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Abstract—The concept of ‘““affordance” has typically repre-
sented the relationship between human perceivers and their
environment. Affordance perception, representation, and infer-
ence are central to commonsense reasoning, tool-use and cre-
ative problem-solving in artificial agents. Existing approaches to
representing affordances have focused on its physical aspects,
relying on either static ontologies or statistical formalisms to
extract relationships between physical features of objects, ac-
tions and the corresponding effects of their interaction. These
approaches fail to provide flexibility with which to reason about
affordances through various developmental stages, where they
are more influenced by changing context, social norms, historical
precedence, and uncertainty. We develop a formal rules-based
logical representational format coupled with an uncertainty-
processing framework to reason about cognitive affordances in a
more general manner than shown in the existing literature. Our
framework, which is retained through cognitive development,
allows agents to make deductive and abductive inferences about
functional and social affordances. We demonstrate our approach
with an example, and show that an agent can successfully reason
through situations that involve a tight interplay between various
social and functional norms.

I. INTRODUCTION

Reasoning about the environment and deciding what to do
with objects are highly desirable skills that require not only
recognizing objects but also perceiving what action possi-
bilities are available (i.e., perceiving affordances). Through
exploration, infants begin to acquire affordance perception
skills gradually. At first, the infant learns about objects by
touching and sucking them. Within a few months, they can
account for the object’s distance and attempt simple grasping.
Affordance learning continues throughout childhood with the
toddler learning about various physical affordances offered
by toys and objects around them [1], [2]. As they get older,
children begin to develop a stronger sense for not only phys-
ical affordances, but also more functional aspects of objects,
understanding for example, that mugs can not only be grasped,
but can also be used for drinking. Through social interaction
and adult instruction, children also begin to learn various social
rules associated with these objects. For example, they begin to
learn that sometimes mugs can be used for drinking, and other
times, when appropriate, mugs can be used as pen holders.
Deciding how to use objects in this manner, in situations
that involve a tight interplay between various functional and
social norms, is a highly desirable skill for robots, as well.
Unfortunately, although robots are getting more and more

proficient at perceiving physical affordances like grasping,
they are less skilled at resolving higher-order affordances that
involve social factors, changing context and uncertainty.

In this paper, we present a novel approach based on
Dempster-Shafer (DS) theory [3] and “uncertain logic” for
inferring object affordances through various stages of cognitive
development, from infancy through adulthood. As part of this
effort, we have developed a language for reasoning about
affordances that can represent complicated activities and can
account for the dynamic and continuous nature of real-world
scenarios. We will demonstrate our approach with an example
of a simple task of reasoning about household containers.

II. BACKGROUND

James Gibson [4] introduced the concept of “affordance”
to represent the relationship between the agent and its envi-
ronment. Since then, many competing theories have emerged
aimed at unpacking affordance and assembling useful repre-
sentational formats to reason about actions that the agent can
or must take in its environment [5], [6], [7], [8], [9], [10].
These general theories, were largely philosophical and exhib-
ited limited, if any, formalism or mechanisms for reasoning
in robotic systems. A number of these and other theories
focused primarily on functional aspects of affordances [11],
while a few introduced social considerations into an affordance
framework [12], [13].

Work in cognitive and developmental robotics as well as in
Al originated from these general theories and diverged in two
directions: statistical approaches and ontological approaches.
The statistical approaches modified and implemented these
general theories in specific domains using statistical for-
malisms to represent and compute affordances [14], [15], [16],
[17], [18]. The ontological approaches focused on developing a
detailed knowledge-ontology based on conceptual, functional
and part properties of objects, and then used a combination
of detection and query matching algorithms to pinpoint the
affordances for objects [19].

Despite these efforts, affordance representation faces many
challenges that have not been overcome in the previous work.
These approaches fail to provide flexibility with which to
reason about affordances in the open world, where they are
influenced by changing context, social norms, historical prece-
dence, and uncertainty. For example, these current approaches
cannot reason that coffee mugs afford grasping and drinking,



while also affording serving as a paperweight or cupholder, or
depending on the context, as family heirloom not meant to be
used at all. From a developmental standpoint, these approaches
also fail to provide a robust representation capable of handling
different types of affordances learned through various stages
of development.

