# Joint Acquisition of Word Order and Word Referent 

 in a Memory-Limited and Incremental LearnerSepideh Sadeghi, Matthias Scheutz
Department of Computer Science, Tufts University

## Word Learning In Ambiguous Contexts

Utterance: "Jack is biting the apple."


## Word Learning In Ambiguous Contexts

Utterance: "Jack is biting the apple."


## Word Learning In Ambiguous Contexts

Utterance: "Jack is biting the apple."


## Word Learning In Ambiguous Contexts

Utterance: "Jack is biting the apple."


## Mapping Words to Referents



Quine, W. V. O., Word and object, 1960

## Syntactic bootstrapping



The girl is gorping the boy
The boy is gorping the girl

## Syntactic bootstrapping



The girl is gorping the boy
The boy is gorping the girl

## Objectives

(1) Simulation results from ideal learners suggest that it is possible to jointly acquire word order and meanings and that learning is improved as each language capability bootstraps the other.
(2) A good theory of word learning needs to give clear accounts for hypothesis generation as well as hypothesis evaluation and the information used for these computations, while staying tractable as input size grows.
(3) We study the utility of joint acquisition of simple versions of word order and word meaning in early stages of acquisition in a memory-limited incremental model. We believe that only memory-limited models qualify as scalable models which remain tractable as the amount of data grows.
(4) We allow for the acquired word order information to constrain the acquisition of word' meanings and vice versa.

## Input Representation

```
situation=<utterance,scene>
Utterance = W W = {jack, is, biting, the, apple}
Scene = E S = {SIT< <ACK, CHAIR> ,
    SIT<SARAH,CHAIR>,
    SIT<JACK>
    SIT<SARAH>,
    BITE<JACK,APPLE>
    PICK<SARAH,APPLE>}
I
```


## Word Order Representation

$$
\text { Syntactic positions }=\left\{w_{1}, w_{2}, w_{3}\right\}
$$

Roles $=$ \{arg1, arg2, pard\} \{agent, patient, action \}

$$
\begin{aligned}
& \boldsymbol{\Theta}=\left\{\theta_{\text {arg1 } 1}, \theta_{\text {arg } 2}, \theta_{\text {pred }}\right\} \\
& \left.\theta_{\text {arg1 }}=P(. \mid \arg 1)=<\Pi_{w 1 \mid a r g 1}, \Pi_{w 2 \mid a r g 1}, \Pi_{w 3 \mid a r g 1}\right\rangle \\
& \left.\theta_{\text {arg2 }}=P(. \mid \arg 2)=<\Pi_{w 1 \mid a r g 2}, \Pi_{w 2 \mid a r g 2}, \Pi_{w 3 \mid a r g 2}\right\rangle \\
& \left.\theta_{\text {pred }}=P(. \mid \text { pred })=<\Pi_{w 1 \mid \text { pred }}, \Pi_{\text {w2| pred }}, \Pi_{w 3 \mid \text { pred }}\right\rangle
\end{aligned}
$$

English word order used for artificial data generation

$$
\begin{array}{lll}
\theta_{\text {arg1 }}=<1, & 0, & 0> \\
\theta_{\text {arg2 }}=<0, & 0, & 1> \\
\theta_{\text {pred }}=<0, & 1, & 0>
\end{array}
$$

## Model Design and Generative Process

```
Es}={SIT<JACK,CHAIR>
    SIT<SARAH,CHAIR>,
    SIT<JACK>,
    SIT<SARAH>,
        BITE<JACK,APPLE>
        PICK<SARAH,APPLE>
        }
I
```

Utterance: "Jack is biting the apple"


## M-WO: The model with ©

M-B: Baseline model without ©

## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \{\text { bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<\mathrm{JACK}, \text { APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

$$
\boldsymbol{\Theta}=\left\{\theta_{\text {arg1 } 1}, \theta_{\text {arg } 2}, \theta_{\text {pred }}\right\}
$$

