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I. INTRODUCTION

Collaborative human activities are grounded in social and
moral norms, which humans consciously and subconsciously
use to guide and constrain their behavior: they undergird
human societies by prescribing what is obligatory, permitted,
prohibited, and optional [1]. In doing so, they enable effective
collaboration and prevent emotional and physical harm.

Consider a restaurant kitchen where cooks and assistants
perform tasks such as passing knives and cutting vegetables.
When handing over a knife to the chef, assistants do so in a
way that does not look like they are about to stab the chef.
Not only will they orient the knife in the right way, but they
should take care not to approach the chef menacingly and
without prior warning, while the chef has their back to them.
The underlying normative principle could be roughly stated
as a rule: “If you need to hand over a potentially dangerous
object with a sharp blade, do not point it with the blade at
the other person, but rather grasp it carefully by the blade and
hand it over with the bland side or handle facing the other
person”. The tacit understanding among the kitchen staff is
that everyone will abide by this principle, thus enabling safe
exchanges of knives and other potentially dangerous objects.
Failing to follow the rule will likely result in blame and
reprimand from the chef, which then has to be addressed either
by apologizing or by offering an explanation as to why the rule
violation was justified [2].

Clearly, social and moral norms play an important functional
role in the human cognitive architecture: they are at work
in perception to detect morally charged contexts and norm
violations, they are employed during decision-making and
behavior execution, and they are referred to in communica-
tions about normative behavior and norm violations. In other
words, normative processing is deeply integrated into the
human cognitive system and affects virtually every aspect of
the architecture (from perception, to reasoning, to action, to
communication). Hence, this type of norm-based processing
is also critical for robots in many human-robot interaction
scenarios (e.g., when helping elderly and disabled persons
in assisted living facilities, or assisting humans in assembly
tasks in factories or even the space station). Human beings
expect their interactants, including intelligent robots, to follow
social and moral norms, and disappointing those expectations
will lead to impoverished interactions at best, but can lead to

emotional and physical harm in the worst cases.
In this position paper, we will briefly describe how several

components in an integrated cognitive architecture can be
used to implement processes that are required for normative
human-robot interactions, especially in collaborative tasks
where actions and situations could potentially be perceived
as threatening and thus need a change in course of action to
mitigate the perceived threats. We will focus on affordance-
based reasoning to infer complex affordance relationships be-
tween an agent and objects in the environment, and analogical
reasoning to decide the appropriateness of the action plan by
comparing against other past situations.

II. BACKGROUND AND RELATED WORK

Many in the HRI field have recognized that ethics will
have to inform competent robot behavior in the social sphere.
Various ethical theories and combinations thereof have been
proposed, most commonly weighing utilitarian approaches
against deontic frameworks (e.g. obligated or forbidden ac-
tions), [3]. Recent work in cognitive science on human moral
reasoning, however, has recently yielded insights into intricate
relationships between moral norms, emotions, theory of mind,
and blame [4], [5]. While autonomous social robots need
not, indeed should not, recapitulate models or features of
embodied human cognition for the sake of sheer similarity
(e.g. reproducing “aggression” that clouds moral principle),
it is clear that to interact competently in social space such
systems will incorporate adept perspective taking and reason
giving for their actions [6]. Moreover, in their dealings with
people robots will also be dealing with inanimate objects (from
tools to keepsakes), which can be especially charged morally
when involved with collaborative tasks or other social inter-
actions: HRI cannot ignore object affordance in its scenarios
and design for moral performance.

In terms of cognitive architecture, calls for robust moral
reasoning have been building in scope and force as roles for AI
and robotics, from self-driving cars and autonomous weapons
systems to domestic and healthcare roles, have accelerated
entry into the social sphere [7]. Relatively little work on
cognitive architecture has directly tackled social and moral
norms, though there are some initial modeling efforts to
meet that challenge [8]. MoralDM, for example, as part of
the Companions architecture, base moral decision-making on
analogies with cultural narratives [9] or generalizations of



Fig. 1. High-level Schematic of DIARC showing the three relevant compo-
nents together with some of their connections.

stories [10] to determine the appropriate action. Recognizing
how thoroughly moral norms will shape expectations and
evaluations of social robots, we situate moral reasoning as
an integral feature of the DIARC architecture [11].