III. PROPOSED AFFORDANCE MODEL

One reason it is difficult to represent affordances in this
flexible way - accounting for contextual and social aspects
- is the underlying complexity associated with actualizing
(i.e., perceiving and utilizing) relevant affordances from an
extremely large number of potential affordances available
in the environment. An object affords a large number of
physical actions such as grasping and pushing, functional
actions related to its use and other social actions based on
its meaning to an agent. Moreover, each of these actions can,
in turn, be influenced by contextual factors including goals
and intentions, prior knowledge and interpretations, ensemble
scene information, mental state, experience and developmental
state, and social and moral norms, among others. Existing ma-
chine learning and ontological approaches suffer performance
degradation when modeling this broader class of affordances
due to the need for complicated data structures and inherent
modeling limitations.

We propose a novel affordance model and formal rep-
resentational framework that enables accounting for these
contextual aspects explicitly: serving as filters and imposing
constraints on the process of perception as well as on the
selection of an action. The intuition behind our approach is
that not all affordances are relevant in every context, a fact
we can then use to reduce the complexity of the search space.
The proposed model is rules-based, and represents the rela-
tionship between perceptual information in the environment
and the possibilities for action in the presence of contextual
constraints.

More specifically, the rules (R) are premise-conclusion pairs
in which the premises are variables representing perceptual
invariants (F') in the environment and certain contextual in-
formation (C), and the conclusions are variables representing
affordances (A) actualizable by the agent in the situation. Each
of the rules and the variables in the premise are assigned
confidence intervals, grounded in Dempster-Shafer theory,
representing uncertainties in our beliefs about them. Using
the DS-theoretic framework coupled with Uncertain logic,
we can compute the confidence intervals associated with the
affordances in the rule’s conclusion.

The proposed representation allows for constraints to be
propagated through the inference process, thereby limiting the
search space and simplifying the combinatorial complexity of
affordance perception. In particular, contextual information act
as constraints and filter what rules the agent must consider in
a given situation. The rules, themselves, further limit what
affordances should be perceived in the current context and
what actions the agent should take. Interestingly, the proposed
framework also allows the agent to reason abductively and

Algorithm 1 getAffordance({©,my},{Oc,m.},R)

: {Op,mys}: Candidate perceptual features
{©¢,m.}: Relevant contextual items
: R: Currently applicable rules
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decide where it should focus its attention (i.e., what perceptual
invariants to detect in the environment).

Mathematically, the set of affordance rules (R) take the
overall form:

Tl = fNc = a

with f € F,c € C,a € A r € R, [o,0] C [0,1].
Here, the confidence interval [«, 5] is intended to capture the
uncertainty associated with the affordance rule r such that if
a = B =1 the rule is logically true, while « =0 and 8 =1
assign maximum uncertainty to the rule. Similarly, each of
the variables f and c also have confidence values associated
with them, and are used for inferring affordances as described
in more detail below. Rules can then be applied for a given
feature percept f in given context ¢ to obtain the implied
affordance a under uncertainty about f, ¢, and the extent to
which they imply the presence of a. It has been previously
shown that these types of rules are very versatile and that
one can employ DS-theoretic modus ponens to make uncertain
deductive and abductive inferences [20]. Most critically, these
rules allow us to address representational challenges with
mere Bayesian models such as inferring P(A|F,C) by way
of P(F|A,C), P(A|C), and P(C) when we often have no
practical way to obtain the necessary probability distributions
for all the potential affordances for an object.

IV. INFERRING AFFORDANCES

The purpose of cognitive affordance models is to infer
object affordances based on (1) their perceivable features, (2)
the known context, and (3) general domain and common sense
knowledge.

We propose to start with the first prototype inference
algorithm shown in Algorithm 1 and refine it to tailor it
specifically to a cognitive affordance model. As a preliminary
matter, in DS-theory, © = {61, ...,0x} represents the sample
space of finite mutually exclusive and exhaustive outcomes
of an experiment, where each 6; are elementary events. Each
elementary event and combinations thereof have a certain
weight or mass m associated with it. Thus, in the proposed
model for example, the variable representing the set of percep-
tual features F' includes several sample spaces or perceptual



aspects O (e.g., shape, color, etc.) with elementary events f
representing the detection of this aspect, having a mass m;.
Similarly, we can define the sample space, elementary events
and masses for the contextual information C as {©¢,m.}, and
rules R as {Or, mfc—q}. The confidence interval [«, 5] for
each of these variables are computed from the masses of the
elementary events using Dempster-Shafer theoretic notions of
belief and plausibility!.

