ϕ(d)}. When no confusion can arise, we may use the following notation, which 
shortens the parameter of the mass function by defining ϕ as a subindex of the mass function:

ϕ(d) : mϕ(d) = α;
mϕ(d) = 1 − β;
mϕ(�) = β − α. � (6)

Note that, since the DS model for uncertain logic expressions is defined over a dichotomous FoD (i.e., the FoD has 
only two elements), it can be completely characterized by an uncertainty interval. Then, in the following, we may use 
m(ϕ(d)) = [α, β] as a shorter notation for the DS model in Definition 6.

4. Definitions of negation, conjunction, and disjunction in ULP

In this section we introduce the basic operators for ULP, which are defined using generic DS fusion operations. The 
definition of operators in this section is done using generic DS fusion operators. Then, in Section 5, we show how to 
select specific fusion operators to obtain a desired behavior. For example, one may be interested in attaining consistency 
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with classical logic (the case thoroughly discussed in Section 5), or one may want to relax this condition and model a 
paraconsistent logic (a case left for future work on extensions of ULP).

4.1. Uncertain logic negation

The negation operation in ULP is based on the definition of set complement as it applies to DS models (see [30], for 
example). Using this approach, we define the complement of a BBA, and then define the logical not of this BBA based on 
said complement. This is described next.

Definition 7 (Complementary BBA). Consider a basic FoD �ϕ(d) = {ϕ(d), ϕ(d)}, and a BBA mϕ(·) defined as:

mϕ(d) = α; mϕ(d) = 1 − β; mϕ(�) = β − α. (7)

A complementary BBA for (7) is given by [30]:

mc
ϕ(d) = 1 − β; mc

ϕ(d) = α; mc
ϕ(�) = β − α. � (8)

Based on the complementary BBA, we can define an uncertain logic negation as follows.

Definition 8 (Logical not in ULP). Consider an uncertain logic expression ϕ(d)[α,β] . Also, consider its corresponding DS model, 
which is defined by (6). Then, the ULP-negation of ϕ(d)[α,β] denoted ¬(ϕ(d)[α,β]) is defined as (¬ϕ(d))[1−β,1−α] . We utilize 
the complementary BBA corresponding to (6) as the DS theoretic model for ¬ϕ(d), i.e.,

¬ϕ(d) : mc
ϕ(d) = 1 − β;

mc
ϕ(d) = α;

mc
ϕ(�) = β − α. � (9)

It is clear that the complementary BBA associated with ϕ[α,β](x) is ¬ϕ[1−β,1−α](x).

4.2. Logical AND/OR in ULP

Definition 9 (Logical AND & OR in ULP). Suppose that we have M propositions (ϕi(d))[αi ,βi ], i = {1, 2, . . . , M}. Their corre-
sponding ULP models are ϕi(d) : mϕi (d) = αi; mϕi (d) = 1 − βi; mϕi (�ϕi(d)) = βi − αi, for i = 1, 2, . . . , M . We propose to 
utilize the following DS theoretic models for the logical AND and OR of the statements (ϕi(d))[αi ,βi ], i = {1, 2, . . . , M}:

M∧
i=1

ϕi(d) : m(·) =
M⋂

i=1

mϕi (·);

and
M∨

i=1

ϕi(d) : m(·) =
(

M⋂
i=1

mc
ϕi

(·)
)c

, (10)

where 
⋂

denotes an appropriate fusion operator. �

Remarks:

1) The definition of the conjunction in Definition 9 explicitly includes its corresponding BBA. This BBA is obtained from 
the direct application of the ULP extension of the definition of conjunction, that is to say, from defining ϕ1(d) ∨ϕ2(d) ∨
. . . ∨ ϕM(d) ≡ ¬(¬ϕ1(d) ∧ ¬ϕ2(d) ∧ . . . ∧ ¬ϕM(d)).

2) Based on Definition 9, we can define the AND/OR operators for unquantified expressions ϕi(x), with uncertainty [αi, βi], 
i = 1, . . . , M , as: 

∧M
i=1 ϕi(x) : m(·) = ⋂M

i=1 mϕi (·); and 
∨M

i=1 ϕi(x) : m(·) =
(⋂M

i=1 mc
ϕi

(·)
)c

, for the AND and OR opera-

tions, respectively.
3) A model similar to the one in Definition 9 can be obtained for the case of AND/OR operations of a set of expressions 

{ϕ(xi)} with uncertainty [αi, βi],
xi ∈ {x1, x2, . . . , xk}. In this case: 

∧k
i=1 ϕ(xi) : m(·) = ⋂k

i=1 mϕ(·), and 
∨k

i=1 ϕ(xi) : m(·) =
(⋂k

i=1 mc
ϕ(·)

)c
. This case rep-

resents AND/OR models applied to the truthfulness of elements {xi} satisfying a property ϕ , whereas (10) analyzes the 
case of x satisfying multiple properties {ϕi}.

4) Definition 9 also extends to AND/OR operations of set of expressions {ϕ(di)} with uncertainty [αi, βi],
di ∈ {d1, d2, . . . , dn}. In this case: 

∧n
i=1 ϕ(di) : m(·) = ⋂n

i=1 mϕ(·), and 
∨n

i=1 ϕ(di) : m(·) =
(⋂n

i=1 mc
ϕ(·)

)c
.
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4.3. Other ULP operators

It is possible to extend the ULP operators described above and create new operators. As an example, consider implication 
rules. An uncertain logic implication can be defined by extending the (classical) definition for the implication rule based on 
AND/OR operators to the uncertain logic framework. The classical logic definition is: Given two statements ϕ1(·) and ϕ2(·), 
an implication rule has the property:

ϕ1(di) =⇒ ϕ2(d j) ≡ ¬ϕ1(di) ∨ ϕ2(d j)

≡ ¬ (
ϕ1(di) ∧ ¬ϕ2(d j)

)
,

where di, d j ∈ D . Now we define an uncertain implication rule as follows.

Definition 10 (Uncertain implication rule). Consider an antecedent ϕ1(di) and a consequent ϕ2(d j), with uncertainty intervals 
[αϕ1(di), βϕ1(di)] and [αϕ2(d j), βϕ2(d j)], respectively. Furthermore, suppose that said uncertainty is represented via the DS 
theoretic models m1(·) and m2(·) over the FoDs �ϕ1(di) and �ϕ2(d j) , respectively. Then, the implication rule ϕ1(·) =⇒ ϕ2(·)
is taken to have the following DS model:

mϕ1→ϕ2(·) = (mc
1 ∨ m2)(·) = (m1 ∧ mc

2)
c(·), (11)

over the FoD �ϕ1(di) × �ϕ2(d j) . �

5. Attaining consistency with classical logic

Recall that ULP operators can be tuned to satisfy particular properties. This can be accomplished by selecting an appro-
priate fusion operator 

⋂
in (10). Note that this operator directly impacts the behavior of logic operations, as many logic 

operations are derived from the fundamental AND and OR operators. This fusion operator must be then selected carefully 
to obtain the particular properties that we wish to obtain in an uncertainty measuring and tracking system.