III. COMPONENTS FOR NORMATIVE HRI

Various architectural capabilities are required in cognitive
robotic architectures for robots to become morally competent
[2]. Here we focus on three key functionalities: (1) affordance
inference, (2) analogical reasoning, and (3) action selection.
For example, when handing over a knife, robots must pass
the knife in a socially acceptable way (affordance perception),
while evaluating whether the situation as a whole is socially
appropriate compared with similar situations (analogical rea-
soning), and mitigating perceived threats by choosing alterna-
tive actions (action selection).

In prior work we have developed a computational repre-
sentation and framework to reason about affordances more
generally (i.e., physical, functional, aesthetic, social and ethi-
cal affordances) [12]. We have also implemented a structure-
mapping engine for analogical reasoning and have the ability
to compare and score situations for similarity in structure. Here
we supplement this work with an action selection engine to
reason about social and moral perceptions and select mitigat-
ing actions.

We propose implementing these key functionalities by
means of components integrated into the existing robotic
DIARC architecture, which comprises components for per-
ceptual and visual processing, navigation, action planning, and
natural language processing. DIARC has been used extensively
for human-robot interaction in natural language [11]. Next,
we will discuss each of these functionalities along with the
architectural components needed to enact them (Figure 1).

A. Goal Manager (GM)

The Goal Manager (GM) is responsible for accepting a
goal and assembling an action script to satisfy this goal
and manages the execution of the script. The GM performs
these functions in conjunction with the Affordance Inference

Component and the Analogical Reasoning Component, which
we will discuss in more detail below.

B. Cognitive Affordance Inference

We have developed a formal rules-based logical represen-
tational format and inference algorithm for cognitive affor-
dances, in which an object’s affordance (A) and its perceived
features (F ) depend on the context (C). The perceived features
(F ) include color, shape, texture, relational information, and
general information obtained from the vision (or other sensory
systems) pipeline that an agent may interpret. The context is
representative of the agent’s beliefs, goals, desires, and inten-
tions, along with certain other abstract constructs in the agent’s
narrative situation. The object’s affordance (A) represents the
types of action possibilities that might be available to the robot
at any given moment in time.

We use Dempster-Shafer (DS) theory for inferring affor-
dance (A) from object features (F ) in contexts (C) [13]. DS
theory is an uncertainty processing framework often inter-
preted as a generalization of the Bayesian framework.

Our cognitive affordance model also consists of a set of
affordance rules (R) taking the form r :≡ f ∧ c =⇒ [α,β]a
with f ∈ F , c ∈ C, a ∈ A, r ∈ R, [α, β] ⊆ [0, 1]. Here, the
confidence interval [α, β] is intended to capture the uncertainty
associated with the affordance rule r such that if α = β = 1
the rule is logically true, while α = 0 and β = 1 assign
maximum uncertainty to the rule. Rules can then be applied
for a given feature percept f in given context c to obtain the
implied affordance a under uncertainty about f , c, and the
extent to which they imply the presence of a.

These types of rules are very versatile, and we can em-
ploy DS-theoretic modus ponens to make uncertain deductive
and abductive inferences. We have started to integrate this
functionality into the DIARC architecture by means of a
special affordance inference component in conjunction with
the existing visual perception components, which allows us
to incorporate cognitive affordance inference into the visual
perception pipeline.

C. Analogical Reasoning

We use analogical reasoning to identify applicable actions
that are consistent with the surrounding context. The process
proceeds as follows. Given an encoding of the situation we
make a series of analogical comparisons with other situations.
We use the Structure Mapping Engine (SME) [14] to perform
each comparison. The other situations are stored in memory
and originate from prior experiences, instruction, observation,
and demonstration. Each successful analogical comparison
yields a similarity score and a set of candidate inferences.
Comparing the similarity scores of each comparison indicates
which situations are most analogous to the current situation.
The candidate inferences represent information known in the
other situation that structurally fits with the new situation.
Since there is no semantic verification of this information, a
follow-on step is necessary to check each candidate inference
and determine whether it can be true in the current situation.



