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Abstract—Past work on acquisition of word-object associ-
ations in robots has focused on either fast instruction-based
methods which accept highly constrained input or gradual
cross-situational learning methods, but not a mixture of both. In
this paper, we present an integrated robotic system which allows
for a combination of these methods to contribute to the task
of learning the labels of objects in AI agents. We demonstrate
the expanded word learning capabilities in the outcome system
and how learning from both human-human and human-robot
dialogues can be achieved in one integrated system.

I. INTRODUCTION

Learning the mappings between the linguistic symbols
and objects in real world is an instance of the problem
of grounded language learning [1]. Past work on grounded
language learning has mostly focused on the use of human-
robot dialogues [2]-[7]. Teaching robots through structured
human-robot dialogues (instruction-based methods) provides
a fast and accurate approach for teaching a few word-object
associations but will require many hours of training for
teaching large sets of word-object associations.

Instruction-based word learning [4], [5], [7] usually cap-
italizes on identification of utterances whose syntax and
semantics conform to a number of pre-specified structured
representations, each representing a particular definition in-
struction for which the communicative goal of the speaker
is also pre-specified. A definition instruction is used to map
a novel word to an object, one of its parts or properties,
an action, or any other concept which is pre-specified by
the instruction as the communicative goal of the speaker.
Instruction-based word learning enables fast and accurate
word-object association learning while relying on a great
amount of pre-specified details under constrained perceptual
and linguistic circumstances.

Cross-situational approaches to word learning [8]-[13] on
the other hand, accept naturalistic perceptual and linguistic
input ({utterance,scene) pairs) but they are usually slow due
to capitalizing on gradual aggregation of cross-situational
information across contexts in order to guide the process
of mapping the words to their referents. Overall, cross-
situational word learning offers a slow but flexible approach
towards the acquisition of word-object associations.

Integration of these two types of word-object association
learning methods into a single Cognitive Robotic Architec-
ture (CRA), will enable the robot to retain the strengths
of both approaches while making up for the limitations of
each approach drawing on the information provided by the

I HRI Laboratory, Computer Science, Tufts University, Medford, MA
02111, USA

other approach. In this paper, we propose such a system
which integrates both cross-situational word learning and
instruction-based methods within the distributed integrated
affect, reflection, cognition architecture (DIARC) CRA [14].

The rest of this work begins with the detailed description
of the two word learning methods as well as the architectural
modifications required to integrate them within the DIARC
CRA. Then we discuss how the integrated word learning
methods bootstrap the performance of each other and benefit
from extra sources of information available in the CRA.
Finally we close by discussing and demonstrating the new
word learning capabilities achieved through the integration
of the two methods.

II. INSTRUCTION-BASED WORD LEARNING (IBWL)

We use the DIARC CRA, and the methods described in [7]
to implement instruction-based word learning. This section
provides a high-level overview of that approach, and section
describes how it has been extended to concurrently enable
cross-situational word learning methods described in
IBWL is initiated when the robot hears an utterance that
contains a novel word as part of an utterance whose syntax
and semantics match one of a set of predefined definition
structures. Such a predefined definition relates the novel word
to either an explicitly observable part of the environment, or
some other concept which the robot already knows (e.g.,
“this object is a knife”, or “the silver part of a knife is
the blade”). After a definition has been identified, it is
used to create a symbolic semantic representation of the
novel word. This semantic representation associated with
linguistic information about the word inferred from the
agent’s natural language understanding system, and a visual
representation of the object, either generated from a snapshot
of the environment, or through the composition of existing
visual knowledge. The resulting system is able to learn all
of the necessary information to understand a new object in
a single exposure, when the object is either physically co-
present with the human and robot, or describable in terms of
concepts that the agent already understands. Objects learned
in such a fashion have a persistent representation in the
robot’s knowledge base, and due to their symbolic nature,
they can be easily shared with other robots with compatible
knowledge representation frameworks.

While this type of learning is fast and comprehensive for a
single object, it is not feasible to teach a robot a large variety
of objects through such methods. Such teaching is expensive,
it requires the human’s attention to be directed at the robot,
and the robots attention to be directed at the human and the



object that is being learned. The object must be describable
using words and concepts that are understandable to the
robot, in the absence of any distracting object physically co
present. As a result only a single new word-object association
can be learned at a time. Sharing knowledge between robots
can speed up the process to some extent but fails to fully
address the problem as each word-object association first has
to be learned (strictly via spoken instructions in case of low
resource languages) before it can be shared.

