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I. INTRODUCTION AND MOTIVATION

Collaborative human activities involve applying cognitive
and social skills to use and manipulate objects around us,
often several at a time, simultaneously and continuously. For
example, cooking activities in a restaurant kitchen require
cutting vegetables, monitoring the stove and keeping tools
and utensils clean, all while ensuring orders are prepared and
served in a coordinated and timely manner. Not only are team
members recognizing various objects in their environment,
but they know what to do with them (i.e., they can perceive
complex object affordances). They then use these affordances
to reason about the task at hand.

Being able to use objects in the environment is a highly
desirable skill for robots, as well. Unfortunately, although
robots are proficient at recognizing object features, they are
less-skilled at recognizing what can be done with these objects.

Our research seeks to develop a computational framework
for inferring affordances that can account for not only an
object’s physical features, but also higher-order functional,
social, aesthetic, ethical and moral aspects. Towards this goal,
we are developing a novel approach based on Dempster-Shafer
(DS) theory [1] and first-order “uncertain logic” for inferring
object affordances.

II. BACKGROUND

Gibson introduced the concept of affordance to represent
the relationship between an agent and its environment [2].
In cognitive science, Barsalou et al. expanded this work and
attached causality to function and affordance [3]. In cognitive
robotics, Montesano et al. have developed statistically-inspired
causal models of affordance using Bayesian Networks (BN)
to formalize the relationship between object features, actions
and effects [4].

Despite these efforts, affordance inference faces many chal-
lenges that have not been overcome in the previous work.
These approaches fail to provide the flexibility with which to
reason about higher-order affordances (i.e., complex combina-
tions of physical, functional and social, ethical, and aesthetic
aspects) in the open world, that are influenced by changing
context, social norms, historical precedence and uncertainty.
For example, these current approaches cannot reason that
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Fig. 1. Context-Sensitive Affordance Model

coffee mugs afford grasping and drinking, while also affording
serving as a paperweight or cupholder, or depending on the
context, as family heirloom not meant to be used at all.

III. OUR COMPUTATIONAL MODEL

Much like the previous work, our efforts begin with Gib-
son’s definition of affordance as a relationship between an
agent and its environment. However, we diverge from the pre-
vious work in our representational and computational approach
to modeling affordance [5].

We propose a model, illustrated in Fig. 1, in which an
object’s affordance (A) and the perceived feature of the
object (F ) depend on the context (C). We use Dempster-
Shafer (DS) theory for inferring affordance (A) from object
features (F ) in contexts (C). DS theory is an uncertainty
processing framework often interpreted as a generalization of
the Bayesian framework. A Bayesian approach for inferring
P (A|F,C) by way of P (F |A,C), P (A|C), and P (C) is not
practical because we do not have a probability distribution
for all the affordances for an object. Instead, we use rules
taking the overall form r :≡ f ∧ c =⇒ [α,β]a that captures
the affordance behind an object in particular contexts with
f ∈ F , c ∈ C, a ∈ A, r ∈ R, [α, β] ⊂ [0, 1]. Here, the
confidence interval [α, β] is intended to capture the uncertainty
associated with the affordance rule r such that if α = β = 1
the rule is logically true, while α = 0 and β = 1 assign
maximum uncertainty to the rule. Rules can then be applied
for a given feature percept f in given context c to obtain
the implied affordance a under uncertainty about f , c, and



the extent to which they imply the presence of a. We have
previously shown (in the context of Indirect Speech Acts) that
these types of rules are very versatile and that we can employ
DS-theoretic modus ponens to make uncertain deductive and
abductive inferences which cannot be made in a mere Bayesian
framework [6].

IV. HUMAN-ROBOT INTERACTION EXAMPLE

Consider the example of a robotic assistant helping a human
with an assembly task in which the human has asked the
robot to tighten a loose screw. We would like for the robot
to understand this task and the tools needed from an intuitive
standpoint such that even in the absence of a screwdriver, it
can reason through alternatives and find another substitute.

The robot may know of a number of rules related to its role
as a helper. One rule may be: that if agent X is given a task
to tighten a flat-head screw S, and X sees an object O that
has a flat-head edge, then the object O has a tightenWith
affordance. This rule can then be represented in DS-theoretic
uncertain logic a follows:

r0[αR0
,βR0

] :≡
hasF latEdge(O) ∧ task(X, tighten(S,flat)) =⇒
tightenWith(S,O)

The robot can look around the room and determine (within a
certain uncertainty interval) whether or not each of the various
objects that it sees has a flat edge.1

hasF latEdge(Screwdriver)[0.95, 0.95]
hasF latEdge(Knife)[0.9, 0.9]
hasF latEdge(Coin)[0.75, 0.95]
hasF latEdge(Pencil)[0, 0.95]

We apply DS-theoretic logical inference on rules,
such as the one above, and infer uncertainties for the
tightenWith(S,O) affordance for each of the five objects.
Based on this inference, the robot can deduce that knives
and coins can be used to tighten screws in the absence of
screwdrivers, but pencils cannot. Although, the rule in this
example is relatively simple and primarily functional, we do
contemplate scenarios that involve more complicated rules, or
bundles of rules that include social and moral norms for a
more complex object representation.

V. RESEARCH APPROACH

Our approach is to combine mathematical analysis, algo-
rithm design, computer simulations, robotic implementation,
and human-subject experiments to develop and test our compu-
tational model. In addition, we plan to study how these higher-
order affordances should be learned from observation during
the continuum of learning and problem-solving experiences.

As a first step, we have begun investigating a benchmarked
problem of grasping objects. Past work has focused on tech-
niques for effectively grasping objects without dropping them

1For e.g., we can compute the hasF latEdge(O) predicate from 3D
object meshes using Shapira’s shape diameter function algorithm [7].

[8]. We are advancing this work by designing and implement-
ing a set of context-based affordance rules to constrain the
search space of possible grasp locations. For example, while a
pencil can be grasped in many ways, only a few are useful for
doodling, and an even fewer that conform to social norms. We
plan to conduct human-subject research to then compare the
predictions we can make from our knowledge base of rules
against affordance perception in humans.

We also plan to investigate how robots can learn these
affordance rules from observation. We plan to explore logic-
based formalisms combined with a probabilistic framework
to to infer commonsense rules from exploratory actions like
poking and lifting. In order to represent these actions, we will
study and extend existing action formalisms such as Event
Calculus and Situation Calculus. In the end, we are looking
to provide a much richer representation of affordance, which
we believe is needed to allow robots to be adaptable to novel
open-world scenarios.

VI. CONCLUSION

Helper robots will be critical in many sectors: helping our
elderly and disabled in assisted living facilities, conducting
search-and-rescue missions in unforgiving terrain to save
human lives, assisting our astronauts on the space station,
or even monitoring our surroundings to keep us safe from
national security threats. The ultimate goal of our research is
to endow robots in these critical sectors with the ability to
find creative ways to use and manipulate objects, especially
when there is minimal and uncertain information. We have
taken the first steps towards this goal and proposed a novel
approach based on Dempster-Shafer (DS) theory for inferring
object affordances.
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