The algorithm takes three parameters: (1) The set of can-
didate perceptions {©p,m} is provided by the low-level
vision system, (2) a set of relevant contextual items {©¢,m.}
provided by the cognitive system’s knowledge base or some
other part of the integrated system (e.g., belief inference
components) that can provide context information, and (3) a
table of cognitive affordance rules R. Here, mj specifies the
degree to which object feature f is believed to be detected, and
m, specifies the degree to which each of the rule’s associated
contextual items is believed to be true.

Each rule r¢ac—q in R is indexed by a feature perception
f and a set of contextual items c¢, and dictates the mass
assigned to the confidence interval [«(a), S(a)] when the
system believes that object features f were detected and that
contextual items c are true. Here, a is a complex logical
expression representing the affordance that can be derived
from the perceived features f in context c.

The inference algorithm then examines each rule 7fpc—q €
R (line 5), performs a DS-theoretic AND operation and an
Uncertain Modus Ponens to obtain m, (line 6). Note that
since we allow multiple affordance rules to be considered,
multiple affordances may be produced. Multiple rules may
produce the same affordances for various reasons, possibly
at different levels of belief or disbelief. However, we seek
to return the set of unique affordances implied by a set of
perceptions f.

After considering all applicable affordance rules, we group
affordances that have the same content but different mass
assignments (line 8), and use Yager’s rule of combination
(line 11) defined in [22] to fuse each group of identical
affordances, adding the resulting fused affordance to set .
This set then represents the set of affordance implied by the
perceived features f.

Finally, we can use the “ambiguity measure” A defined in
[23] to determine whether an inferred affordance should be
realized and acted upon. For example, we could check the
ambiguity of each affordance a € 1) on its uncertainty interval
[, Bi]: if Ay, Bi) < A(c) (where A(c) is an ambiguity
threshold, possibly depending on context c), we do not have
enough information to confidently accept the set of inferred
affordances and can thus not confidently use the affordances to
guide action. However, even in this case, it might be possible to
pass on the most likely candidates to other cognitive systems.

IThe lower bound captures the total support that can be committed to a
event without also committing to the negation of the event. The upper bound
captures the total belief that does not contradict the event. More details about
the confidence intervals and other aspects of DS-theory are presented in [21].

Conversely, if A(a;,S3;) > A(c), then we take the inferred
affordance to be certain enough to use it for further processing.

V. EXAMPLE: HOW TO USE A COFFEE MUG

We will now present an evaluation of our representation
and our algorithm, and demonstrate the capabilities facilitated
by our approach. We will use an example of reasoning about
containers to demonstrate the behavior of our algorithm.

Containers of all types are highly useful objects in our daily
lives. We reason about containers constantly, from deciding
where to put our toothbrush in the morning, to selecting a
mug for coffee and organizing our desk and placing items in
drawers and boxes. The idea of a container is a subject of
recent work in commonsense reasoning [24] and important in
Al and robotics research. Existing approaches have focused
on geometric and physical aspects of the properties of a
container, which while relevant to infant affordance perception,
do not translate to later stages of development when functional,
social and contextual factors play an increasingly important
role. Specifically, these approaches do not provide flexibility
with which to reason about action choices, where the social
norms and rules may change and other contextual factors may
influence the use of a certain object as a container.

Consider this example: If asked to stow away a pen in
a container, adults would consider a dry mug on our office
table as a candidate. Now, if the same dry mug were in
a kitchen along with other mugs, adults might not consider
putting the pen into a coffee mug in the kitchen. The same
object, i.e., a coffee mug has different affordances depending
on context, and these affordances sometimes have more to
do with social tendencies than physical constraints. While an
infant may not be able to perceive these subtleties, an adult
can and is expected to be able to do so. For example, the
infant may not be able to distinguish between contexts in this
manner or it may not have learned about the social etiquette
associated with kitchens and offices, or it may not even have
learned the containment affordance. We will demonstrate that
the representation and algorithm described above allows us to
reason about exactly these types of subtleties.