III. CROSS-SITUATIONAL WORD LEARNING (CSWL)

Cross-situational word learning is performed by integra-
tion of the incremental and memory-limited cross-situational
word learning model proposed in [13], within the DIARC
CRA. The rest of this section provides a high level overview
of CSWL model used in our system. Please refer to [13] for
more details. Section [V-Bl describes how the CSWL model
operates in the DIARC CRA and interacts with the other
components.

A. Speaker’s Model of Utterance Generation

The input to cross-situational word learning are word
learning situations (or trials) each of which consist of a pair
of an utterance and a scene, where the utterance is an un-
ordered set of words and the scene is a list of objects present
in the scene. The learner assumes that in each situation, the
speaker follows the generative process illustrated in Fig. [1]
to produce an utterance (Wy) corresponding to the current
scene (Oy) and using a lexicon (L). Lexicon refers to a many
to many mapping between objects and their labels.
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Fig. 1: The graphical model describing the generation of an
utterance (Ws) in correspondence to the intention (/;) and
lexicon (L), and the generation of the intention (/;) from the
objects present in the scene (Oy). The plate notation indicates
multiple copies of the model for different situations.

In each situation, the speaker is assumed to sample a
subset from the power-set of all the objects present in the sit-
uation (Oy) as the referential intention(s) of the speaker (Iy).
For each object in I, one word mapping is uniformly drawn
from the lexicon and is added to the utterance. Words that are
generated following this generative story and in reference to
an object in the scene are characterized as referential words.
The utterance may contain several non-referential words as
well. Each word in the utterance is assumed to be referential
with probability y and non-referential with probability 1 — 7.
Each referential word may be used non-referentially (in the
absence of its referent in the scene) with Pyg = k < 1.

The goal of the learner is to reverse this generative process
and infer the lexicon used by the speaker. In doing so, the
learner needs to find the argmax; P(L|C) according to the
Bayes equation and the probability distribution that it defines
over unobserved lexica (L) and the corpus of situations (C).

P(L|C) o= P(C|L)P(L) (1)

The model uses P(L) o< e~ as a soft mutual exclusivity
constraint to produce a preference for one-to-one mappings
in the inferred lexicon. Marginalizing over all possible in-
tentions in each situation we can rewrite the likelihood term
P(CI|L) as:

P(CIL) = PW, |1, L)P(L,|0;) @)
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Assuming that P(I;|Os) =< 1 and that the words of the
utterance are generated independently, we can rewrite the
term P(W|l;,L) as:

P(Wi|I,,L) =
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B. The Incremental Learning Algorithm

The learning algorithm is composed of two major com-
ponents: (1) inferring the context-appropriate parts of the
speaker’s lexicon (a mini-lexicon) in each situation, and
(2) integrating the new mini-lexicon in the previous lex-
icon, while performing conflict resolution over alternative
mappings. Inferring the maximum a posteriori (MAP) mini-
lexicon, subsequently has two components: generating mini-
lexicon proposals (groups of word-object mappings) and
scoring the generated mini-lexica. Scoring is performed by
computing the un-normalized posterior probability of the
mini-lexicon proposals based on Eq. [} We refer the reader
to [13] for more details about the learning algorithm.

IV. CRA INTEGRATION

The configuration of DIARC used in this work (Figure [2)
is based on the architecture described in [7]. A new Word
Learning (WL) component has been added which imple-
ments the described CSWL. With this new component come
new connections between components, and new types of
exchanged messages across those connections. Information
from the outside world enters the system through the Au-
tomatic Speech Recognition Component (ASR), and Vision
Component (VIS). ASR converts spoken utterances into text
which are passed to the Natural Language Understanding
Component (NLU). NLU performs semantic and syntactic
parsing on these utterances. NLU sends the utterance text,
with Part of Speech (POS) tags, to WL, and the semantic
representation of the utterance the Dialogue Management
Component (DM). For a given utterance, the message to WL
begins the process of CSWL, and depending on its contents,
the message sent to DM may begin the instruction based
word learning process.



The CSWL process involves ASR, NLU, WL, VIS, and the
Belief State component (BEL). The instruction based word
learning process involves ASR, NLU, DM, BEL, VIS, and
the Goal Management Component (GM). The demonstra-
tions in Sections and which involve IBWL, CSWL
as well as action execution involve all of the components in
Figure [2| The following sections describe the specific parts
of the architecture which have been updated to enable the
integration of IBWL and CSWL in the DIARC CRA.
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Fig. 2: The DIARC components used in this configuration,
and the messages sent between them.

