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ABSTRACT 

Effectively combining multiple (and complementary) sources of information is 
becoming one of the most promising paths for increased accuracy and more detailed 
analysis in numerous applications. Neuroscience, business analytics, military 
intelligence, and sociology are among the areas that could significantly benefit from 
properly processing diverse data sources. However, traditional methods for 
combining multiple sources of information are based on slow or impractical 
methods that rely either on vast amounts of manual processing or on suboptimal 
representations of data. We introduce an analytical framework that allows automatic 
and efficient processing of both hard (e.g., physics-based sensors) and soft (e.g., 
human-generated) information, leading to enhanced decision-making in multi-



source environments. This framework combines Natural Language Processing 
(NLP) methods for extracting information from soft data sources and the Dempster-
Shafer (DS) Theory of Evidence as the common language for data representation 
and inference. The steps in the NLP module consist of part-of-speech tagging, 
dependency parsing, coreference resolution, and a conversion to semantics based on 
first order logic representations. Compared to other methods for handling 
uncertainties, DS theory provides an environment that is better suited for capturing 
data models and imperfections that are common in soft data. We take advantage of 
the fact that computational complexity typically associated with DS-based methods 
is continually decreasing with both the availability of better processing systems, as 
well as with improved processing algorithms such as conditional approach to 
evidence updating/fusion. With an adequate environment for numerical modeling 
and processing, two additional elements become especially relevant, namely: (1) 
assessing source credibility, and (2) extracting meaning from available data. 
Regarding (1), it is clear that the lack of source credibility estimation (especially 
with human-generated information) could direct even the most powerful inference 
methods to the wrong conclusions. To address this issue we present consensus 
algorithms that mutually constrain the data provided by each of the sources to assess 
their individual credibility. This process can be reinforced to get improved results 
by incorporating (possibly partial) information from physical sensors to validate soft 
data. At the end of a credibility estimation process, every piece of information can 
be properly scaled prior to any inference process. Then, meaning extraction (i.e., 
(2)) becomes possible by applying the desired inference method. Special 
consideration must be taken to ensure that the selected inference method preserves 
the quality and accuracy of the original data as much as possible, as well as the 
relations among different sources of information and among data. To accomplish 
this, we propose using first-order logic (FOL) in the DS theoretic framework. Under 
this approach, soft information (in the form of natural language) is analyzed 
syntactically and for discourse structure, and consequently converted into FOL 
statements representing the semantics. Processing of these statements through an 
“uncertain logic” DS methodology renders bodies of evidence (BoE) that, combined 
with experts’ opinions stored in knowledge bases, can be fused to provide accurate 
solutions to a wide variety of queries. Examples of queries include finding or 
refining groups of suspects in a crime scene, validating credibility of witnesses, and 
categorizing data in the web. When hard-sensor data is also incorporated in the 
inference process, challenging applications such as multi-source detection, tracking, 
and intent detection, could also be addressed with the proposed solution. 
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1  INTRODUCTION 

The development of new sensing and data acquisition technologies is occurring 
at such a fast pace that it is triggering a need for more sophisticated meaning 
extraction and inference methods. These inference schemes need to take advantage 
of the increased amounts of information, producing more accurate and complete 
solutions to varied problems. This information, in general, can be classified as 
“hard” or “soft”. “Hard information” refers to information generated by physics-
based sources, and “soft information” refers to information generated from human-
based sources, including human reports, text and audio communications, and open 
sources such as newspapers, radio/TV broadcasts, and web sites. 

Solutions for meaning extraction and inference have typically targeted either 
hard information (e.g., sensor networks) or soft information (e.g., data mining). 
However, simultaneously using both hard and soft information is still mostly a 
human-intensive task, with very little research addressing this hard/soft information 
fusion application (Pravia, et. al., 2008). 

Aimed at addressing this issue, we introduce a general model for automated 
analysis of hard and soft information. As an application of this technology, consider 
the following scenario.

1
 A team of experts is trying to assess the credibility of 

witnesses of a crime scene. The messages provided by the witnesses, as they were 
documented, are: 

Witness 1 (W1): “The suspect was driving a black SUV”; 
Witness 2 (W2): “The suspect was driving a white sedan”; 
Witness 3 (W3): “The suspect was driving a white vehicle”. 

Each of the witnesses was asked to rate, from 0 to 100, how certain he/she was 
on the information they provided. They answered 80%, 90%, and 95%, for W1, W2, 
and W3, respectively. In addition to the information provided by witnesses, the 
team of experts has access to video surveillance (VS) reports that identified the 
suspect’s vehicle as a light-colored sedan. This type of report has been characterized 
as being 98% accurate. 