VI. CONTAINMENT FORMALIZED
A. Visual Perception, F

The vision pipeline for an artificial agent involves various
low-level components that are coupled together to process
color and depth information. These components also generate
point clouds and 3D meshes, and perform scene representation
and semantic analysis to generate predicates that capture,
qualitatively, certain aspects of the visual scene.

Let F = {Of,0Op,,...,0r,} be the set of N different
perceptual aspects such as color, shape, texture, relational
information, and generally information obtained from the
vision pipeline that an agent may interpret. Each aspect O, =
{fi1, fi2,---, fi.m} has aset of M mutually-exclusive candi-
date perceptual values (percepts), which come from the vision
system. We will use my, ; to denote the candidate mass values

J

of the percepts, where i € {1...N} and j € {1...M}.



For the purposes of our example, we will represent the
agent’s visual perception of our domain objects with five
binary visual aspects, each aspect with a percept and its
negation.

Aspect (OF,) | Percept (f; ;) Mass (my, )
OF, 1sCylinder(Oy) my,
OF, hasOpening(O1) mpy,,
OF, hasHandle(O1) my,
OF, isLiquid(O2) my,
OF, isSmaller(Oz,01) mpys

isCylinder(Oy) represents the knowledge that the object
01 is cylindrical in shape. hasOpening(O;) represents the
knowledge that the object O, has an opening on a surface that
allows for the placement of other objects. hasHandle(Oy)
represents the knowledge that the object O; has a handle with
which to grasp it. isLiquid(O3) represents the knowledge that
the object O is a liquid, and isSmaller(Os, O1) represents
the knowledge that the object Oy is smaller in volume than
object Oy, thus allowing O to fit inside O;.

We selected these particular visual aspects because of their
significance to the rules that we will discuss in more detail in
the below sections. There are an infinite number of semantic
aspects and relations in the environment and it would not
be possible for the agent to keep track of them all. Our
approach simplifies the task for the vision system to only look
for certain relevant perceptual features based on the agent’s
current context. We envision that our set of perceptual aspects,
F', may change dynamically to include and exclude percepts
as contexts and situations change over time.

B. Relevant Contextual Items, C

Knowledge of the agent’s current context is provided by
certain high-level processing components such as the agent’s
belief, planning and goal management system. The context
is representative of the agent’s beliefs, goals, desires, and
intentions, along with certain other abstract constructs in the
agent’s narrative situation. Together these contextual items,
processed as predicates, represent qualitatively the agent’s
abstract context, i.e., knowledge not directly perceivable.

Let C = {©¢,,0¢,,...,0¢c, } be the set of all contextual
aspects an agent may need to interpret. Each contextual
aspect O¢, = {¢;.1,¢i2,--.,¢i,m} has M mutually-exclusive
candidate contextual states, which come from the high-level
components. We will use m, ; to denote the candidate mass
values of the contexts, where i € {1...N}andj € {1...M}.

For the purposes of our example, similar to our represen-
tation of perceptual aspects, we will represent the agent’s
contextual knowledge with one binary contextual aspects,
which includes a contextual value (context) and its negation:

Aspect (O¢,) | Context(c; ;) | Mass (me, )
O¢, | domain(L) | Me,

domain(L) represents the agent’s current domain, L. For
example, domain(kitchen) represents the knowledge that the
agent is currently in the domain of working in the kitchen.

C. Cognitive Affordances, A

The next part of our representational framework are the
cognitive affordances A computed by several rules. We use
affordances here to represent action possibilities available to
the agent at any given moment in time. The affordances are
represented semantically with predicates for action possibili-
ties.

Let A = {©4,,04,,...,04,} be the set of N dif-
ferent cognitive affordance aspects. Each aspect O4, =
{ai1,ai2,...,a; pm} has a set of M mutually-exclusive can-
didate affordance values (affordances). We will use my,, ; to
denote the candidate mass values of the affordances, where
1e€{l...N}and je{l... M}

For the purposes of our example, we will represent the
agent’s affordances with one affordance aspect, with an af-
fordance and its negation.