A. Natural Language Understanding

When a DIARC agent hears an utterance, whether it
was spoken directly to the robot, or overheard from the
environment, it is translated from an acoustic signal to text
by the ASR component. This utterance text is then sent
to the NLU component, which converts it into a semantic
representation which is used by the rest of the system. It
does this in three steps. First the syntactic structure of the
utterance is determined using a Combinatory Categorical
Grammar (CCG). This process determines the syntactic type
of every word in the utterance, and how it relates to the rest
of the utterance. When an utterance contains one, or a few,
unknown words it may be possible to infer their syntactic
type based on the grammar of the rest of the utterance,
and an assumption that the utterance that the robot has
heard is grammatical [7]. When the syntactic parsing step
is completed, the words in the utterance and their POS tags
are sent to the WL component.

After the syntactic structure of the utterance is determined,
its semantic representation is derived from a set of lambda
calculus rules which correspond the CCG rules used in the
syntactic parsing [7]. No semantic representation will be as-
signed to novel words at this point. NLU generates a unique
token for each novel word. The semantic representation of
these novel words would be identified by other components
(WL, or GM and VIS). Table. [[] provides example syntactic
and semantic representations assigned to known words used
in our demonstrations.

The final step of processing in NLU is pragmatic in-
ference which converts the raw semantics of the utterance
to a semantic representation of the speaker’s intent. These

intent semantics are sent to DM which determines how they
should be handled, asserted to BEL in the case of facts
and statements, and submitted to GM as goals in the case
of commands or questions. It is worth noting that WL is
updated with the utterance text and POS information before
DM receives the utterance semantics. So in cases where the
robot hears utterances that do not directly obligate it to act
(for example overhearing two humans discuss a task), it is
able to update its knowledge about the meanings of the words
in the utterances without acting inappropriately.

Label Syntax Semantics

robot N robot

the NP/N Ax.x

object N object

is (S/NP[a])\ NP | AxAy.instanceOf(x,y)
a NP[a]/NP Ax.x

an NP[a]/NP Ax.x

point to | C/NP[PP] Ax.pickup(?ACTOR, x)
1 N 2INTERACTOR

will (C\ N)/(C\ N) | Ax.will(x)

next to | (NP/NP)\ NP AxAy.nextTo(x,y)

TABLE I: Parse rules used in demonstrations. S refers to
a statement such as S(human,robot,instanceOf{object,plate))
and C refers to a command such as C(human, robot,
pointTo(robot,plate)).

B. Word Learning

WL manages the agent’s knowledge of word-object map-
pings which are learned via CSWL. WL receives the ut-
terance text with POS tags from NLU. Every time WL
receives an utterance from NLU, it queries VIS for the list
of visible objects in the scene. Then WL uses POS tags and
the word-object associations learned via IBWL to trim its
(utterance,scene) input received from NLU and VIS. WL
uses the POS tags to determine the non-referential words
(words whose POS is known and is not N) of the utterance
and remove them from the input utterance. In addition to
that, WL removes the word-object associations learned via
IBWL from its input utterance and scene. Then WL utilizes
the trimmed (utterance,scene) input to update its lexicon
which will be shared with VIS upon the completion of the
update process. The lexicon maintained by WL represents
the agent’s current implicit understanding of the word-object
associations, while the word-object associations learned via
IBWL represent explicit knowledge acquired by the robot
and are treated as ground truth which should be protected
from WL updates. That said, both types of acquired map-
pings can be immediately used when the agent is obligated
to act (see Section[V-Aland Section [V-B)), while the mappings
stored in WL lexicon are subject to modification in future
encounters.

C. Belief Modeling

When the robot learns a new word-object association
through IBWL, it stores the definition of that object in
BEL and considers the learned association as ground truth
which should be protected against modifications by CSWL



(updates to the lexicon maintained by WL). In doing so,
every time a new object definition is stored in BEL, BEL
notifies WL which maintains a list of such objects and their
word associations in order to to remove those words and
objects from the input (utterance,scene) pairs it receives.
Therefore, the word-object associations learned via IBWL
are used towards reducing the number of words and objects
input to CSWL which in turn serves to improve the word
learning results from CSWL due to decrease in the referential
ambiguity of its inputs (See Section [V-C).

