
DIARC: A Testbed for Natural Human-Robot Interaction

P. Schermerhorn, J. Kramer, T. Brick, D. Anderson, A. Dingler, and M. Scheutz
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
Email: {pscherm1,jkramer3,tbrick,danderso,adingler,mscheutz}@cse.nd.edu

Abstract
DIARC, a distributed integrated affect, reflection, cognition
architecture for robots, provides many features that are criti-
cal to successful natural human-robot interaction. As such,
DIARC is an ideal platform for experimentation in HRI. In
this paper we describe the architecture and and its implemen-
tation in ADE, paying particular attention to its interaction
capabilities and features that allow robust operation. These
features are evaluated in the context of the 2006 AAAI Robot
Competition.

Introduction
Autonomous human-like robots that interact in natural lan-
guage with people in real-time pose many design challenges,
from the functional organization of the robotic architec-
ture, to the computational infrastructure possibly employ-
ing middle-ware for distributed computing, to the hardware
operating many specialized devices for sensory and effector
processing in addition to embedded controllers and standard
computational boards. The task is to achieve a functional
integration of very diverse modules that operate at differ-
ent temporal scales using different representations on paral-
lel hardware in a reliable and fault-tolerant manner that al-
lows for natural, believable human-robot interaction (HRI).
To achieve reliable, natural interaction with humans, sev-
eral challenging requirements must be met, two of which
are (R1) appropriate interaction capabilities, including nat-
ural language capacity (speech recognition and speech pro-
duction), dialog structure (knowledge about dialogs, tele-
ological discourse, etc.), affect recognition and expression
(both for speech as well as facial expressions), and mech-
anisms for non-verbal communication (via gestures, head
movements, gaze, etc.); and (R2) mechanisms for ensuring
robust interactions, including recovery from various com-
munication failures (acoustic, syntactic, semantic misunder-
standings, dialog failures, etc.) as well as software and hard-
ware failure recovery (crashes of components, internal tim-
ing problems, faulty hardware, etc.).

We are developing DIARC, a distributed integrated af-
fect, reflection, cognition architecture for robots that interact
naturally with humans (Scheutz et al. 2005; Scheutz, Scher-
merhorn, & Kramer 2006). We use our implementation of

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

DIARC as a testbed for research on natural human-robot
interaction. DIARC provides several of the features for the
study of natural human interaction described above that are
not easily found in other robotic systems. Some of these
features were demonstrated in the 2006 AAAI Robot Com-
petition and Exhibition. This paper provides an overview of
the architecture as implemented for Rudy (our robot compe-
tition entry; see Figure 1) and of our experiences with Rudy
at the competition. In Section , we describe different compo-
nents of DIARC that are critical for HRI. Section recounts
the system’s performance at the competition. The paper ends
with a brief account of related work in Section and some
concluding thoughts in Section .

DIARC Implementation
DIARC is implemented in ADE, a Java-based infrastruc-
ture for the design, development, and execution of agent ar-
chitectures (Scheutz 2006). To address requirement (R2),
ADE provides robust, reliable, fault-tolerant middle-ware
services for the distribution of complex robotic architectures
over multiple computers. The ADE infrastructure provides
the means of implementing an abstract functional architec-
ture as a multi-agent system (MAS), where architectural
components assume the role of agents that together form
an integrated agent architecture. In ADE, each functional
component is an ADEServer, with the ability to provide
and/or make use of services when connected with other com-
ponents. In addition to mechanisms that support component
distribution and parallel operation, the framework also sup-
plies monitoring, failure detection, and failure recovery ser-
vices that tie directly into the high-level action interpreter.