One fundamental configuration that we may wish to attain for ULP is one that is consistent with classical logic. In this 
section we analyze the selection of the appropriate fusion operator for this case. To ensure consistency with classical logic, 
we are interested in a fusion operator that allows the logic operators to satisfy the following properties:

(a) Double negation. Given a proposition ϕ(d), the BBA corresponding to its double-negation is the same model as the one 
associated with ϕ(d). By definition of the negation in ULP (see Definition 8), ULP already satisfies ¬¬ϕ(d) = ϕ(d)).

(b) De Morgan’s laws. (ϕ1(d) ∨ ϕ2(d)) and ¬(¬ϕ1(d) ∧ ¬ϕ2(d)) have identical DS theoretic models. Also, (ϕ1(d) ∧ ϕ2(d))

and ¬(¬ϕ1(d) ∨ ¬ϕ2(d)) have identical DS theoretic models. By definition of the conjunction and disjunction in ULP 
(see Definition 9), ULP already satisfies the De Morgan’s laws.

(c) Idempotency. Uncertain logic AND and OR operators are idempotent, i.e.: ϕ(d)[α,β] ∧ ϕ(d)[α,β] = ϕ(d)[α,β] ∨ ϕ(d)[α,β] =
ϕ(d)[α,β] .

(d) Commutativity. Uncertain logic AND and OR operators are commutative, i.e.: ϕ1(d) ∧ϕ2(d) = ϕ2(d) ∧ϕ1(d), and ϕ1(d) ∨
ϕ2(d) = ϕ2(d) ∨ ϕ1(d).

(e) Associativity. Uncertain logic AND and OR operators must be associative. i.e.: ϕ1(d) ∧[ϕ2(d) ∧ϕ3(d)] = [ϕ1(d) ∧ϕ2(d)] ∧
ϕ3(d), and ϕ1(d) ∨ [ϕ2(d) ∨ ϕ3(d)] = [ϕ1(d) ∨ ϕ2(d)] ∨ ϕ3(d).

(f) Distributivity. Uncertain logic AND and OR operators must be distributive, i.e.: ϕ1(d) ∧[ϕ2(d) ∨ϕ3(d)] = [ϕ1(d) ∧ϕ2(d)] ∨
[ϕ1(d) ∧ ϕ3(d)], and ϕ1(d) ∨ [ϕ2(d) ∧ ϕ3(d)] = [ϕ1(d) ∨ ϕ2(d)] ∧ [ϕ1(d) ∨ ϕ3(d)].

(g) Consistent Boolean models. In the absence of uncertainty, ULP models converge to those of Boolean logic. That is to say, 
if α, β ∈ {0, 1}, and α = β , inference results in ULP render intervals that are either [0, 0] or [1, 1], and that correspond 
to the false/true truth value assignments that would be obtained using Boolean logic.

(h) Consistent probabilistic models. In probabilistic scenarios (i.e., where α = β for every uncertainty interval [α, β]), ULP 
inference renders probabilistic models.

(i) Uniqueness of model. Given propositions ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2] , with α1 �= α2 and β1 �= β2 the AND and OR 
operations satisfy ϕ1(d) ∧ ϕ2(d) �= ϕ1(d) ∨ ϕ2(d).

Next we show that ULP does not satisfy all these properties when we use DRC. Then we present the CFE as a better 
alternative for classically consistent ULP.

5.1. DCR-based ULP

Consider the two-propositions (i.e., M = 2) case for ULP AND/OR operations. Table 1 contains the DCR-based logical AND 
and OR operations for this case. Notice that the mass assignments for the AND operation (i.e., ϕ1(d) ∧ ϕ2(d)) are exactly 
the same as the ones obtained for the OR operation (i.e., ϕ1(d) ∨ ϕ2(d)). Having identical models for both AND and OR 
operators suggests that, although DCR may work as a fusion operator for certain operations, it does not render models that 
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Table 1
DCR-based logical AND and OR. In both cases, the masses should be normalized by 1 − K , with K = 1 −∑

A∈F m(A) = α1(1 − β2) + (1 − β1)α2. Note that the DS models for AND and OR are identical, which suggests 
that DCR is not an appropriate fusion operator for classically consistent ULP operations.

Focal set ϕ1(d) ∧ ϕ2(d) ϕ1(d) ∨ ϕ2(d)

d α1β2 + (β1 − α1)α2 α1β2 + (β1 − α1)α2

d (1 − β1)(1 − α2) + (β1 − α1)(1 − β2) (1 − β1)(1 − α2) + (β1 − α1)(1 − β2)

�ϕ1,ϕ2,d (β1 − α1)(β2 − α2) (β1 − α1)(β2 − α2)

satisfy important properties for all the logical operations defined above. Namely, DCR-based uncertain logic does not satisfy 
property (i) above. As an alternative, we propose using the CFE, which is analyzed next.

5.2. CFE-based uncertain logic

Recall (from Section 2) that CFE-based fusion requires the definition of a set of coefficients γi . We define the Logic 
Consistent (LC) strategy for the definition of the CFE coefficients as follows.

Definition 11 (Logic Consistent (LC) strategy). Consider the case M = 2 in (10), and let us define α = min(α1, α2); β =
min(β1, β2); α = max(α1, α2); β = max(β1, β2); δ1 = β1 − α1; δ2 = β2 − α2; δ = β − α; and δ = β − α. Then select the CFE 
coefficients as follows:

γ1(d) = γ2(d) ≡ γ (d); γ1(d) = γ2(d) ≡ γ (d);
and γ1(�) = γ2(�) ≡ γ (�),

where γ (d), γ (d), and γ (�) are given by:

a. Logical AND:

If δ1 + δ2 �= 0 :

γ (d) = α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ (d) = 1

2
− β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ (�) = δ

δ1 + δ2
.

If δ1 + δ2 = 0 :
γ (d) = α − γ (�) (α1 + α2)

2
;

γ (d) = (1 − α) − γ (�) (2 − α1 − α2)

2
;

γ (�) is arbitrary in the interval [0,1].
b. Logical OR:

If δ1 + δ2 �= 0 :

γ (d) = 1

2
− β(2 − α1 − α2) − α(2 − β1 − β2)

2(δ1 + δ2)
;

γ (d) = α(β1 + β2) − β(α1 + α2)

2(δ1 + δ2)
;

γ (�) = δ

δ1 + δ2
.

If δ1 + δ2 = 0 :
γ (d) = α − γ (�) (α1 + α2) ;
2
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γ (d) = (1 − α) − γ (�) (2 − α1 − α2)

2
;

γ (�) is arbitrary in the interval [0,1]. �

Based on the LC Strategy, we can define the CFE-based AND/OR operators, as well as implication rules, as follows.