English is SVO:

$$
\begin{aligned}
\theta_{\text {arg1 } 1}= & <1, \quad 0, \quad 0\rangle \\
\theta_{\text {arg2 }}= & <0, \quad 0, \quad 1> \\
\theta_{\text {pred }}= & <0,1, \quad 0\rangle \\
& <w_{1}, w_{2}, w_{3}>
\end{aligned}
$$

Utterance: "Jack is biting the apple"
scene:


## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \{\text { bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<J \text { ACK,APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

$$
\boldsymbol{\Theta}=\left\{\theta_{\text {arg1 } 1}, \theta_{\text {arg2 } 2}, \theta_{\text {pred }}\right\}
$$

English is SVO:

$$
\begin{aligned}
\theta_{\text {arg1 }}= & <1, \quad 0, \quad 0\rangle \\
\theta_{\text {arg } 2}= & <0, \quad 0, \quad 1> \\
\theta_{\text {pred }}= & <0,1, \quad 1\rangle \\
& \left.<w_{1}, w_{2}, w_{3}\right\rangle
\end{aligned}
$$

Utterance: "Jack is biting the apple"

```
scene:
```



## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \text { \{bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<\mathrm{JACK}, \text { APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

Utterance: "Jack is biting the apple"

$$
\begin{aligned}
& \text { English is SVO : } \\
& \left.\theta_{\text {arg1 }}=<1, \quad 0, \quad 0\right\rangle \\
& \theta_{\text {arg2 }}=<0, \quad 0, \quad 1> \\
& \begin{aligned}
\theta_{\text {pred }}= & \langle 0,1, \quad 0\rangle \\
& \left\langle W_{1}, W_{2}, W_{3}\right\rangle
\end{aligned} \\
& \begin{aligned}
\theta_{\text {pred }}= & <0,1, \quad 0> \\
& <W_{1}, W_{2}, W_{3}>
\end{aligned} \\
& \underbrace{\mathbf{P}_{\mathrm{R}}(w)=\gamma}_{\mathbf{P}_{\mathrm{NR}}(w)=1-\gamma}
\end{aligned}
$$

$$
\begin{aligned}
& \text { English is SVO : }
\end{aligned}
$$

$$
\boldsymbol{\Theta}=\left\{\theta_{\text {arg1 }}, \theta_{\text {arg2 } 2}, \theta_{\text {pred }}\right\}
$$

## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \text { \{bite: BITE, } \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<J \text { ACK,APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

Utterance: "Jack is biting the apple"

$$
\begin{aligned}
& \text { English is SVO : } \\
& \begin{array}{l}
\theta_{\text {arg1 }}=\left\langle\begin{array}{lll}
1, & 0, & 0\rangle \\
\theta_{\text {arg2 }}=\langle 0, & 0, & 1>
\end{array}\right]
\end{array} \\
& \theta_{\text {pred }}=\langle 0,1,0\rangle \\
& \left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& \mathbf{P}_{\mathrm{R}}(\mathbf{w})=\gamma \\
& \mathbf{P}_{\mathrm{NR}}(\mathbf{w})=\mathbf{1}-\gamma
\end{aligned}
$$

scene:


## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \text { \{bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<J \text { ACK, APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

Utterance: "Jack is biting the apple"

$$
\boldsymbol{\Theta}=\left\{\theta_{\text {arg1 } 1}, \theta_{\text {arg2 } 2}, \theta_{\text {pred }}\right\}
$$

English is SVO :

$$
\begin{aligned}
& \theta_{\text {arg1 }}=\langle 1,0,0\rangle \\
& \theta_{\text {arg2 }}=<0, \quad 0, \quad 1> \\
& \theta_{\text {pred }}=\langle 0,1, \quad 0\rangle \\
& <w_{1}, w_{2}, w_{3}> \\
& \underbrace{}_{P_{R}(w)=\gamma} \\
& \mathbf{P}_{\mathrm{NR}}(\mathbf{w})=\mathbf{1}-\gamma
\end{aligned}
$$

## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \{\text { bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$


$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<J \text { ACK, APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

