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The Problem

. Finding repeated patterns in acoustic speech signals without any information beyond the signals
themselves

. Relevant applications:
. Foundational work for speech recognition in languages with little to no transcribed data

. Insight about human development and language acquisition

. Dealing with OOV speech in open world autonomous systems

Our approach

. Main contributions:
. Adaptation of the Acoustic DP-Ngram Algorithm (DP-Ngrams) [1] to this task
. Parallelized implantation that enables large scale evaluations:

. Sequence of segmentations, each with increasing computational complexity

. Each segmentation builds upon previous segmentations

Least Complex . Most Complex

1. Initial 2. Feature
Segmentation  Extraction

3. Subsequence
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4. Clustering and
Boundary Refinement

Initial Segmentation

. Amplitude envelope filter

. Splits raw signal into silence-delimited chunks to enable subsequent parallelization
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Feature Extraction
. Standard MFCCS

. Smoothed using running average filter

. Reduces the effect of minor dissimilarities in sequence pairs

Raw Features Smoothed Features

Darker cells represent higher similarity.

ZERO RESOURCE SPOKEN TERM DISCOVERY
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Subsequence Discovery

. Adapted from previous applications in sub-word level modeling
. Modified standard parameterization
. More aggressive elimination of previously visited cells when considering multiple alignments

. Uses dynamic programming to generate a Quality Matrix based on a Distance Matrix of
sequence similarities

. Similar to S-DTW, but does not use predefined alignment start and end points
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Evaluation

. Metrics defined by the 2015 Zero Resource Speech Challenge [2]

. Two copra of spoken language: American English, Tsonga
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Results

. Our system (O) compared to topline human transcriptions (T), and existing methods
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Parallelization

. System level parallelization: comparing multiple sequences pairs at once

. Algorithm level parallelization: comparisons within DP-Ngrams done in parallel using a GPU

. Distance matrix calculation: simple Euclidean distance kernel

. Quality Matrix calculation: sets of cells can be updated in parallel using topology below

. Known segment lengths allow for efficient block filling, so we are able to limit each sequence compari-

son to a single block

. Minimize memory transfer by containing the entirety of a comparison within a single block

. With blocks performing roughly the same number of comparisons we minimize low usage situations

Clustering and Boundary Refinement

. Connected component clustering using aligned subsequence pairs with common members in order to

generate a set of discovered linguistic units

. Averaged start and endpoints across each instance of a segment in a cluster

. Generate final transcription using discovered units, the spaces between them, and the regions of silence

form the initial segmentation

NED | Cov. Matching Grouping Type Token Boundary
P R F P R F P R F P R F P R F
English
T 100[100]98.3|18.5|31.1[99.5| 100 | 99.7 |50.3|56.2|53.1|68.2|60.8| 643 | 884 | 86.7 | 87.5
3]1121.9|163[394| 16 | 3.1 214|846 (33362 |19|29 |55 |04 | 08 |44.1 | 47 | 8.6
4]170.8 424 134 (157|142 |114.1{12.9|13.5/22.6 | 6.1 | 9.6 | 75.7 | 33.7 |46.7
5]161.2180.2| 6.5 | 3.5 | 4.6 31192 |46 | 24 | 35| 28 | 354 | 38.5 | 36.9
O (394(92.1/51.8| 0.0 | 0.0 |76.2| 100 |82.7| 56 | 5.1 | 53 | 10.2| 1.9 | 3.2 | 71.1 | 225 | 34.2
Tsonga
T (00 |100| 100 | 6.8 |12.7| 100 | 100 | 100 [15.1{18.1|16.5|34.1 |49.7 | 404 | 66.6 | 919 | 77.2
3]1112.0/16.2(69.1| 0.3 | 0.5 |[52.1|774(62.2| 3.2 | 14|20 |26 | 05|08 | 223 | 56 | 89
4]163.1|94.7 107 33 | 50 |22 (62|33 |23 |34 | 27 | 292 | 394 | 335
5]143.2|1894|21.2| 3.8 | 6.5 49 (18.8| 7.8 | 2.2 (12.6| 0.8 | 188 | 64.0 | 29.0
O 396|95.5/357/ 00| 00 {19.1/100 |31.7 |16 |22 |19 | 15 | 05 | 0.8 | 49.9 | 276 |35.5
Discussion

. Improvements on previous results in several categories
. Notably, highest Coverage with relatively low NED
. GPU based implementation allowed our system to run in reasonable amounts of time on these datasets

. Future interests lie in applications related to OOV detection in open-world ASR, especially in human
robot interaction contexts
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