Aspect (O 4,) ‘ Affordance (a; ;) ‘ Mass (myg; )
Oy, ‘ containWith(X, Oz, O1) ‘ Ma, ,

The containWith(X,Oy,01) represents the property of
object O; which allows for an agent to contain object Oo
within Oy by performing an action X.

Now, we recognize that these affordance are always avail-
able to the agent: the agent can place objects inside other
objects at any time. Our affordance representation does not
deny that latent affordances may exist in objects, but merely at-
taches uncertainties to their potential for actualization. Certain
dormant affordances will have low uncertainties unless certain
contextual situations arise, and our rules seek to capture this
type of reasoning with affordances.

It could also be argued that there are infinitely many
more affordances for containers, and that we are limited in
considering only a few. We agree with this argument and only
present this exemplary set for demonstration and evaluation
purposes. In reality there are many more affordances, possibly
infinite, and our cognitive affordance inference framework can
reason about all of them simultaneously. Although we will not
address the issue of whether or not there are an infinite number
of affordances, we will contend that only a finite subset of
them are relevant in any given set of contexts, applicable at a
particular moment in time.

D. Cognitive Affordance Rules, R

The fourth part of our representational framework is the set
of rules, R, that represent the cognitive affordance aspects,
A, of the perceptual aspects, F', in a contextual aspects, C.
We will present an exemplary set R of rules for the handover
example below.

Let R = {Og,,OR,,...,0Ogr, } be the set of N different
cognitive affordance rule aspects. Each rule aspect Op, =
{ri1,7i2,...,r;m} has a set of M mutually-exclusive can-
didate rule values (rules). We will use m,., ; to denote the
candidate mass values of the rules, where ¢ € {1...N} and
je{l...M}.

For the purposes of our example, we will represent the
agent’s affordances with four rule aspects (representing four



rules), each aspect with a rule and its negation. Generally, the
rules are of the form:

4, o
Tlows Big] = fAc = a

Below, we show each of the 4 rules for this example,
presenting the uncertainty intervals for each of the rules. For
ease of reading, we have omitted the index 7 = 1.

Tlar,p] = hasOpening(O1) A isSmaller(Og, O1)A
domain(kitchen) = containWith(X, Oz, 01)
7"[2&27[32] = hasOpening(O1) A isSmaller(Oz, O1)A
domain(office) = containWith(X,Oz,01)
7‘:[30437[33] := isCylinder(0O1) A hasHandle(O1)A

hasOpening(O1) A isLiquid(O2)A
domain(kitchen) = containWith(X, Oz, 01)
T‘f‘a4ﬁ4] = 1isCylinder(01) A hasOpening(O1)A
domain(office) = containWith(X,Oz,01)

Rules 7! and r? relate to the agent’s general common-

sense understanding of the physical properties of objects as
containers in any domain. Objects that have openings can,
simplistically, serve as containers.

Rules 73 and r* relate to a more domain specific set of
social rules. Rule r3 essentially represents our intuitive social
expectation that cylindrical objects with handles that have an
opening can serve as a container for liquids. Rule r* represents
our intuitive social expectation that cylindrical containers in
an office can serve as containers for objects, not necessarily
liquids (i.e., pen-holders).

When modeling an infant or a toddler, we may choose to
include rules r! and 2, but exclude rules 73 and r%. An infant
or a toddler is unlikely to have learned rules 73 and r* as they
involve more subtle social norms that they might subscribe to
at a later date through trial and error, for e.g., by receiving
reprimand for pouring water into the pen holder.

VII. EXPERIMENT

We consider the example of a robot tasked with finding
a container for (1) stowing away a pen, and (2) for storing
water. The environment contains real objects consisting of a
Mug, Pen and Water, across two domains, namely kitchen and
office. The robot must decide if the Mug is a suitable container
for Water or the Pen in each context of a Kitchen and an
Office. The robot can only perform one action, Placeln, which
allows it to place one object inside another.