5.2.1. CFE-based AND and OR operators
Given two uncertain propositions ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2] , the LC strategy renders the following BBA for the AND 

operation (see proof in Appendix A):

ϕ1(d) ∧ ϕ2(d) : m(d) = α;
m(d) = 1 − β; and

m(�(ϕ1∧ϕ2)(d)) = β − α, (12)

with α = min(α1, α2) and β = min(β1, β2). Similarly, when used for the OR operation, the LC strategy renders the following 
BBA:

ϕ1(d) ∨ ϕ2(d) : m(d) = α;
m(d) = 1 − β; and

m(�(ϕ1∨ϕ2)(d)) = β − α, (13)

with α = max(α1, α2) and β = max(β1, β2).
It can be proven that CFE-based fusion using the LC strategy satisfies the properties (a)–(g) above. As mentioned above, 

properties (a) and (b) are satisfied by the basic definitions of ULP models. A proof for properties (c)–(f) can be found in [20], 
and is presented in Appendix B. Property (h) can be easily proven as follows: Consider uncertainty parameters defined as 
α1 = β1 and α2 = β2. Let us denote ϕ1(d)[α1,β1] and ϕ2(d)[α2,β2] as ϕ(d)[α1] and ϕ(d)[α2] , respectively. We then get

ϕ(d)[α1] ∧ ϕ(d)[α2] = ϕ(d)[α];
ϕ(d)[α1] ∨ ϕ(d)[α2] = ϕ(d)[α], (14)

where α = min(α1, α2) and α = max(α1, α2). Property (g) can be easily proved by building a truth table based on the 
models for (h). Finally, property (i) is satisfied by the models (12) and (13) above. ULP models for multiple propositions can 
be found in Appendix C.

5.2.2. CFE-based implication
In the case of logic implications, the model in Definition 10 renders the following BBA:

ϕ1(di) =⇒ ϕ2(d j) :
mϕ1→ϕ2(di × �ϕ2,d j ) = 1

2αR;
mϕ1→ϕ2(�ϕ1,di × d j) = 1

2αR;
mϕ1→ϕ2(di × �ϕ2,d j ) = 1

2 (1 − βR);
mϕ1→ϕ2(�ϕ1,di × d j) = 1

2 (1 − βR);
mϕ1→ϕ2(�ϕ1,di × �ϕ2,d j ) = βR − αR , (15)

with αR = max(1 − β1, α2) and βR = max(1 − α1, β2). Note that αR and βR define the uncertainty interval [αR , βR ] of the 
implication rule. This interval is obtained from projecting the BBA defined in (15) into the true–false components of the 
original BoEs, which we label as {1, 0}, for ease of notation, as follows:

mϕ1→ϕ2(1) = mϕ1→ϕ2(di × �ϕ2,d j )

+ mϕ1→ϕ2(�ϕ1,di × d j) = αR;
mϕ1→ϕ2(0) = mϕ1→ϕ2(di × �ϕ2,d j )

+ mϕ1→ϕ2(�ϕ1,di × d j) = 1 − βR;
mϕ1→ϕ2({1,0}) = mϕ1→ϕ2(�ϕ1,di × �ϕ2,d j ) = βR − αR . (16)

The 1 component corresponds to the event “ϕ1 → ϕ2”, and the 0 component corresponds to the event “ ϕ1 → ϕ2 ”. Note 
that, in the Boolean case (i.e., α1 = β1 ∈ {1, 0} and α2 = β2 ∈ {1, 0}), the CFE-based uncertain implication rule converges to 
the conventional logic result (see Table 2).
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Table 2
CFE-based implication with Boolean arguments. Uncertainty parameters are 
defined so that they represent complete certainty on the truth (or falsity) 
of each proposition. In this case, there is complete certainty of the truth of 
the output model (as occurs with classical logic.)

Parameters Uncertainty of the rule

[α1, β1] [α2, β2] [αR , βR ]
[0,0] [0,0] [1,1]
[0,0] [1,1] [1,1]
[1,1] [0,0] [0,0]
[1,1] [1,1] [1,1]

5.3. ULP as a model for capturing variable granularities of many-valued logics

ULP naturally adapts to different quantizations in the uncertainty of the evidence. For example, if all the uncertainty 
intervals [α, β] in the premises are such that α, β ∈ {0, 1}, then the uncertainty results provided by ULP will be also in 
{0, 1}. In general, if uncertainties of the premises are quantized in steps of 1/n, with n = 2, 3, . . . , then the result will also 
be quantized by this step size.

To illustrate this property, consider an n-ary logic in which we have the propositions ϕi and ϕ j , with i, j ∈ {0, 1, . . . , n}
and n ≥ 1, such that the uncertainty of the premises is probabilistic and modeled as follows:

ϕi, with uncertainty
i

n
; and ϕ j, with uncertainty

j

n
. (17)

Now consider an uncertain implication rule ϕi =⇒ ϕ j . Given (17), the uncertainty of this implication is given by:

ϕi =⇒ ϕ j, with uncertainty max(1 − i

n
,

j

n
). (18)

Note that the resulting uncertainty in the implication rule is a multiple of 1/n. It can be shown that the same behavior 
occurs for NOT, AND, and OR operations. Hence, the ULP framework can be used to model an n-ary (i.e., many-valued) logic, 
where we can have from coarse (n = 2, Boolean logic) to infinitely small quantizations (when n → ∞). Moreover, we can 
increase the granularity dynamically during an inference process, right at the moment when new evidence introduces a 
refined granularity. That is to say, ULP can be used to adaptively adjust the quantization of the uncertain models according 
to the input data.

6. Quantifiers in ULP

6.1. Existential quantifiers

Existential quantifiers are used to express that a sentence is true for at least one object of the universe of discourse. We 
define existential quantifiers in ULP as follows.

Definition 12 (Existential quantifier in ULP). Consider the statement:

(∃x ϕ(x))[α,β], (19)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x is interpreted over elements in D =
{d1, d2, . . . , dn}, with n ≥ 1. Let us define an FoD over the domain D as �ϕ,D = �ϕ,d1 × �ϕ,d2 × . . . × �ϕ,dn . Then, we define 
the DS theoretic model for (19) as:

n∨
i=1

(ϕ(di))[αi ,βi ], (20)

over the FoD �ϕ,D , subject to the constraint:

m(1) =
∑n

i=1
mϕ(di) = α;

m(0) =
∑n

i=1
mϕ(di) = 1 − β;

m(�ϕ,�D ) = β − α, (21)

where we have adopted the notation di and di to represent the sets {. . .×�ϕ,di−2 ×�ϕ,di−1 ×ϕ(di) ×�ϕ,di+1 ×�ϕ,di+2 × . . .}, 
and {. . . × �ϕ,d × �ϕ,d × ϕ(di) × �ϕ,d × �ϕ,d × . . .}, respectively. �
i−2 i−1 i+1 i+2
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Remarks:

1) Definition 12 is based on the substitutional conception of quantifiers, according to which ∃ is treated as a generalization 
of the disjunction [7] grounded over the finite set D = {d1, d2, . . . , dn}.

2) When using the CFE-based ULP model described above, the constraint (21) is satisfied if the uncertainty of at least one 
of the propositions ϕ(di) in (20) is [α, β], and the uncertainty of every other proposition is [0, 0] (or, in general, [α j, β j], 
with α j ≤ α, β j ≤ β , and i �= j), then the DS model corresponding to (20) is equivalent to the DS model corresponding 
to (19) when the OR operations are computed as indicated by Definitions 9 and 11.

6.2. Universal quantifiers

Universal quantifiers are used to express that a sentence is true for every object of the universe of discourse. We define 
universal quantifiers in ULP as follows.

