

1. Human-Robot Interaction Laboratory, Tufts University, USA 2. Department of Neurophysiology, Kyoto University, Kyoto, Japan

The Problem

- . Finding repeated patterns in acoustic speech signals without any information beyond the signals themselves
- . Relevant applications:
- . Foundational work for speech recognition in languages with little to no transcribed data
- . Insight about human development and language acquisition
- . Dealing with OOV speech in open world autonomous systems

Our approach

- . Main contributions:
- . Adaptation of the Acoustic DP-Ngram Algorithm (DP-Ngrams) [1] to this task
- . Parallelized implantation that enables large scale evaluations:
- . Sequence of segmentations, each with increasing computational complexity Each segmentation builds upon previous segmentations

-			
Least Complex			Most
1. Initial	2. Feature	3. Subsequence	4. Clustering ar
Segmentation	Extraction	Discovery	Boundary Refin

Initial Segmentation

- . Amplitude envelope filter
- . Splits raw signal into silence-delimited chunks to enable subsequent parallelization

Feature Extraction

- . Standard MFCCS
- . Smoothed using running average filter
- . Reduces the effect of minor dissimilarities in sequence pairs

Darker cells represent higher similarity.

A PARALLELIZED DYNAMIC PROGRAMMING APPROACH TO ZERO RESOURCE SPOKEN TERM DISCOVERY

Bradley Oosterveld¹, Richard Veale², Matthias Scheutz¹

Complex nement

Smoothed Features

Subsequence Discovery

. Adapted from previous applications in sub-word level modeling

- . Modified standard parameterization
- . More aggressive elimination of previously visited cells when considering multiple alignments
- . Uses dynamic programming to generate a Quality Matrix based on a Distance Matrix of sequence similarities
- . Similar to S-DTW, but does not use predefined alignment start and end points

Distance Matrix

$$D_{i,j} = \frac{U_i \cdot V_j}{\parallel U_i \parallel \parallel V_j \parallel}$$

Parallelization

· System level parallelization: comparing multiple sequences pairs at once

- . Algorithm level parallelization: comparisons within DP-Ngrams done in parallel using a GPU
- . Distance matrix calculation: simple Euclidean distance kernel
- . Quality Matrix calculation: sets of cells can be updated in parallel using topology below
- Known segment lengths allow for efficient block filling, so we are able to limit each sequence comparison to a single block
- Minimize memory transfer by containing the entirety of a comparison within a single block
- . With blocks performing roughly the same number of comparisons we minimize low usage situations

Clustering and Boundary Refinement

- . Connected component clustering using aligned subsequence pairs with common members in order to generate a set of discovered linguistic units
- . Averaged start and endpoints across each instance of a segment in a cluster
- . Generate final transcription using discovered units, the spaces between them, and the regions of silence form the initial segmentation

Evaluation

Results

. Our system (O) compared to topline human transcriptions (T), and existing methods

	NED	Cov.	Matching			Grouping		Туре		Token		Boundary					
			Р	R	F	Р	R	F	Р	R	F	Р	R	F	Р	R	F
English																	
Т	0.0	100	98.3	18.5	31.1	99.5	100	99.7	50.3	56.2	53.1	68.2	60.8	64.3	88.4	86.7	87.5
[3]	21.9	16.3	39.4	1.6	3.1	21.4	84.6	33.3	6.2	1.9	2.9	5.5	0.4	0.8	44.1	4.7	8.6
[4]	70.8	42.4				13.4	15.7	14.2	14.1	12.9	13.5	22.6	6.1	9.6	75.7	33.7	46.7
[5]	61.2	80.2	6.5	3.5	4.6				3.1	9.2	4.6	2.4	3.5	2.8	35.4	38.5	36.9
0	39.4	92.1	51.8	0.0	0.0	76.2	100	82.7	5.6	5.1	5.3	10.2	1.9	3.2	71.1	22.5	34.2
Tsonga																	
Т	0.0	100	100	6.8	12.7	100	100	100	15.1	18.1	16.5	34.1	49.7	40.4	66.6	91.9	77.2
[3]	12.0	16.2	69.1	0.3	0.5	52.1	77.4	62.2	3.2	1.4	2.0	2.6	0.5	0.8	22.3	5.6	8.9
[4]	63.1	94.7				10.7	3.3	5.0	2.2	6.2	3.3	2.3	3.4	2.7	29.2	39.4	33.5
[5]	43.2	89.4	21.2	3.8	6.5				4.9	18.8	7.8	2.2	12.6	0.8	18.8	64.0	29.0
0	39.6	95.5	35.7	0.0	0.0	19.1	100	31.7	1.6	2.2	1.9	1.5	0.5	0.8	49.9	27.6	35.5

Discussion

- robot interaction contexts

References

Acknowledgements

This work was funded in part by US Office of Naval Research grant #N00014-14-1-0751. We thank Roger K Moore for the helpful discussion.

. Metrics defined by the 2015 Zero Resource Speech Challenge [2] . Two copra of spoken language: American English, Tsonga

. Improvements on previous results in several categories

. Notably, highest Coverage with relatively low NED

. GPU based implementation allowed our system to run in reasonable amounts of time on these datasets . Future interests lie in applications related to OOV detection in open-world ASR, especially in human

[1]G. Aimetti, R. K. Moore, and L. ten Bosch, "Discovering an optimal set of minimally contrasting acoustic speech units: A point of focus for whole-word pattern matching," 2010.

[2]Versteegh, Maarten, Roland Thiolliere, Thomas Schatz, Xuan-Nga Cao, Xavier Anguera, Aren Jansen, and Emmanuel Dupoux. "The zero resource speech challenge 2015." In INTERSPEECH, pp. 3169-3173. 2015.

[3]Jansen, Aren, and Benjamin Van Durme. "Efficient spoken term discovery using randomized algorithms." In Auto-matic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on, pp. 401-406. IEEE, 2011.

[4]Räsänen, Okko, Gabriel Doyle, and Michael C. Frank. "Unsupervised word discovery from speech using automatic segmentation into syllable-like units." In INTERSPEECH, pp. 3204-3208. 2015.

[5]VLyzinski, Vince, Gregory Sell, and Aren Jansen. "An evaluation of graph clustering methods for unsupervised term discovery." In INTERSPEECH, pp. 3209-3213. 2015.