D. Vision

The DIARC vision component (VIS) is modular frame-
work responsible for object detection and tracking. In the
configuration presented here, VIS uses an Xtion sensor to
process RGB-D data and is capable of detecting objects
from a diverse set of object categories using a variety of
image processing and detection modules. Beyond detection
and tracking, another critical aspect of VIS is the ability
to advertise its capabilities to the rest of DIARC. This
advertisement is done through simple quantifier-free first-
order predicate representations, specifying what kinds of
object categories and properties VIS is capable of detecting
(e.g., red(X), mug(X), on(X,Y)). In order for a DIARC
component to make use of VIS capabilities, a request must
be made in the form a quantifier-free first-order predicate
representation. VIS then takes this request and attempts to
start a visual search (if one is not already running) satisfying
the entire request. Requesting components can then retrieve
search results in the form of partial scene graphs which
contain meta-data about object categories, object parts, and
object properties.

Besides object detection and tracking, VIS is also impli-
cated in both cross-situational and instruction-based learning.
During instruction-based learning, VIS is notified by BEL of
new definitions (e.g., the object is a plate) in predicate form
(e.g. instanceOf(object(X), plate)). From this definition, VIS
attempts to start a visual search for the referent object (i.e.,
object(X)) and find the corresponding object in the scene
satisfying the request. If found, this RGB-D data of the
segmented object is used to dynamically build a model of the
object, attaching the appropriate label (e.g., plate). In the case
of cross-situational learning, WL makes a request to get the
visual search results of all objects in the current scene (from
all currently running searches) for each utterance. Currently,
there is an assumption that VIS is able to detect and track all
objects that are used during CSWL even though a specific
category label might not be known. Once WL has updated its
lexicon, it shares the new lexicon with VIS, which is used to
update its internal mapping of predicates to object categories
maintained by VIS.

V. DEMONSTRATIONS: EXPANDED WORD LEARNING
CAPABILITIES

Integration of cross-situational and instruction-based word
learning methods in the DIARC CRA, produces a robotic
system which can capitalize on a wide variety of observations

Fig. 3: (a) IBWL: “Robot, this object is a plate”, (b) CSWL:
“Robot, point to the bottle”, and (c) CSWL: “Robot, point
to the plate”. The robot knows the meaning of “point to”.
Link to the demo: https://bit.1ly/2NtR1pfl

as word learning input to expand its vocabulary. Further-
more, cross-situational learning can benefit from context-
disambiguation capabilities which draw on the lexical infor-
mation provided by the syntactic representation of unknown
words as well as known word-object associations learned via
instruction-based word learning.

We demonstrate the expanded word learning capabilities
in two robot proof-of-concept demos and a simulation exper-
iment which highlights the contribution of the context dis-
ambiguation capabilities available in the outcome integrated
system in improving the cross-situational word learning
results. The first demo is a proof-of-concept demonstration
which highlights a specific learning capability (zero-shot
word learning) which would have not be possible given
an entirely instruction-based approach or entirely cross-
situational approach. The second demo is a proof-of-concept
demonstration which showcases the ability of the robot in
capitalizing on IBWL to learn from its direct interactions
with humans as well as capitalizing on CSWL to learn
from human-human dialogues without direct engagement in
human conversations.

A. Zero-Shot Word-Object Association Learning

The first demonstration illustrates zero-shot learning as a
new capability within the DIARC CRA. This capability is
resulted by the refinement of the CSWL inputs capitalizing
on the syntactic information associated with unknown words
as well as the knowledge of word-object associations learned
via IBWL. The demo starts with an IBWL trial to explicitly
teach the robot the label of the object PLATE, followed by
a CSWL trial where a novel label is uttered in a known
command (“point to”) at the presence of a novel object in
the scene. Fig. [ illustrates the three trials of the demo and
includes a link to its video.