Definition 13 (Universal quantifier in ULP). Consider the statement:

(∀x ϕ(x))[α,β], (22)

where [α, β] refers to the corresponding uncertainty interval, 0 ≤ α ≤ β ≤ 1, and x is interpreted over elements in D =
{d1, d2, . . . , dn}, with n ≥ 1. Let us define an FoD over the domain D as �ϕ,D = �ϕ,d1 × �ϕ,d2 × . . . × �ϕ,dn . Then, we define 
the DS theoretic model for (22) as:

n∧
i=1

(ϕ(di))[αi ,βi ], (23)

over the FoD �ϕ,D , subject to the constraint:

m(1) =
∑n

i=1
mϕ(di) = α;

m(0) =
∑n

i=1
mϕ(di) = 1 − β;

m(��ϕ,�D
) = β − α, (24)

where we have adopted the notation di and di to represent the sets {. . .×�ϕ,di−2 ×�ϕ,di−1 ×ϕ(di) ×�ϕ,di+1 ×�ϕ,di+2 × . . .}, 
and {. . . × �ϕ,di−2 × �ϕ,di−1 × ϕ(di) × �ϕ,di+1 × �ϕ,di+2 × . . .}, respectively. �

Remarks:

1) Definition 13 is based on the substitutional conception of quantifiers, according to which ∀ is treated as a generalization 
of the conjunction [7] grounded over the finite set D = {d1, d2, . . . , dn}. This definition is justified as long as the 
conjunction satisfies both associativity and commutativity, as is the case of the CFE-based ULP disjunction described 
above.

2) When using the CFE-based ULP model described above, the constraint (24) is satisfied if the uncertainty of every 
proposition ϕ(di) in (23) is [α, β].

3) Although an infinite number of solutions satisfy (24), a useful solution (e.g., for universal instantiation on inference) is 
given by mϕ(di) = α; mϕ(di) = 1 − β; and mϕ({di, di}) = β − α, i = 1, 2, . . . , n. This solution can be proven by applying 
idempotency to the AND operator.

7. Inference in ULP

When using the LC strategy for CFE-based ULP, inference in ULP shares the fundamental principles of classical logic. 
Inheriting inference rules and algorithms from classical logic is possible due to the definition of ULP as an algebra that 
reproduces the core properties of classical logic.

7.1. Modus Ponens (MP)

Modus Ponens (MP) rule states that, whenever the sentences ϕ =⇒ ψ and ϕ have been established, then we can infer 
the sentence ψ as well. MP extends to ULP as follows. Consider:

ϕ1(d1), with uncertainty [α1, β1];
ϕ2(d2), with uncertainty [α2, β2]; and

ϕ1(d1) =⇒ ϕ2(d2), with uncertainty [αR , βR ]. (25)
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Then, given the uncertain premises ϕ1(d1) =⇒ ϕ2(d2) and ϕ1(d1), MP allows us to infer the uncertain expression ϕ2(d2). 
Note that if the uncertainty parameters [α2, β2] are unknown, their value should be obtained by using the definition of 
uncertain implication rules in Section 5.2.2 above. Based on (15), if we know a model mϕ1→ϕ2 for the implication rule, as 
well as a model mϕ1 for the antecedent, we could obtain a model for an unknown consequent m2(·). In this case:

α2 =

⎧⎪⎪⎨
⎪⎪⎩

αR , if αR > 1 − β1;
[0,αR ], if αR = 1 − β1; and

no solution, otherwise,

(26)

and

β2 =

⎧⎪⎪⎨
⎪⎪⎩

βR , if βR > 1 − α1;
[0, βR ], if βR = 1 − α1; and

no solution, otherwise.

(27)

Some important observations:

• Given a pair of uncertainty intervals [α1, β1] and [αR , βR ], it is not always possible to infer anything about a model for 
the consequent (i.e., m2(·)). This is consistent with the application of the Modus Ponens (MP) rule, according to which, 
if we know ϕ1 =⇒ ϕ2, and also that ϕ1 is true, then we can infer that ϕ2 is true. However, if we know that ϕ1 is false 
(i.e., ¬ϕ1 is true), we cannot say anything about the truth value of ϕ2.

• Furthermore, once we have enough support in m1(·) to infer something regarding m2(·), the only conclusion that we 
can provide regarding the uncertainty of m2(·) is that said uncertainty is mR (·). That is, after we have gathered a certain 
amount of evidence regarding the truth of the antecedent, getting more evidence is not going to affect the confidence 
we have on the truth of the consequent (i.e., α2 is bounded by αR , and β2 is bounded by βR ).

• When αR = 1 − β1 and βR = 1 − α1, an infinite number of solutions exist for [α2, β2]. We could use the minimum 
commitment criterion to decide α2 = 0 and β2 = βR .

To better understand MP in ULP, consider an example where α1 = β1 = α2 = β2 = 1. In this case, we obtain αR = βR = 1. 
Furthermore, given the ϕ1 =⇒ ϕ2 and ϕ1, then we can infer ϕ2 with uncertainty [α2 = β2] = [1, 1]. This case represents a 
scenario with no uncertainty.

Now consider a scenario where there is uncertainty in the rule, in such a way that [αR , βR ] = [0.5, 1.0], and assume that 
we have a model for the uncertainty of ϕ1 such that α1 = β1 = 1. Then, MP allows us to infer ϕ2, with the uncertainty 
[α2, β2] obtained from the equations αR = max(1 − β1, α2) and βR = max(1 − α1, β2). Solving these equations we obtain 
α2 = 0.5 and β2 = 1.

7.2. Other rules of inference

As with MP, ULP can be extended by incorporating new rules of inference that already exist in conventional logic in-
ference. Some examples of new rules of inference are: Modus Tolens (MT), AND elimination (AE), AND introduction (AI), 
universal instantiation (UI), and existential instantiation (EI). The definition of these rules of inference is straightforward 
based on their definition for conventional logic, and is not included in this manuscript. For a description of these rules of 
inference, we refer the reader to [28].

7.3. Example: applying inference rules in ULP

Consider the following problem, extracted from [28]. The law says that it is a crime to sell an unregistered gun. Red 
has several unregistered guns, and all of them were purchased from Lefty. Based on these premises, can we derive the 
conclusion that Lefty is a criminal? Moreover, how is this conclusion affected if these premises become uncertain?

Table 3 contains the FOL representation of these premises, as well as a derivation of the ULP-quantified conclusion “Lefty 
is a criminal”. Note that, if all the rules and premises are true (i.e., Boolean scenario with true clauses, which are represented 
by an uncertainty interval [1, 1]), the conclusion effectively shows that Lefty is a criminal. However, an uncertainty interval 
starts growing in this conclusion when the premises lose certainty. The fourth column in Table 3 shows how uncertainty is 
tracked in this problem. Note how in the Boolean scenario the conclusion matches that of classical logic. Also, note that if 
the inputs (clauses 1–3) are probabilistic, the result is probabilistic too.

Fig. 1 illustrates a more general ULP scenario, where the lower bound of the conclusion’s uncertainty (i.e., α10) is a 
function of the input arguments α1 and β2. By looking at this figure, we can identify a region (defined by α1 + β2 ≤ 1) 
for which we cannot derive the uncertainty of the conclusion. This is expected, given that, as mentioned above, we cannot 
always infer something from a MP rule when we have not enough evidence for the antecedent. In addition, in the figure we 
can see how α10 increases as the evidence of the input premises increases (i.e., α1 and β2 increase).
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Table 3
Premises and inference process for the derivation of the conclusion “Is Lefty a criminal?”. The example’s premises and inference process are introduced 
in [28] (note that “WeaponX” is a Skolem constant). Uncertainty modeling and tracking is done using the methods introduced in this paper. Inference rule 
abbreviations are: � (premise), EI (Existential Instantiation), UI (Universal Instantiation), MP (Modus Ponens), and AU (And Elimination).