Having this information, is it possible to estimate the credibility of the 
witnesses? Is it possible to refine the crime-scene scenario?  Although this simple 
scenario can be easily solved by humans, our work aims at defining a framework 
that allows automatic analysis of this type of events, especially when hundreds of 
thousands of pieces of information are available, all of them potentially providing 
valuable information for the human experts. 

A general framework for solving this type of problem is shown in Figure 1. In 
this framework, soft data is converted into first-order logic (FOL) constructs by a 
Natural Language Processing (NLP) module. FOL is preferred for the semantic 
representation because it preserves a higher amount of information compared to 
other methods (e.g., RDF Graphs). A combination of semantic representation 

                                                        
 
1 We introduce this scenario as a running example that will allow us to easily describe each 
step of our hard and soft information fusion process. 



methods with higher and lower levels of detail could also be used as means of 
reducing complexity. These logic constructs are quantified and mathematically 
modeled (e.g., via probability or belief functions), and their credibility is assessed. 
An alternative for assessing credibility is based on finding consensus among 
information sources. Distance to consensus can be used as a measure of credibility. 
With such a measure, the data could be properly weighted for further processing in 
meaning extraction and inference. 

In the remainder, we introduce the methods that we have designed for each of 
the components in our hard/soft information fusion framework, and, as an 
illustration of the techniques, we apply them for processing the scenario described 
above. 

 

 

Figure 1  Fusion of hard and soft information. 

2  BUILDING NUMERICAL MODELS FROM TEXTUAL DATA 

2.1  Natural Language Processing 

The goal of the NLP module is to accept plain text, such as witness statements, 
interrogation protocols, texts from the WWW, or any other textual source, and 
produce an analysis that allows further processing in the Dempster-Shafer (DS) 
framework. Overall, the NLP analysis faces two problems: (1) efficiency concerns 
and (2) out-of-domain data. With regard to efficiency concerns, syntactic parsing 
and coreference resolution are computationally very intensive steps. Additionally, a 
traditional NLP architecture is built as a pipeline, in which texts are processed 



sentence by sentence, i.e. one sentence is analyzed by the first module, then sent to 
the second, etc. We approach this problem by using a fully incremental architecture, 
in which words are processed as they come in, and partial results are directly passed 
to the next module without waiting for the full sentence to be analyzed. This 
necessitates changes in the individual modules, which cannot rely on having access 
to context beyond the word currently processed. Problem (2) refers to the fact that 
all NLP modules are based on supervised machine learning, and thus need to be 
trained. The only available training set is often a part of the Wall Street Journal, 
which has been annotated on different levels (cf. e.g., Marcus et al., 1993). For this 
reason, we need to develop methods that allow us to adapt the learned model to the 
domain of texts that need to be analyzed (Kübler et al., 2010, Kübler and Baucom, 
2011). 

The first step in the NLP module is part-of-speech (POS) tagging, which assigns 
words classes to words in a sentence.  Thus witness statement W1 would be 
assigned the following parts of speech: The/DT suspect/NN was/VBD driving/VBG 
a/DT black/JJ SUV/NNP. 'The' and 'a' are articles, 'suspect' is a noun, 'was' is a verb 
in past tense, 'driving' a present participle, 'black' is an adjective, and 'SUV' is a 
name. We use an n-best, anytime implementation of a Markov model tagger. 
The POS tagged sentences serve as input for a dependency parser. Dependency 
parsing performs a syntactic analysis. We use a dependency parser, which assigns 
dependency relations to pairs of words in a sentence. The dependency analysis for 
W1 is shown in Figure 2. The analysis shows that 'suspect' is the subject of 'was', 
'driving' is a verbal complement of 'was', 'SUV' is the direct object of 'driving', and 
the two articles modify the nouns. As parser, we use MINK (Cantrell, 2009), a fully 
incremental implementation of MaltParser (Nivre et al., 2007). 

 

Figure 2  The dependency analysis of W1 

After the syntactic analysis, we perform coreference resolution. In this step, we 
determine which expressions in the document refer to the same entity. That is, if we 
had a fourth witness statement: 

Witness 4 (W4): "I saw the suspect driving a black SUV; he parked the 
vehicle right in front of the shop", 

then coreference resolution will tell us that 'the suspect' and 'he' refer to the same 
person and that 'a black SUV' and 'the vehicle' refer to the same car. For coreference 



resolution, we use UBIU, a robust, multilingual system using memory-based 
learning for classifying pairs of potentially coreferent mentions (Zhekova and 
Kübler, 2010, Zhekova and Kübler, 2011). For the future, we are planning on 
extending the system to cross-document coreference resolution, which will enable 
us to cross-link mentions of persons across different documents, thus giving us sets 
of sentences that can be used for DS inference. 