Utterance: "Jack is biting the apple"

$$
\begin{aligned}
& \theta_{\text {arg1 }}=<1, \quad 0, \quad 0> \\
& \theta_{\text {arg2 }}=<0, \quad 0,1> \\
& \theta_{\text {pred }}=<0,1, \quad 0> \\
& \left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& \mathbf{P}_{\mathrm{R}}(\mathbf{w})=\gamma \\
& \mathbf{P}_{\mathbf{N R}}(\mathbf{w})=\mathbf{1}-\gamma
\end{aligned}
$$

## Model Design and Generative Process

$\begin{aligned} \mathrm{L}= & \text { \{bite: } \mathrm{BITE}, \\ & \text { Jack: JACK, } \\ & \text { apple: APPLE }\}\end{aligned}$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{S}}= & \text { BITE }<J \text { ACK, APPLE }> \\
& \text { Pred }<\arg _{1}, \arg _{2}>
\end{aligned}
$$

$$
\boldsymbol{\Theta}=\left\{\theta_{\text {arg1 } 1}, \theta_{\text {arg2 } 2}, \theta_{\text {pred }}\right\}
$$

English is SVO :


Utterance: "Jack is biting the apple"

$$
\begin{aligned}
& \theta_{\text {arg } 1}=<1, \quad 0, \quad 0> \\
& \theta_{\text {arg } 2}=<0, \quad 0, \quad 1> \\
& \theta_{\text {pred }}=<0, \quad 1, \quad 0> \\
&<\underbrace{<W_{1}, W_{2}, W_{3}>}_{\mathbf{P}_{\mathbf{N R}}(\mathbf{w})=\mathbf{1}-\gamma} \\
& \mathbf{P}_{\mathbf{R}} \mathbf{( \mathbf { w } ) = \gamma}
\end{aligned}
$$

## Reversing the Generative Process: Bayesian Inference

This is the prior: i.e. what you believed before you saw the evidence.


M-B: Baseline model without ©

## Bayesian Inference in M-WO

$$
\begin{aligned}
& P(L) \propto e^{-\beta \cdot|L|} \\
& P(\Theta) \propto 1 \\
& P\left(I_{s} \mid E_{s}\right) \propto 1
\end{aligned}
$$



$$
\begin{align*}
& P(L, \Theta \mid C) \propto P(C \mid L, \Theta) P(L) P(\Theta)  \tag{1}\\
& P(C \mid L, \Theta)=\prod_{s \in C} \sum_{I_{s} \subseteq E_{s}} P\left(W_{s} \mid I_{s}, L, \Theta\right) P\left(I_{s} \mid E_{s}\right) \tag{2}
\end{align*}
$$

## Bayesian Inference in M-WO



$$
\begin{array}{r}
P(C \mid L, \Theta)=\prod_{s \in C} \sum_{I_{s} \subseteq E_{s}} P\left(W_{s} \mid I_{s}, L, \Theta\right) P\left(I_{s} \mid E_{s}\right) \\
P\left(W_{s} \mid I_{s}, L, \Theta\right)=\prod_{w_{j} \in W_{s}}\left[\gamma \cdot \sum_{x_{i} \in I_{s}} \frac{1}{\left|I_{s}\right|} P_{R}\left(w_{j} \mid x_{i}, L\right)\right.  \tag{3}\\
\left.P\left(\operatorname{pos}\left(w_{j}\right) \mid \operatorname{role}\left(x_{i}\right), \Theta\right)+(1-\gamma) P_{N R}\left(w_{j} \mid L\right)\right]
\end{array}
$$

## Bayesian Inference in M-B

$$
\begin{align*}
& P(C \mid L)=\prod_{s \in C} \sum_{I_{s} \subseteq E_{s}} P\left(W_{s} \mid I_{s}, L\right) P\left(I_{s} \mid E_{s}\right) \\
& P\left(W_{s} \mid I_{s}, L\right)=\prod_{w \in W_{s}}\left[\gamma \cdot \sum_{x \in I_{s}} \frac{1}{\left|I_{s}\right|} P_{R}(w \mid x, L)+\right.  \tag{5}\\
& \left.(1-\gamma) P_{N R}(w \mid L)\right]
\end{align*}
$$

## Incremental and Memory-Limited Learning Algorithm

## Model's memory:

The knowledge in its lexicon and current situation.