Logic expression Inference rule Uncertainty interval

1 ∀x∀y∀z (Sold(x, y, z) ∧ Unregistered(y)) =⇒ Criminal(x) � [α1, β1]
2 ∃y Owns(Red, y) ∧ Unregistered(y) � [α2, β2]
3 ∀y (Owns(Red, y) ∧ Unregistered(y)) =⇒ Sold(Lefty, y,Red) � [α3, β3]
4 Owns(Red,WeaponX) ∧ Unregistered(WeaponX) EI, 2 [α4, β4] = [α2, β2]
5 (Owns(Red,WeaponX) ∧ Unregistered(WeaponX)) =⇒ Sold(Lefty,WeaponX,Red) UI, 3 [α5, β5] = [α3, β3]
6 Sold(Lefty,WeaponX,Red) MP, 5, 4 [α6, β6], with:

α6 =

⎧⎪⎨
⎪⎩

α3, if α3 > 1 − β2;
0, if α3 = 1 − β2;
no solution, otherwise;

β6 =
{

β3, if β3 ≤ 1 − α2;
no solution, otherwise.

7 Unregistered(WeaponX) AE, 4 [α7, β7] = [α2, β2]
8 (Sold(Lefty,WeaponX,Red) ∧ Unregistered(WeaponX)) =⇒ Criminal(Lefty) UI, 1 [α8, β8] = [α1, β1]
9 Sold(Lefty,WeaponX,Red) ∧ Unregistered(WeaponX) = [min(α2,α6),min(β2, β6)]
10 Criminal(Lefty) MP, 8, 9 [α10, β10], with:

α10 =

⎧⎪⎨
⎪⎩

α1, if α1 > 1 − β9;
0, if α1 = 1 − β9;
no solution, otherwise;

β10 =
{

β1, if β1 ≤ 1 − α9;
no solution, otherwise.

Fig. 1. Lower bound of the uncertainty of the conclusion Criminal( Lefty ) (i.e., α10 of Table 3). The belief measure α10 increases as both the belief 
α1 and the plausibility β1 increase. Note how in the extreme case α1 = β1 and α1, β1 ∈ {0, 1}, the solution corresponds to that of classical logic. In addition, 
when α1 = β1, the solution is a probabilistic model.

8. Satisfiability in ULP

The satisfiability (SAT) problem is a well known alternative for logic reasoning. Indeed, many automated reasoning prob-
lems in propositional logic are first reduced to satisfiability problems and then make use of a satisfiability solver.

Formally, the satisfiability problem consists in determining whether there exists a variable assignment such that every 
formula in a group of logic formulas (i.e., the model) evaluates to true [31]. This concept can be extended into ULP. In 
this case, instead of focusing on true/false variable assignments, we need to find the uncertainty intervals that satisfy a 
formula or a set of formulas. This is equivalent to finding a possible interpretation for the unknown uncertainties in a ULP 
model. Although this formulation departs from the traditional satisfiability formulation which identifies possible variable 
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assignments, equivalent variable assignments in ULP can be found by identifying those grounded propositions with no 
uncertainty (i.e., with uncertainty interval [1, 1]).

It has been demonstrated that the SAT problem is NP complete. However, there are instances in many diverse areas for 
which this problem can be reformulated with simpler and efficient algorithms [31]. As it will become evident later in this 
section, this is also true for the case of ULP satisfiability, enabling scalable solutions for reasoning with ULP.

The satisfiability problem for ULP models can be formulated as an optimization problem, as follows.

8.1. ULP satisfiability as an optimization problem

Consider a set 	 of uncertain propositions containing:

{ ϕ1(·), with uncertainty [αϕ1 , βϕ1 ],
ϕ2(·), with uncertainty [αϕ2 , βϕ2 ],

. . . , ϕl(·), with uncertainty [αϕl , βϕl ] },
whose uncertainty intervals are known. Let us call these propositions the evidence. Also consider a set � of uncertain 
propositions containing the elements:

{ ψ1(·), with uncertainty [αψ1 , βψ1 ],
ψ2(·), with uncertainty [αψ2 , βψ2 ],

. . . , ψm(·), with uncertainty [αψm , βψm ] },
whose uncertainty intervals are unknown. Both evidence and unknown propositions are components of a ULP model made 
of n logic expressions:

F1 : f1(	,�), with uncertainty [αF1 , βF1 ],
F2 : f2(	,�), with uncertainty [αF2 , βF2 ], . . . ,

Fn : fn(	,�), with uncertainty [αFn , βFn ],
where f1, f2, . . . , fn are logic formulas. Without loss of generality, assume that these formulas are disjunctions of a subset 
of propositions in 	 and �. For example, a ULP model could be defined as:

F1 : ϕ1 ∨ ψ1, with uncertainty [αF1 , βF1 ],
F2 : ϕ2 ∨ ϕ3 ∨ ψ1, with uncertainty [αF2 , βF2 ], and

F3 : ϕ3 ∨ ψ2, with uncertainty [αF3 , βF3 ]. (28)

Furthermore, let us denote as α	∈F j and α�∈F j the set of beliefs (i.e., lower bound of the uncertainty intervals) of the 
propositions in 	 and �, respectively, that are part of the formula F j, j = 1, 2, . . . , n. Similarly, let us denote as β	∈F j and 
β�∈F j the set of plausibilities (i.e., upper bound of the uncertainty intervals) of the propositions in 	 and �, respectively, 
that are part of the formula F j . For example, in the model defined by (28), the sets α	∈F j , β	∈F j , α�∈F j , β�∈F j , with 
j = 1, 2, 3, are:

α	∈F1 = {αϕ1}, β	∈F1 = {βϕ1},
α	∈F2 = {αϕ2 ,αϕ3}, β	∈F2 = {βϕ2 , βϕ3},
α	∈F3 = {αϕ3}, β	∈F3 = {βϕ3},
α�∈F1 = {αψ1}, β�∈F1 = {βψ1},
α�∈F2 = {αψ1}, β�∈F2 = {βψ1},
α�∈F3 = {αψ2}, and β�∈F3 = {βψ2}.

Then, the satisfiability problem in ULP can be defined as finding the uncertainty intervals [αψi , βψi ] that solve the 
following optimization problem:
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minimize{[αψi ,βψi ]}

n∑
j=1

(αF j − α̂F j )
2 + (βF j − β̂F j )

2 (29a)

subject to

for all j ∈ {1,2, . . . ,n} :
α̂F j = max(α	∈F j ,α�∈F j ); (29b)

β̂F j = max(β	∈F j , β�∈F j ); (29c)

0 ≤ α̂F j ≤ β̂F j ≤ 1; and (29d)

0 ≤ αψi ≤ βψi ≤ 1; i ∈ {1, . . . ,m}. (29e)

It is important to note the following:

• The cost function in (29a) is based on an l2 norm. However, the definition of the cost function should not be considered 
restricted to l2 norms. Other norms could be used to enforce particular properties of the solution.