The first interaction starts with the word “robot” in the
utterance which triggers IBWL. Then “this object is a plate”
is parsed into a form representing IBWL semantics, which
is asserted to BEL and leads to mapping “plate” to the
object PLATE via IBWL. This IBWL definition is then
communicated to both WL and VIS as described in Section
[[V] Communicating the association between the word “plate”
and the object PLATE to CSWL leads to the removal of
the word “plate” as well as the object category PLATE
from the input utterance and scene to the CSWL. This
leaves CSWL with an empty utterance and an empty scene.
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Therefore CSWL will not learn any new mapping but the
robot learns that the word “plate” refers to the newly learned
object category PLATE through IBWL. In the next trial, the
object BOTTLE is added to the scene and the robot hears
“point to the bottle”. This utterance does not conform to
instruction-based learning semantics, so only CSWL is used
in this situation. First the utterance and scene descriptions
are refined by removing word-object associations learned
via IBWL along with non-referential words (with POS tags
other than N). This leaves CSWL with one novel word in
the utterance “bottle” and one novel object (BOTTLE) in
the scene. CSWL instantiates a mapping between “bottle”
and BOTTLE and adds this mapping to its lexicon, which
then will be shared with VIS. Here, the semantics of “point
to the bottle”, generated by NLU, represent a goal for the
robot, which is submitted to the Goal Manager (GM) to
be executed. During execution, GM queries VIS for the
object of interest, which VIS correctly identifies because
of the updated lexicon provided by CSWL. The robot then
uses the location of the object of interest to successfully
point to the bottle, demonstrating the ability to learn a new
word-object association in zero-shot via CSWL. Note that,
only word-object associations learned via IBWL (explicit
instruction) are removed from the input for CSWL. The
word-object associations learned via CSWL (in the CSWL
lexicon) are not removed from the input but the soft mutual
exclusivity constraints devised in the CSWL model produce
a preference for one-to-one mappings in the CSWL lexicon
which discourages the model from mapping a novel word to a
previously labeled object. The demo concludes by instructing
the robot to “point to the plate”, demonstrating that both
objects have been learned correctly, one through instruction-
based and one through cross-situational learning.

B. Continuous Acquisition of Word-Object Associations from
Human-Human Dialogues

The second demonstration shows how the robot can learn
from its direct conversations as well as overhearing the
conversation of other agents present in the same physical
context. A video of this demo is located here: https:
//bit.1ly/2IEWASV. The robot starts with no knowledge
of the label for the objects on the table. The demo starts with
IBWL where the robot is directly addressed (via uttering
“robot”) and taught explicitly the definition of a plate. Note
that During IBWL, there is no distracting object in the view
point of the robot. IBWL is followed by CSWL in a series
of human-human interactions observed by the robot.

The robot’s vocabulary is sufficient to understand that the
humans are talking about themselves (“I”’), and to determine
which parts of the utterance contain potential object labels
(e.g., “the X). Furthermore, it is able to infer (through NLU
parse rules, see Table. [I) the POS tags of the verbs and
prepositions that are used (“take”, “put”, “near”), but it has
no notion of what they mean. CSWL draws on the systems’
knowledge of word-object associations learned via IBWL
(e.g., plate-PLATE association), as well as the POS tags
assigned to individual words to narrow down the potential

novel labels and novel objects that correspond to one another.
More specifically, CSWL removes the words learned via
IBWL along with their associated referent objects from
the input (utterance,scene). In addition to that, only words
with the POS tag of N are preserved in the utterance and
considered as potential labels for one of the objects present
in the scene. This way, the input (utterance,scene) received
by the CSWL is trimmed and its referential ambiguity is
significantly reduced. Reducing the referential ambiguity of
input serves as a context disambiguation approach and in
Section we examine its effect on cross-situational word
learning results.

At the end of the demo, the robot successfully points to
three of the four objects (“box”,“mug”, and “plate”), but fails
to learn a correct mapping for “bottle”. Such failures can be
corrected by gaining more exposure to the word “bottle”
in other contexts and diversifying the context in which the
word “bottle” is used. [13] examined the effect of input order,
referential ambiguity and exposure to more cross-situational
data on word learning results in large simulation experiments.

Humanl: Robot, this object is a plate.
Robot: OK.

Human?2: I will take the bottle.

Humanl: I will take the box.

Human?2: I put the mug next to the plate.
Humanl: I put the box next to the mug.
Human?2: I put the bottle next to the box.
Humanl: Robot, point to the bottle.
Robot: OK.

Human?2: Robot, point to the box.

Robot: OK.

Humanl: Robot, point to the mug.
Robot: OK.

Human?2: Robot, point to the plate.
Robot: OK.

C. Context Disambiguation Capabilities

One of the new capabilities achieved in the current in-
tegration is the ability to disambiguate the context during
CSWL, drawing on syntactic information provided by NLU
and the information acquired by IBWL. The goal of this
simulation experiment is to highlight the contribution of
such disambiguation capabilities which reduce the referential
ambiguity of the input for CSWL and improve its results.