After coreference resolution, we convert the sentence into a semantic 
representation based on first order logic statements. Thus, W1 in our running 
example (see Section 1 above), would be represented as ∃x, y:  WasDriving(x, y) ^ 
Suspect(x) ^ Black(y) ^ Suv(y), stating that there is an entity x who is a suspect, and 
an entity y which is an SUV, and that x was driving y. The conversion is lexicon-
based (Kübler et al., 2011). 

2.2  Basic Probability Assignments for FOL Constructs 

With a set of FOL sentences available, the next problem that must be tackled is 
that of quantifying this information in such a way that uncertainty in the information 
is properly modeled, and that the inference engine can use it.  

Although FOL has traditionally been one of the preferred modeling frameworks 
for resolution and inference, FOL is not designed for handling problems with 
uncertainties. Methods such as uncertain reasoning and probabilistic logic extend 
FOL for solving these problems (Genesereth and Nilsson, 1987). These methods 
improve the scope of problems that can be solved based on FOL, but they do not 
address the cases of incomplete data, and they cannot be used for easily describing 
information uncertainty by lower and upper probability bounds. We propose 
modeling data and making inference using Dempster-Shafer (DS) theory (Shafer, 
1976) for addressing these issues. DS theory has been successfully used in 
applications such as rule mining (Hewawasam, et. al., 2007) and target 
identification (Ristic and Smets, 2005).  

Current approaches for building DS models for logic operators provide models 
for particular uncertain operators in propositional logic. For example, Benavoli, et. 
al., (2008) introduce a method for modeling uncertain implication rules using DS 
models. We are enhancing model-building strategies by defining a method that 
incorporates logic quantifiers (hence, FOL models), and preserves fundamental 
logic properties (e.g., associativity, commutativity, distributivity, and idempotency) 
for a set of basic logic operators (i.e., not, and, or, and implication rules).  

Based on our FOL models for DS, the witness sentences in our example can be 
converted into probability (or mass) assignments. Let us assume that the output of 
the NLP stage for our running example is the following: 

W1: ∃x,y: WasDriving(x, y) ^ Suspect(x) ^ Black(y) ^ Suv(y); 
W2: ∃x,y: WasDriving(x,y) ^ Suspect(x) ^ White(y) ^ Sedan(y); 
W3: ∃x,y: WasDriving(x, y) ^ Suspect(x) ^ White(y) ^ Vehicle(y); 

where x ∈ Θsuspects, and y ∈ Θvehicles. Θsuspects and Θvehicles are called the frame of 
discernment (FoDs), i.e., the sets that define the groups of elementary events related 
to the problem. 



For a decision process, we typically need to incorporate some domain 
knowledge. In this case we assume: 

Θvehicles = { Θcolor × Θtype }; 
Θcolor = { white, silver, red, brown, black }; 
Θlight = { white, silver } ⊂ Θcolor; 
Θdark = { brown, black } ⊂ Θcolor; 
Θtype = { sedan, jeep, SUV, truck }. 

DS theory models are defined by mass assignments. A mass assignment (or 
basic belief assignment) is a mapping mΘ(·): 2  [0, 1], such that ∑A ⊆ Θ mΘ (A) = 1 
and mΘ (∅) = 0. The mass assignment measures the support assigned to proposition 
A ⊆ Θ. The triple {Θ, ℑ, m(·)}, with ℑ being the set of all elements for which m(A) 
> 0, is called the body of evidence (BoE).  

The mass assignments corresponding to witness statements and video 
surveillance reports are: 

 W1:   m1( {black} × {SUV} ) = 0.80;    m1(Θvehicles ) = 0.20; 
 W2:   m2( {white} × {sedan} ) = 0.90;    m2(Θvehicles ) = 0.10; 
 W3:   m3( {white} × Θtype ) = 0.95;    m3(Θvehicles ) = 0.05; 
 VS:   m4( {white, silver} × {sedan} ) = 0.98;   m4(Θvehicles ) = 0.02. 

These mass assignments are obtained by using DS fusion based on the conditional 
update equation (CUE) (Premaratne, et. al., 2009). The fusion operators must be 
properly tuned for handling logic operations. The mass assignments can then be 
used for credibility assessment and inference, as is described next. 

3  ESTIMATING CREDIBILITY OF SOURCES 

It is very important, especially when dealing with multiple sources of 
information, to account for the credibility (i.e., trustworthiness) of the sources. In 
the DS framework, it is possible to account for this credibility by a procedure called 
discounting. 