• The constraints (29b) and (29c) model the uncertainty of an OR operation in CFE-based ULP, as defined in Section 5.2
above. The use of a disjunctive model simplifies the formulation of the optimization problem. Similar constraints could 
be constructed to model logic formulas that involve other logic operators, or, alternatively, any other logic expression 
could be converted into a disjunctive model. Constraints (29d) and (29e) condition the uncertainty intervals to be 
defined as closed sets, consistent with DS theory definitions.

• When the solution of the optimization problem renders a cost function equal to zero, the logic model is satisfiable. 
In this case, there may be an infinite number of solutions to the optimization problem, and an additional step should 
be added to the reasoning process for enforcing minimal commitment in the output intervals (i.e., delivering the most 
conservative interval allocation).

When the cost function in the solution does not evaluate to zero, the model is not satisfiable. In this case it is possible, 
however, to identify particular formulas that are making the problem unsatisfiable (by identifying the non-zero components 
in the cost function), and either discard them from the model, or properly weight the evidence to ensure satisfiability.

Also note that the optimization problem (29) is nonlinear. This problem, however, can be converted into a convex op-
timization problem if in each of the logic expressions F1, F2, . . . , Fn there is at most one proposition whose uncertainty is 
unknown. Under this assumption, the optimization problem (29) can be reformulated as:

minimize{[αψi ,βψi ]}

n∑
j=1

(αF j − α̂F j )
2 + (βF j − β̂F j )

2 (30a)

subject to

for all j ∈ {1,2, . . . ,n} :
0 ≤ α̂F j ≤ β̂F j ≤ 1; (30b)

α̂F j = α�∈F j ; β̂F j = β�∈F j ; (30c)

α̂Fk ≥ α	∈F j ; β̂Fk ≥ β	∈F j ; (30d)

0 ≤ αψi ≤ βψi ≤ 1; i ∈ {1, . . . ,m}. (30e)

As a convex optimization problem, the complexity of this algorithm is significantly less than that of its corresponding 
nonlinear problem. This makes this approach valuable in scenarios with hundreds to thousands of logic formulas such as 
the tracking problem addressed in [32] and the following example.

8.2. Example: MLNs and optimization-based ULP

Consider the scenario described in [33], in which a knowledge base contains the following three rules:

1. “Friends of friends are friends”;
2. “Smoking causes cancer”; and
3. “If two people are friends and one smokes, then so does the other”.

As defined in [33], these rules could be expressed in first order logic as:
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Table 4
Set of logic formulas (i.e., rules) and evidence for the example of Section 8.2. For simplicity, the duals of evidence 
expressions to E1, E2, E3, and E4 are not shown in the table. These duals enforce an assumption of symme-
try of a friendship relation (i.e., for two subjects d1, d2, the uncertainty of Friends(d1, d2) is the same of 
Friends(d2, d1).

Logic expression Uncertainty

Knowledge base of uncertain formulas/rules
F1 ∀x∀y∀z Friends(x, y) ∧ Friends(y, z) =⇒ Friends(x, z) [αF 1, βF 1] = [1,1]
F2 ∀x Smokes(x) =⇒ Cancer(x) [αF 2, βF 2]
F3 ∀x∀y Friends(x, y) ∧ Smokes(x) =⇒ Smokes(y) [αF 3, βF 3]
Evidence
E1 Friends( Ivan, John ) [αE1, βE1] = [1,1]
E2 Friends( Katherine, Lars ) [αE2, βE2] = [1,1]
E3 Friends( Michael, Nick ) [αE3, βE3] = [1,1]
E4 Friends( Ivan, Michael ) [αE4, βE4] = [1,1]
E5 Smokes( Ivan ) [αE5, βE5]
E6 Smokes( Nick ) [αE6, βE6]

1. ∀x∀y∀z Friends(x, y)∧ Friends(y, z) =⇒ Friends(x, z);
2. ∀x Smokes(x) =⇒ Cancer(x); and
3. ∀x∀y Friends(x, y)∧ Smokes(x) =⇒ Smokes(y),

respectively. Note that these types of rules would be rarely completely true (or false) in real-life problems [33]. However, 
if we are able to quantify and attach uncertainty measures to these rules, then we would have a valuable set of rules able 
to support meaningful automated reasoning. When using probabilities as the uncertainty measure, problems like the one 
in this example can be modeled (and solved) using MLNs. They could also be solved using ULP to take advantage of the 
increased degree of freedom and logic-consistency properties introduced in this paper.

Let us enhance this set of rules with a set of uncertain logic expressions and rules, as shown in Table 4. This set of 
logic expressions is applied on a domain of people defined as �p = {Ivan, John, Katherine, Lars, Michael, Nick}. For ease of 
explanation, friendship relations have been assumed to be perfectly known (i.e., with no uncertainty), with uncertainty 
intervals [1, 1]. The knowledge base and set of evidence are propotitionalized (i.e., grounded) over the domain �p , along 
with the grounded propositions Smokes( ·) and Cancer( ·). The propotitionalized knowledge base and evidence sets are 
further processed to convert them into conjunctive normal form, rendering a total of 438 propositions. Then, we automati-
cally formulate the ULP convex optimization model (30) for this example and use it for answering questions regarding the 
uncertainty of particular logic propositions.

Let us consider first the effect that changing the uncertainty of rule F3 has in the uncertainty of the proposition
Smokes(). Fig. 2 shows the uncertainty of this proposition as it applies to Katherine when the uncertainty of F3 changes. 
In the figure, nine uncertainty intervals are considered for F3, namely [αF 3, βF 3 ∈ {[1.00, 1.00], [0.75, 1.00], [0.50, 1.00],
[0.50, 0.75], [0.50, 0.50], [0.25, 0.50], [0.00, 0.50], [0.00, 0.25], [0.00, 0.00]}. These uncertainty intervals represent various 
uncertainty conditions, including F3 being completely true to completely false, as well as the uncertainty of F3 being mod-
eled with both probabilistic and DS models. This figure also shows the corresponding probabilities computed with MLNs 
(using Alchemy 1.0 [34]). Since MLNs rules require setting a weight for each logic expression, we set the weights of each 
proposition using the pignistic probability of its corresponding uncertainty interval. We can observe the following:

• The uncertainty interval of the proposition Smokes(Katherine) resembles the uncertainty interval of rule F3. This 
is expected given that, as described in Section 7 above, the uncertain model of implication rules (as the one in F3) is 
bounded by the uncertainty of the rule.

• The pignistic probability (BetP curve in the figure) provides a probabilistic solution based on the ULP models.
• Unless there is complete certainty of the truthfulness of F3, the probabilistic result rendered by an MLN model quickly 

drops to a value close to 0.4. Although for most of the intervals considered in the figure this probability value falls 
outside of the uncertainty interval provided by ULP, this result is the best an MLN can provide given its underlying 
probabilistic model. Recall that, unlike ULP, the probabilistic model of MLNs cannot naturally model the uncertainty 
of the negation of F3. In addition, by definition, the MLN model does not ensure consistency with a classical logic 
model and there is no direct correspondence between a weight in a logic formula and a probability value. With these 
limitations, the best solution that the MLN can provide for the proposition F3 is close to 0.5 (i.e., both events “Katherine 
smokes” and “Katherine does not smoke” are almost equally likely).