Included amongst the candidate inferences may be the action
for the robot to take or the perceived intent of the action in a
given context.

IV. PROOF-OF-CONCEPT EXAMPLE

DIARC aims for “natural, human-life” human-robot in-
teraction through which a robot can deliver goal-oriented,
socially appropriate behavior from exchanges in ordinary
settings through natural language. To illustrate how the three
components discussed above can contribute to that effort
within DIARC, let us consider a robotic agent who is helping
human beings at home in their kitchen. One of them asks the
robot, “Can you bring me something to cut a tomato?” The
speech and natural language systems within DIARC can parse
and interpret this instruction, submitting a goal to the GM (e.g.,
possess(human, cutwith(tomato))). The GM will resolve
this goal into a high-level action script with three sequenced
parts: find, pickup, and bring.

Find Object. Once the GM has resolved the larger goal
into a hierarchical action script, each step of the action script
is then further resolved into more primitive actions. The step of
“Find Object” is further resolved by turning to the Affordance
Inference Component in the architecture. The Affordance
Inference Component interacts with a set of affordance rules
(which include physical, functional, and social rules) stored in
memory, where each rule associates an affordance with certain
perceptual features and certain contextual elements. In the
kitchen-helper example, consider rule r1 with an uncertainty
interval [0.8, 1]:

r1[0.8,1] := hasSharpEdge(O) ∧ domain(X, kitchen) =⇒
cutWith(X,O)

The Affordance Inference Component receives contextual
information (e.g., it is in the kitchen working as a helper)
from a Belief component (tasked with resolving agent beliefs
and intentions) and from the GM. It also interacts with the
robot’s vision component and directs a visual search to look for
objects in the environment that satisfy the hasSharpEdge(O)
perceptual predicate.

The Affordance Inference Component then applies percep-
tual and contextual information (along with accompanying
uncertainty masses, m) to determine the affordance implied
by the rule, as follows:

r1[0.8,1](mr = 0.8) :=
hasSharpEdge(knife)(mf = 0.95)∧
domain(self , kitchen)(mc = 1.0) =⇒

cutWith(self , knife)(ma = (mf ⊗mc)�mr = 0.76)

where the ⊗ is the DS-theoretic uncertain logic AND operator
and the � is the DS-theoretic uncertain logic modus ponens
operator. The uncertainty interval for the rule can then be
computed as [0.76, 1].The Affordance Inference Component
will then perform this analysis for each of the other rules in
the set to determine uncertainty intervals for all the implied
affordances. Once the Affordance Inference component has

found a suitable object with the required affordances, it will
have completed the “Find Object” action step and the GM will
then advance the action script to the next step to “Pick up the
Object.”

Pick up Object. To perform this action, the GM must
generate an action sequence to move near the object and
then determine appropriate grasp affordances for the object
in conjunction with the Affordance Inference Component.

The Affordance Inference Component is capable of resolv-
ing not only handling functional affordances as described
above with respect to finding objects to cut with, but more
complex social and aesthetic affordances. For example, to
properly hand over knives, it is preferable to grasp the knife
by its blade and orient its handle towards a receiver. But it is
acceptable to grasp the handle if the blade is dirty or being
used. The Affordance Inference Component takes into account
these considerations using rules of the form described above
and infers appropriate grasp affordances in the current context.

Consider the situation where the knife is dirty and the
Affordance Inference Component determines that the knife is
graspable by the handle. The GM selects this as a suitable
grasp affordance and initiates an action sequence to execute
the “Pick up Object” action. Once the robot has picked up
the object, it will have completed the “Pick up Object” action
step and the GM will then advance the action script to the
next step to “Bring Object to Human.”

Bring Object to Human. The action of bringing an object
to a human is decomposed into a simple action script that has
the robot translocating itself from its current location to the lo-
cation of the human and then handing the object to the human
(handing over the object will itself be decomposed into more
primitive actions). Given this action script, we check that the
behavior of the robot is morally and socially acceptable. These
checks are made before each action is executed (including the
actions described above), but for simplicity we discuss these
checks only here. We focus on verifying that the action would
be perceived as a morally acceptable behavior. This is done
by drawing analogical comparisons with known situations and
checking that similar situations are not morally unacceptable.
If the action script to be executed next may be objectionable,
then the robot tries to modify the script and rechecks that the
new script is acceptable. Algorithm 1 describes this process.