A concrete example of DIARC’s implementation across
three hosts is shown in the “3-level” diagram in Figure 2.
The top level is the “Abstract Agent Architecture” (i.e., DI-
ARC), where darkened ovals represent functional architec-
ture components, shown in a data flow progression from sen-
sory input on the left, to data processing in the middle, and
effector output on the right. The middle, or “ADE Com-
ponent” level, depicts ADEServers and their connections;
each rounded rectangle is an ADEServer, dotted lines rep-
resent heartbeat-only connections and dot-dash lines repre-
sent combination heartbeat/data transfer connections. Solid
and empty arrowheads indicate a component is either pro-
viding or using services, respectively. Hardware devices



Figure 1: The robot at the 2006 AAAI Robot Competition.

used by an ADEServer are depicted by a set of labeled
squares within the server’s rectangle. The bottom, or “Hard-
ware” level, specifies hosts and their connections. Two rela-
tions between the bottom and middle levels are shown: (1)
ADEServers are placed in a vertical column directly above
the host on which they execute and (2) connections between
hardware devices and the ADEServers that use them are
indicated by solid lines that cross the level divider. The re-
lation between the middle and top levels is represented by
mapping darkened ovals (i.e., functional architectural com-
ponents) to the ADEServer that implements them.
ADEServers are not necessarily part of the functional

architecture, however. For instance, the ADERegistry,
a special type of ADEServer, is an infrastructure agent
that mediates connections among ADEServers and the
processes that use their services. In particular, an
ADERegistry organizes, tracks, and controls access to
ADEServers that register with it, acting in a role sim-
ilar to a MAS white-pages service. During registration,
an ADEServer provides information about itself to the
ADERegistry, also establishing a heartbeat that period-
ically updates the server’s status. Thus, an ADERegistry
forms a gateway into an ADE configuration; to gain a con-
nection with another server, an ADEServer must make a
request to an ADERegistry. Upon approval and success-
ful connection, a separate heartbeat is established between
the servers.

Heartbeats provide the foundation for failure detection
and recovery that can be exploited to build rudimentary
“self-awareness” into the system. Both ends of the connec-
tion monitor the heartbeat: the sending component receives
an error if it cannot “check-in”, while the receiving com-

ponent periodically confirms heartbeat reception and times
out if none has arrived. A non-registry ADEServer uses
heartbeat signals to determine the status of connected com-
ponents; that is, whether the services of an external compo-
nent remain available or whether reconnection is required,
possibly altering normal function or relaying notice of the
failure to other connected components. An ADERegistry,
on the other hand, uses this information to determine the sta-
tus of server operation; that is, whether a server exists and
is executing properly or whether the server needs recovery.

For instance, referring to Figure 2, the “Action Interpreter
and Excecution” component (left column) is connected to
both the “Speech Recognition” server (right column) and the
“Robot” server (middle column). Heartbeats sent from the
action interpreter confirm the availability of services, even
when they are not being used. All three servers are reg-
istered with the ADERegistry (center column), sending
heartbeats that indicate their continued operation. During
execution, verbal commands from the user that are recog-
nized (e.g., “Move forward”) are interpreted and result in a
motor command sent to the robot. Now consider the case
where “Laptop-2” is disconnected from the network: the
speech recognition component fails, thereby rendering the
robot unable to understand commands. The interpreter will
be unable to send its heartbeat, triggering attempts at re-
connection and, for safety reasons, reacting to the error by
sending a command to the robot that stops the motors. At
the same time, the ADERegistry detects the failed up-
date and can initiate diagnostic and/or recovery procedures
(which may result in migration of the component to another
host). Upon recovery of the speech recognition component,
it re-registers and once again becomes available; the inter-