Let us now focus on the effect of changing the uncertainty of the rule F2, and assume that F3 is always true (with 
uncertainty [1, 1]). Fig. 3 shows the uncertainty of the proposition Cancer(Ivan) as a function of the uncertainty interval 
[αF 2, βF 2]. As in the analysis of the rule F3, the following nine uncertainty intervals are considered for F3: [αF 2, βF 2] ∈
{[1.00, 1.00], [0.75, 1.00], [0.50, 1.00], [0.50, 0.75], [0.50, 0.50], [0.25, 0.50], [0.00, 0.50], [0.00, 0.25], [0.00, 0.00]}. Note how, 
from interval [1.00, 1.00] down to interval [0.50, 0.50] the uncertainty of Cancer(Ivan) follows the uncertainty of the 
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Fig. 2. Uncertainty of the proposition Smokes(Kate) as a function of the uncertainty interval [αF 3, βF 3], which indicates the uncertainty of the logic 
formula F3 in the example of Section 8.2. The figure shows the belief and plausibility of Smokes(Kate) using ULP. In addition, the figure shows a 
mapping of the resulting ULP model into a probabilistic model using the pignistic transformation (labeled as BetP in the figure), as well as a probabilistic 
estimate rendered by an MLN model. Note how the uncertainty of Smokes(Kate) rendered by ULP follows the behavior of the uncertainty of F3, and 
provides information even if the uncertainty of the rule indicates that F3 is false.

Fig. 3. Uncertainty of the proposition Cancer(Ivan) as a function of the uncertainty interval [αF 2, βF 2], which indicates the uncertainty of the logic 
formula F2 in the example of Section 8.2. The figure shows the belief and plausibility of Smokes(Kate) using ULP. In addition, the figure shows a 
mapping of the resulting ULP model into a probabilistic model using the pianistic transformation (labeled as BetP in the figure), as well as a probabilistic 
estimate rendered by an MLN model. Note how the uncertainty of Cancer(Ivan) rendered by ULP follows the behavior of the uncertainty of F2. When 
there is not enough evidence to support an assignment of an uncertainty interval of Cancer(Ivan), the ULP model renders as a result the interval that 
represents complete ignorance, namely [0, 1].

rule F2. However, when there is insufficient evidence to support a satisfiable model a conclusion cannot be made on 
the uncertainty interval of Cancer(Ivan) in ULP. In this case, the uncertainty interval becomes [0, 1] which indicates 
complete ignorance on the event Cancer(Ivan) being true or false. Note that rendering an uncertainty interval [0, 1] in 
this case is consistent with the MP model (26) and (27): In the case of insufficient evidence to support a conclusion, the 
model is not satisfiable and a conservative solution [0, 1] is output. Finally, the figure shows that the pignistic probabilistic 
transformation (i.e., BetP in the figure) renders results that are close to the output delivered by MLNs in this scenario.
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9. Conclusion

We have presented the fundamental theory of Uncertain Logic Processing (ULP), a DS theoretic approach for first order logic 
operations. ULP provides support for handling uncertain fundamental logic operations (i.e., ¬, ∧, ∨, =⇒ ), combinations of 
these fundamental operations, variables, and logic quantifiers. The framework presented in this paper allows systematic 
generation of mass assignments based on uncertain first order logic formulas.

The use of DS theory as the substrate for modeling and tracking the propagation of uncertainty in the ULP framework 
provides us with important advantages such as the ability of modeling uncertainty using intervals (instead of being limited 
by sometimes restrictive probability values), ability for quantifying ignorance on the truth value of logical formulas or 
propositions, providing a principled way of refining uncertainty intervals without relying on priors or membership functions, 
and allowing compatibility with probabilistic models, among others.

ULP can be tuned for consistency with classical logic, rendering the classical logic results when the scenario represents 
“perfect” (i.e., without uncertainty) data/models. The consistency with classical logic gives the confidence to apply our 
proposed models as an extension of classical logic in reasoning. Given the parameterized presentation of the uncertain logic 
operations, extensions of ULP could be designed to address, in addition to consistency with classical logic, consistency with 
paraconsistent logics.

Acknowledgement

This work is based on research supported by the US Office of Naval Research (ONR) via grants #N00014-10-1-0140 and 
#N00014-11-1-0493, and the US National Science Foundation (NSF) via grants #1038257 and #1343430.

Appendix A. BBA for LC CFE-based AND

Consider the definition of the CFE fusion operator (see Section 2 above) and substitute the CFE coefficients for those of 
the AND operation, as indicated by Definition 11. Then: m(d) = 2γ (d) + 2γ (�)(α1 + α2).

• When δ1 + δ2 �= 0:

m(d) = α(β1 + β2) − β(α1 + α2)

δ1 + δ2
+ δ(α1 + α2)

δ1 + δ2

= 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β + δ(α1 + α2)).

Since δ = β − α:

m(d) = 1
δ1+δ2

(αβ1 + αβ2 − α1β − α2β

+ α1β + α2β − α1α − α2α)

= 1
δ1+δ2

(α(β2 − α2 + β1 − α1)). (31)

Substituting δ1 = β1 − α1 and δ2 = β2 − α2 in (31): m(d) = α.
• When δ1 + δ2 = 0, and making γ (�) = 0: m(d) = 2γ (d) = α.

The mass m(d) is given by:

m(d) = γ1(d) + γ1(�)m1(d) + γ2(d) + γ2(�)m2(d). (32)

Substituting the CFE coefficients as indicated by Definition 11 in (32): m(d) = 2γ (d) + 2γ (�)(2 − β1 − β2).

• When δ1 + δ2 �= 0:

m(d) = δ1 + δ2 − β(2 − α1 − α2) + α(2 − β1 − β2)

δ1 + δ2

+ δ(2 − β1 − β2)

δ1 + δ2

= 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + δ(2 − β1 − β2)).

Since δ = β − α:
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m(d) = 1
δ1+δ2

(δ1 + δ2 − β(2 − α1 − α2)

+ α(2 − β1 − β2) + (β − α)(2 − β1 − β2))

= 1
δ1+δ2

(δ1 + δ2 − β(β1 − α1 + β2 − α2)). (33)

Substituting δ1 = β1 − α1 and δ2 = β2 − α2 in (33): m(d) = 1 − β .

• When δ1 + δ2 = 0, and making γ (�) = 0: m(d) = 2γ (d) = 1 − α = 1 − β .

Finally, m(�) = 1 − m(d) − m(d) = β − α.

Appendix B. Properties of the LC CFE-based UL operations

Consider logic expressions of the form ϕ(di), with 1 ≤ i ≤ N . Then, the following properties are satisfied:

1. Idempotency: This property is defined by: ϕi(d) ∧ ϕi(d) = ϕi(d) ∨ ϕi(d) = ϕi(d). In this case:

m∧(d) = min(αi,αi) = αi = max(αi,αi) = m∨(d);
m∧(d) = 1 − β = 1 − min(βi, βi) = 1 − βi

= 1 − max(βi, βi) = 1 − β = m∨(d);
m∧(�) = β − α = βi − αi = β − α = m∨(�).