To evaluate the effect of context ambiguity on CSWL
results, we systematically varied (1) the number of distract-
ing objects per scene and (2) the familiarity of distracting
objects. Results are illustrated in Fig. 4] We used the proba-
bilistic generative process in [15] for random generation of
the utterances of a series of synthetic datasets (each with
100 trials). Then for each dataset, we manually generated
the scene representations corresponding to the utterances
of the dataset, where for each utterance the corresponding
scene was composed of a list of the objects mentioned in
the utterance. Then, we varied the ambiguity of the scene
representations on two dimensions (1) the total number of
unknown distracting objects encountered in the dataset and
(2) the number of unknown distracting objects per scene.
Specifically, we used 3 sets of distracting objects with 10, 30,
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Fig. 4: Incremental word acquisition score on a given dataset varying (1) the number of unknown distracting objects per
scene, and (2) the total number of unique unknown distracting objects in the dataset. The results are averaged over 10 runs.

60 new objects, none of which were used in data generation
process (not mentioned in any of the utterances of the
dataset). Using each set of distracting objects, we generated
four variations of the original dataset correspondingly with
0, 1, 3, and 5 distracting objects added per scene. The
frequency (which quantifies the familiarity) of a distracting
object in a given dataset of size s, with a total of n unique
unknown distracting objects and m distracting objects per
scene is equal to W For example, the frequency of a
distracting object in a dataset, with 100 trials, total of 10
distracting objects and 2 distracting objects per scene is 20.
we use mean word acquisition score [11] to evaluate the
incremental performance during the simulation. G represents
the gold standard lexicon and L represents the output model
lexicon or generally speaking the target lexicon which is
being evaluated.

Z(w,o}EGP(W|0’L)
size(G)

mean word acquisition score = 4)

Fig. 4] illustrates the incremental performance of the model
on one of our randomly generated datasets as the ambiguity
of the scenes and familiarity of the distracting objects are sys-
tematically varied by changing: (1) the number of distracting
objects per scene, and (2) the total number of distracting
objects in the dataset. Note that mean acquisition score
improves upon receiving more input in all conditions and
it converges to 1 in the absence of any unknown distracting
objects. As can be seen, fixing the number of distracting
objects per scene, using larger number of distracting objects
in the dataset leads to a smaller acquisition scores and a
slower rate of acquisition. This is due to the decrease in
the frequency of the distracting objects in the dataset which
lowers the context familiarity. On the other hand, fixing the
total number of distracting objects in the dataset, using larger
number of distracting objects per scene yields better acqui-
sition scores which is due to the increase in the frequency
(familiarity) of each distracting object. Similar trends were
observed using other randomly generated datasets.

VI. CONCLUSION

We presented an integrated robotic system which capital-
izes on a combination of fast instruction-based methods and
gradual cross-situational learning methods to continuously
learn new word-object associations from human-robot and

human-human dialogues. In addition to that, the new inte-
grated system utilizes the previously un-used syntactic in-
formation provided by NLU within the DIARC CRA, in the
process of word-object association learning, which mirrors
syntactic bootstrapping in language acquisition literature.

We discussed and demonstrated the expanded word learn-
ing capabilities in the outcome system including: (1) zero-
shot learning, (2) learning from human-human and human-
robot dialogues, and (3) the added context disambiguation
capabilities. The presented system, outperforms its entirely
instruction-based counterpart [7] in its ability to learn from
human-human dialogues without the direct engagement of
robot in the conversation as well as the ability for zero-
shot learning. We discussed zero-shot learning in contrast
to one-shot learning. Zero-shot learning characterizes the
kind of learning which allows for the immediate use of
the acquired information in the absence of any training
trial. We demonstrated how such capability can be achieved
by CSWL relying on context disambiguation capabilities
available in the current integration. Similarly, the presented
system outperforms its entirely cross-situational counterpart
[12] in its ability to learn from explicit instructions, as well
as its context disambiguation capabilities drawing on the
syntactic information provided by NLU as well as the explicit
knowledge acquired via IBWL.

Instruction-based methods, despite being fast and pro-
viding highly reliable explicit information, rely on highly
constrained inputs. On the other hand, cross-situational lean-
ing methods, allow for learning from a wide variety of
naturalistic input, but their acquired knowledge is subject to
noise. The current integration treats the information acquired
via IBWL as ground truth and protects it from further
modification. Future work should focus on exploring ways
by which implicit knowledge acquired by CSWL can be
transformed into explicit ground truth knowledge. One such
possibility might be the use of active learning methods to
have the robot ask clarifying questions before internalizing
the information acquired via CSWL as explicit ground truth.
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