We evaluated our set of rules across both contexts (office
and kitchen) for all values of DS-theoretic masses ranging
from O to 1 (step-size of 0.005). For each combination of
(mass my, ,) representing whether the robot is in the kitchen
or in the office or it is unsure if it is in the kitchen or office,
we computed the values of the ambiguity measure A\ of the
containWith() affordance and plotted our results in Fig. 1.
Each of the four plots shows the value for an ambiguity
measure, A, for the affordance of containWith() using a
Mug. Values close to 1 represent high certainties and values
close to 0 represent maximum uncertainty.
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Fig. 1. Plot showing that coffee mugs are more likely to be perceived as pen-
holders in an Office than in a Kitchen (bottom-right). But, the same mugs are
perceived as suitable water containers in both domains.

The first column of plots represents the cases when the robot
is reasoning whether a mug is a suitable container for water.
The second column of plots represents the cases when the
robot is reasoning whether a mug is a suitable holder for a
pen. The top row of plots corresponds to the cases where each
of the four affordance rules 7! - 7% have equal and maximum
certainty. The bottom row of plots corresponds to the cases
where rules 7! and 72, which are the more general of the
rules, have lower certainties than rules > and r*, which are
the more specific of the rules.

Our results demonstrate that mugs are generally good con-
tainers for water, in both the kitchen and office domains.
However, for storing pens, mugs are deemed to be better-suited
in an office than in a kitchen (bottom-right). Our affordance
framework allows the robot to reason about social expectation
together with functionality, while simultaneously accounting
for uncertainty in knowledge and information.

VIII. DISCUSSION AND CONCLUSION

In this paper, we developed a novel logic-based framework
and algorithm using Dempster-Shafer (DS) theory for inferring
object affordances. We demonstrated how our framework can
handle changing contexts, uncertainties and be extended to
include the dynamic nature of real-world situations. We believe
that this, much richer level of affordance representation is
needed to allow artificial agents to be adaptable to novel
open-world scenarios. Our framework allows for a body-
independent and agent-capability-independent language with
which to reason about action possibilities. Perceptions of these
types of higher-level affordances are important both for agents
that have to use novel or unknown objects as tools to perform
tasks, and also for agents that operate in social spaces where
they must recognize the social affordance of the situation (e.g.,
where to stand, where to move).

One advantage of such an approach, developmentally, is
that the same framework - representation and algorithm -
can be used across various developmental stages. During



infancy, a child learns simple commonsense and naive physics
rules about objects. They learn that these objects have simple
affordances like graspable, liftable, turnable and reachable. As
they develop into toddlers, the child begins to learn affordance
rules for more functional aspects. That is, they learn that
sharp objects can be used to cut with and that objects with
openings can be used to drink water. Child development of
affordance perception develops as they grow [25]. Finally as
children and later as adults, they learn social etiquettes, and
learn to appreciate the role of context in affordance reasoning.
Children learn affordances through exploratory actions and
through instruction (e.g., learning how to hold a spoon) [26].
They learn that mugs have the affordance of being used as
a paperweight or a decorative piece depending on context.
Children perceive more and more complex invariants as they
grow and are tuned into more social aspects [27]. In each of
these stages, while the rules are different, the representation
and inference process remains the same. Our approach sug-
gests that there is no additional cognitive machinery needed
to support the higher-order reasoning about functionality and
social norms that appears in later stages of development.
More generally, the proposed framework displays consis-
tency with ecological and socio-cultural approaches to percep-
tual learning and development: that perceptual development
is a process of increasing one’s ability to detect and select
relevant, increasingly differentiated and specific perceptual
information that is already available in the environment [28].
Similarly, in the proposed framework, perceptual learning
involves updating and refining the set of learned affordance
rules, and selecting the appropriate subset of rules over which
to reason in a particular situation. As the agent develops,
the rule’s premises evolve from murky undifferentiated per-
cepts F' and sociocultural contexts C' to more specific ones.
Affordances A also evolve as new action capabilities are
developed by the agent. Uncertainty measures account for
other developmental variables such as perceptual sensitivity.
Our framework has shown some potential, but we will
still need to address various challenges. For example, we
will look into a framework for learning various affordance
rules from observation, exploration, and demonstration. In
doing so, we will need to incorporate action formalisms to
allow a more dynamic reasoning process. Towards this end,
we are extending our logic to reason about the effect of
acting on affordances. Finally, we will be integrating our
framework into a robotic cognitive architecture and grounding
our representation to work with embedded cognitive systems.
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