2. Commutativity: It refers to satisfying: ϕ1(d) ∧ ϕ2(d) = ϕ2(d) ∧ ϕ1(d), and ϕ1(d) ∨ ϕ2(d) = ϕ2(d) ∨ ϕ1(d). Let us call 
mϕi∧ϕ j (·) the BBA resulting from ϕi(d) ∧ ϕ j(d), i = {1, 2}. Then, for the AND operation:

mϕ1∧ϕ2(d) = min(α1,α2) = min(α2,α1) = mϕ2∧ϕ1(d)

mϕ1∧ϕ2(d) = 1 − min(β1, β2) = mϕ2∧ϕ1(d)

mϕ1∧ϕ2(�) = min(β1, β2) − min(α1,α2)

= min(β2, β1) − min(α2,α1) = mϕ2∧ϕ1(�).

A proof for commutativity for the logical OR operation is obtained by following a similar procedure.
3. Associativity: The associative property is defined by: ϕ1(d) ∧ [ ϕ2(d) ∧ ϕ3(d) ] = [ϕ1(d) ∧ ϕ2(d) ] ∧ ϕ3(d), and 

ϕ1(d) ∨ [ ϕ2(d) ∨ϕ3(d) ] = [ ϕ1(d) ∨ϕ2(d) ] ∨ ϕ3(d). Let us call ϕ4(·) the model generated by ϕ2(d) ∧ϕ3(d), and ϕ5(·)
the model generated by ϕ1(d) ∧ ϕ2(d). Also, let us call mϕi∧ϕ j (·) the BBA resulting from ϕi(d) ∧ ϕ j(d), i = {1, . . . , 5}. 
Our goal (for the AND) is to show that the model for ϕ1(·) ∧ ϕ4(·) is equivalent to the model for ϕ5(·) ∧ ϕ3(·):

mϕ1∧ϕ4(d) = min(α1,min(α2,α3))

= min(min(α1,α2),α3) = mϕ5∧ϕ3(d)

mϕ1∧ϕ4(d) = 1 − min(β1,min(β2, β3))

= 1 − min(min(β1, β2),β3) = mϕ5∧ϕ2(d)

mϕ1∧ϕ4(�) = min(min(β1, β2),β3)

− min(min(α1,α2),α3) = mϕ5∧ϕ3(�).

A proof for associativity for the logical OR operation is obtained by following a similar procedure.
4. Distributivity: Distributive operations satisfy: ϕ1(di) ∧ [ϕ2(d j) ∨ ϕ3(dk)] = [ϕ1(di) ∧ ϕ2(d j)] ∨ [ϕ1(di) ∧ ϕ3(d j)], and 

ϕ1(di) ∨ [ϕ2(d j) ∧ ϕ3(dk)] = [ϕ1(di) ∨ ϕ2(d j)] ∧ [ϕ1(di) ∨ ϕ3(d j)].
Let us call ϕ4(·) the model generated by ϕ1(d) ∧ [ϕ2(d) ∨ ϕ3(d)], and ϕ5(·) the model generated by [ϕ1(d) ∧ ϕ2(d)] ∨
[ϕ1(d) ∧ ϕ3(d)]. Our goal is to show that the model for ϕ4(·) is equivalent to the model for ϕ5(·). In general, these two 
models are:

mϕ4(d) = min(α1,max(α2,α3));
mϕ4(d) = 1 − min(β1,max(β2, β3));

mϕ4(�) = min(β1,max(β2, β3)) − min(α1,max(α2,α3));
and
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mϕ5(d) = max(min(α1,α2),min(α1,α3));
mϕ5(d) = 1 − max(min(β1, β2),min(β1, β3));

mϕ5(�) = max(min(β1, β2),min(β1, β3))

− max(min(α1,α2),min(α1,α3)).

Now, consider the focal set d. We have three cases (other possible cases are equivalent to these three after applying 
the commutativity rule): (a) α1 ≤ α2 ≤ α3; (b) α2 ≤ α1 ≤ α3; and (c) α2 ≤ α3 ≤ α1. The mass associated to the focal set 
d is: (a) mϕ4 (d) = α1 = mϕ5(d); (b) mϕ4 (d) = α1 = mϕ5(d); and (c) mϕ4 (d) = α3 = mϕ5(d); i.e., mϕ4(d) = mϕ5(d) in all 
the cases. For the focal set d we also have three basic cases: (a) β1 ≤ β2 ≤ β3; (b) β2 ≤ β1 ≤ β3; and (c) β2 ≤ β3 ≤ β1; 
which render: (a) mϕ4 (d) = 1 − β1 = mϕ5(d); (b) mϕ4(d) = 1 − β1 = mϕ5(d); and (c) mϕ4 (d) = 1 − β3 = mϕ5(d). Based 
on the cases above, it can be shown that also mϕ4 (�) = mϕ5(�), proving distributivity for the logical AND operation. 
A proof for distributivity for the logical OR operation is obtained by following a similar procedure.

Appendix C. ULP operators for multiple propositions

The CFE-based uncertain logic AND operator generalizes as follows for the general case of n propositions:

n∧
i=1

ϕ(di) :

m( θi− × di × θi+ ) = 1
n α1:n + 1

n

(
β

1:n − α1:n
)
αi,∀i;

m( θi− × di × θi+ ) = 1
n

(
1 − β

1:n
)

+ 1
n

(
β

1:n − α1:n
)

(1 − βi),∀i;
m( �ϕ,D ) = 1

n

(
β

1:n − α1:n
)(∑n

i=1(βi − αi)
)
, (34)

with: θi− = �ϕ,d1 × �ϕ,d2 × . . . × �ϕ,di−1 ; θi+ = �ϕ,di+1 × . . . × �ϕ,dn−1 × �ϕ,dn ; α1:n = α1,2,...,n = min(α1, α2, . . . , αN); and
β

1:n = β
1,2,...,n

= min(β1, β2, . . . , βN ).

Similarly, for the logical OR operator:

n∨
i=1

ϕ(di) :

m( θi− × di × θi+ ) = 1
n α1:n + 1

n

(
β1:n − α1:n

)
αi,∀i;

m( θi− × di × θi+ ) = 1
n

(
1 − β1:n

)
+ 1

n

(
β1:n − α1:n

)
(1 − βi),∀i;

m( �ϕ,D ) = 1
n

(
β1:n − α1:n

) (∑n
i=1(βi − αi)

)
,

with: α1:n = α1,2,...,n = max(α1, α2, . . . , αn) and β1:n = β1,2,...,n = max(β1, β2, . . . , βn).

Simpler models are obtained for the expressions 
∧M

i=1 ϕi(d) and 
∨M

i=1 ϕi(d):

M∧
i=1

ϕi(d) : m(d) = α1:M + 1
M

(
β

1:M − α1:M
)(∑M

i=1 αi

)
;

m(d) =
(

1 − β
1:M

)
+ 1

M

(
β

1:M − α1:M
)(∑M

i=1(1 − βi)
)

;
m(�ϕ1:M ,d) = 1

M

(
β

1:M − α1:M
)(∑M

i=1(βi − αi)
)

,

and

M∨
i=1

ϕi(d) : m(d) = α1:M + 1
M

(
β1:M − α1:M

)(∑M
i=1 αi

)
;

m(d) = (
1 − β1:M

) + 1
M

(
β1:M − α1:M

)(∑M
i=1(1 − βi)

)
;

m(�ϕ1:M ,d) = 1
M

(
β1:M − α1:M

)(∑M
i=1(βi − αi)

)
.
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