The issue becomes then, being able to estimate this credibility measure (in some 
applications such as judge or jury trials, the whole problem is precisely assessing 
the credibility of witnesses). When an adequate number of sources are considered, it 
is not unreasonable to assume that the truth is reflected in the majority opinion. If 
this majority opinion can be established via some rational aggregation procedure, 
the very aggregate, often referred to as a consensus, can in turn be used for 
credibility estimation. 

We propose a consensus-based technique for credibility estimation of evidence 
in the absence of the ground truth. The credibility of a BoE E (i.e., a particular piece 
of evidence) can be defined as (Wickramarathne, et. al., 2012): 

€ 

Cr (E) = 1− dist(E,E t )λ( )
1
λ,

 

with Et denoting a BoE that contains the ground truth, and λ ∈ ℜ+. This definition 
requires the computation of consensus BoEs. These BoEs can be computed using an 
iterative procedure based on the CUE. A detailed description of this credibility 



estimation technique as well as of the BoE update procedure can be found in 
(Wickramarathne, et. al., 2012). 

Based on this methodology, the consensus BoE in our example is given by: 
 
 mconsensus( {white} × {sedan} ) = 1.00, 
 

and the distance to consensus as well as the credibility of the sources become: 
 

dist( WS1, Consensus ) = 0.9154;  Cr ( WS1 ) = 0.0846 
dist( WS2, Consensus ) = 0.0975;  Cr ( WS2 ) = 0.9025 
dist( WS3, Consensus ) = 0.8786;  Cr ( WS3 ) = 0.1214, 

 
with the credibility estimated using λ = 1. This estimated credibility can then be 
used for evidence discounting prior to fusion operations in meaning extraction and 
inference. 

4  MEANING EXTRACTION AND INFERENCE 

As mentioned above, DS fusion offers several advantages over other meaning 
extraction methods, given that it incorporates a more rigorous modeling of 
uncertainties, and that it allows relevant fusion operations even in the presence of 
incomplete data. Nevertheless, there are some challenges typically associated with 
DS-based fusion: (1) limitations when handling information with dissimilar FoDs; 
(2) sensitivity to contradictory evidence; and (3) computational complexity.  

The first of these challenges is particularly magnified when soft information is 
processed. When dealing with multiple sources of soft data, it is not uncommon to 
find data generated from non-identical FoDs. For example, the information 
contained in a public database of vehicles belonging to town residents would have a 
much larger, but not completely disjoint, scope than the vehicles that had been 
recorded at a checkpoint. Conventional DS methods are not suitable for such 
problems. Moreover, conventional DS fusion methods are very sensitive to 
contradictory evidence, usually rendering counter-intuitive results (which is the 
second challenge mentioned above). We address challenges (1) and (2) by 
performing fusion operations based on the CUE (Wickramarathne, et. al., 2010).  

Computational complexity (i.e., challenge (3)) of DS methods exponentially 
increases with increasing cardinality of the FoD. As a result, in many DS-based 
applications, even the most common and fundamental task of conditioning can 
quickly become computationally prohibitive, especially in the presence of FoDs 
with high cardinality. To reduce computational complexity we make use of the 
Conditional Core Theorem (CCT) (Wickramarathne, Premaratne, and Murthi, 
2010). The CCT identifies the propositions that will receive a positive mass after 
conditioning without any numerical computations. The advantage of such a result is 
that it is possible to avoid the computation of all the 2|Θ| propositions that otherwise 
would have to be computed to evaluate the conditional masses. In real application 



settings, the CCT may yield computational savings of 80% or more. 
It is worth noting that CUE-based operations are embedded into the credibility 

estimation method described in Section 3 above. Then, in our example, meaning 
extraction could be obtained from analyzing the consensus BoE defined by 
mconsensus( {white} × {sedan} ) = 1.00. In this case, the result indicates that there is 
total certainty that the suspect was driving a white sedan. Inference and meaning 
extraction in more complex scenarios can be done by following the methodology 
introduced in (Wickramarathne, et. al., 2011). 

5  CONCLUSIONS 

In this paper we introduced a general framework that allows automatic and 
efficient processing of both hard and soft information, leading to enhanced decision-
making in multi-source environments. In this framework, soft data is converted into 
FOL constructs by a NLP module. This module consists of part-of-speech tagging, 
dependency parsing, coreference resolution, and a conversion to semantics. The 
logic constructs resulting from this module are quantified and mathematically 
modeled. In particular, DS theoretic models are generated based on methods arising 
from the CUE properly tuned for consistency with logic operations. The 
mathematical models are then used for assessing credibility. The latter is estimated 
based on the distance to the consensus among information sources. The credibility 
measure is then used for discounting BoEs in DS-based information fusion. The 
overall framework could be directly applied for solving problems in varied areas 
such as neuroscience, business analytics, military intelligence, and sociology, 
among others. 
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