## Incremental and Memory-Limited Learning Algorithm

## Incremental Word Learning:

(1) It only sees one situation at a time (no iteration over data).
(2) the model can only use the knowledge in its memory for hypothesis generation and hypothesis evaluation.
(3) The model maintains a single global lexicon (hypothesis) across situations.
(4) The model makes local revisions to the global hypothesis by integrating the inferred mini-lexicon in the global hypothesis. (5) Bayesian inference is only applied locally in the context of single situations based on context-appropriate word-referent pairs available in the memory (current lexicon and current situation)

## Incremental Learning: Updating Lexicon

Inferring the MAP mini-lexicon in each situation:
(1) Generating mini-lexicon proposals (hypothesis generation)
.........Stochastic Search Techniques
(2) Scoring (hypothesis evaluation)
.........Relative posterior probability
Merging the new mini-lexicon with the current lexicon:
(1) Applying mutual exclusivity constraints to produce a preference for one-to-one mappings in the output lexicon.

## Incremental Learning: Updating Word order

Using a symmetric Drichlet distribution prior with parameter $\boldsymbol{\alpha}$

$$
\pi_{\text {pos } \mid \text { rol }}=\frac{\operatorname{Count}(\text { rol }, \text { pos })+\alpha}{\operatorname{Count}(\text { rol })+3 \alpha}
$$

## Update Algorithm

```
\(\overline{\text { Algorithm } 1 \text { Algorithm for updating the lexicon incrementally }}\)
in light of a new situation.
    procedure UPDATE(prevLex,situation)
    words \(\leftarrow\) unique(situation.words)
    refs \(\leftarrow\) unique(situation.refs)
    entities \(\leftarrow\) union(words, refs)
    links \(\leftarrow\) initLinks(words, refs)
    prevLinks \(\leftarrow\) extract-L(prevLex, entities)
    links \(\leftarrow\) union \((\) links, prevLinks \()\)
    proposals \(\leftarrow \operatorname{init}(\) nInit, links, stats)
    bestLex \(\leftarrow\) best \((\) proposals, situation)
    prevSits \(\leftarrow\) extract-S(prevLex, entities)
    situations \(\leftarrow\) union(situation, prevSits)
    lex \(1 \leftarrow\) exclude \((\) prevLex, entities \()\)
    lex \(2 \leftarrow\) mutate (bestLex, links,
    stats, situations)
    lexicon \(\leftarrow\) merge \((\) lex 1, lex 2\()\)
    end procedure
```


## Results: Word Order Learning Curves



## Results: Word Order Learning Curves



## Results: Word Order Learning Curves



## Results: Word Learning Results

|  | Word | Learning |  |
| :---: | :---: | :---: | :---: |
| ¢D2 | Model | F-Score(D1) | F-Score(D2) |
|  | M-WO ( $\alpha=0.001$ ) | 0.718 | 0.554 |
| $\frac{\lambda}{7}$ | M-WO ( $\alpha=0.01$ ) | 0.732 | 0.548 |
| 응 | M-WO ( $\alpha=1$ ) | 0.736 | 0.568 |
| $\bar{\square}$ | M-WO ( $\alpha=3$ ) | 0.736 | 0.543 |
|  | M-WO ( $\alpha=5$ ) | 0.758 | 0.576 |
| D1 | M-B | 0.755 | 0.522 |

## Conclusion and Discussion

(1) We proposed a memory-limited incremental model of word learning, in order to study the utility of joint acquisition of information in realistic situations under which infant word learning occurs.
(2) Please use the discussion section of the paper to add more elements here
(3) ...

## Thank you!

Sepideh Sadeghi
@sepid_s
http://www.eecs.tufts.edu/~ssadeg01/
Matthias Scheutz
@matthiasscheutz
http://hrilab.tufts.edu/people/matthias.php