Algorithm 1 Moral Perception Acceptability algorithm
1: procedure CHECKMORALPERCEPT(s)
2: m← similarScenarios(s)
3: if acceptable(m[0]) then return s
4: else
5: while modifiable(s) do
6: t←nextModifiedActionScript(s)
7: CheckMoralPercept(t)
8: end while
9: return error

10: end if
11: end procedure



The check starts with the current scenario s, which includes
the action script to be executed and information about the
agents and objects involved. Given this description of the
scenario, we find a set of similarScenarios that analogous to
the current one (line 2). To compile this set of scenarios, we
use SME to perform analogical comparisons of the current
scenario with other known scenarios and return the most
similar ones (up to three). Each scenario with which the
current is compared may describe a normative action that is
taken or an action that is impermissible in the current context.
Assuming the robot does not know of any scenario that is a
literal similarity – such as approaching a person with a knife
in a kitchen – then we rely on analogous scenario – ones that
are similar in structure but may differ in content. Consider the
three scenarios described in Fig. 2.

Initially, the similarity scores of each of the scenarios is
0.4465, 0.4285, and 0.2910, respectively. The scores estimate
the quality of the analogy but are not along any particular
scale. If the most similar scenario is morally acceptable then
the current scenario does not resemble any moral violations
and the robot may proceed with executing the script (line
3). However, our most similar scenario, the BBS, represents
a moral violation. In this case, the algorithm proceeds by
considering modifications to the action script (line 6), and then
repeating the moral check on the updated scenario (line 7).
Once the action script is modified to alert the human before
moving towards her, the HSS becomes the most analogous,
and this scenario does not have any moral violations.

Baseball Bat Scenario (BBS)
The approaching agent surprises the approached agent from be-
hind and strikes them with a baseball bat. Here the approaching
agent is holding a bat, which might posses the affordances of
a weapon, and they do not provide any warning or notice to
the other. Moreover, the approaching agent is causing harm,
resulting in a morally-negative outcome.
Flowers Scenario (FS)
One agent surprises another agent with a bouquet of flowers.
Like the Baseball Bat scenario, here too the approaching agent
surprises the approached agent from behind, without warning.
However, unlike the Baseball Bat Scenario, here the approach-
ing agent is holding a bouquet of flowers, which does not posses
the affordances of a weapon. Finally, the approaching agent is
not causing harm, and in fact is cheering up the other, thereby
resulting in a morally-positive outcome.
Hot Saucepan Scenario (HSS)
One agent holding a hot saucepan warns nearby agents while
passing by behind them. Like the Flowers Scenario, here too
the outcome is a morally-positive one and the approaching
agent is not intending to cause harm. Like the Baseball Bat
Scenario, here too, the approaching agent is holding an object
(hot saucepan) that possesses weapon affordances. However,
unlike both the prior scenarios, in this scenario, the approaching
agent provides a verbal warning to the approached agent.

Fig. 2. Analogous Scenarios

V. DISCUSSION

Being able to recognize morally and socially charged sit-
uations is an important skill for robots in a human-robot
collaborations. As research in robotic cognition progresses and
robots are endowed with more advanced action capabilities, it
will become ever more important to ensure that robotic actions
are monitored, discerning their moral and social implications
and verifying that these actions are within societal norms.
This is especially true as robotic systems make their way into
everyday lives. Take, for example, self-driving cars. As these
systems develop the ability to monitor roads and navigate them
safely, it will also be important that they conduct themselves
within social and moral expectations of other drivers on the
road. This means, therefore, looking at its own driving from
others’ perspective and considering if the actions will result
in morally-positive outcomes.

Our long-term goal is to endow robots with moral com-
petence. Here we took a step in this direction by propos-
ing promising mechanisms in an integrated architecture for
reasoning about the social and moral propriety of situations.
Yet, many challenges remain to be addressed, including com-
putational complexity, episodic memory management, data
representations, as well as more advanced affordance-based
and analogical reasoning techniques.
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