− Data Wire
− Network

− Data and Heartbeat

− ADEServer
− Heartbeat Only

− BatteryBa
− Wheel EncoderW

− Bumper DeviceBu

− Motor DeviceMo
− Laser DeviceL

Sp − Speakers

C − Camera Device
Mi − Microphone

− Sonar DeviceSo

Sp

Speech Production

Mi
Speech Recognition

L

Leg/Obstacle

Onboard PC

W Ba Bu SoMo

Robot

Logger

Mo

C

Sp

Ba

Bu

W

L
So

C

Mi

Sensors Processing Central Processing Processing Effectors
Perceptual Action

Localization
Mapping and

Sentence Parser

Mi

Affect Recognition

and Execution
Action Interpreter

ADERegistry

ADE Components

Hardware/Network

Abstract Agent Architecture

ADE Components

Laptop−1 Laptop−2

PX − Proximity

AA − Affect Appraisal

OR − Object Recognition

OJ − Object Detection

SO − Sound Detection

AR − Affect Recognition

LZ − Localization

HG − High−level Goals
GM − Goal Manager

VP − Visual Processing

TM − Task Manager
SP − Speech Processing

ME − Memory
RF − Reflexes

MC − Motion Control

OT − Object Tracking

CC − Camera Control

SR − Speech Production

AS − Action Selection

AX − Affect Expression

− Architectural Link

SRAX

SO SP

PX OJ OR

PX RF MC

OJ

LZ

SO

GM

TM

AR

SP

RF MC

OT CC

AX

PX
AA

OR

HG

VP
SR

AS

ME

LZ

SP

AR AA

GMHG

ME AS

TM

Figure 2: A depiction of the DIARC architecture as implemented in ADE, distributed across three hosts.

preter automatically reconnects, turns the motors back on,
and the system is restored to full operation.

A novel feature of ADE is a reflective reasoning compo-
nent that is incorporated directly into the infrastructure to en-
hance the capabilities outlined above. In particular, the rea-
soning component allows the system to maintain a knowl-
edge base of “facts” about itself (e.g., active and uninstanti-
ated components, relationships among components, known
hosts and their properties, etc.). Furthermore, the knowl-
edge base can include rules (i.e., a “policy”) that refine the
reactions (e.g., reconnection and recovery) to changing con-
ditions; for instance, allowing an ADERegistry to use the
facts to reason about the recovery process. The registry can
consider the properties of the known hosts for component
relocation suitability. Potential hosts that cannot support a
component due to unsupported hardware requirements are
filtered out and the remaining possibilities are ordered using
the facts about the hosts and some measure of preference
(e.g., the host with the fastest processor, lowest CPU load,
or some combination of qualities). Continuing the exam-
ple above, the registry can determine that speech cannot be
recovered on the robot, which lacks a microphone and so
relocates it to “Laptop-1”. Now assume that the network in-
terruption was temporary; even upon restoration, the policy
may determine that the failed component should be recov-
ered on a different host, e.g., if the system load of “Laptop-
1” is less than that of “Laptop-2”.

Thus far, only infrastructure mechanisms have been de-

scribed. However, the infrastructure can also be closely inte-
grated with the functional architecture. One example, given
above, is the potential of one component to relay information
to another (the interpreter shutting off the robot’s motors).
Another possibility is to use an alternate component that
switches modalities; rather than require speech recognition,
the action interpreter may determine that keyboard input is
sufficient and recovery may consist of starting a “Keyboard
Input” server (not shown in the figure). An even more in-
tegrated response might be the instantiation of a completely
new goal–the interpreter may decide that its current task is
no longer feasible and choose a totally different goal (e.g.,
go to the robot maintenance area for repair).

Perceptual Learning

The visual perception system is composed of two main com-
ponents: a long-term memory and a short-term memory.
The long-term memory system allows the robot to associate
the scale-invariant feature transformation (SIFT) keypoints
of an object with a specified token, thus learning the object.
Unlike many learning techniques, including Haar cascades,
SIFT keypoints can be learned from a single training image,
in a relatively short period of time (on the order of a few
seconds, depending upon the resolution of the image and the
available computing power). The ease and speed of training
allows the robot to learn arbitrary objects during runtime.
This is accomplished in the following manner: an individ-
ual holds up an object to the camera and specifies a token



Figure 3: Left: Unprocessed training (top) and scene (bottom) images. Center: SIFT points located during individual process-
ing. Right: SIFT point matches detected when comparing the two images.

(with help from the voice natural language processing sys-
tem), the visual system then determines the SIFT keypoints
of the frame and adds an entry into a database, which asso-
ciates the token with the keypoints, allowing for subsequent
retrieval. This database serves as the system’s visual long-
term memory, as it can be saved and restored on subsequent
runs, allowing the system to “remember” objects it has iden-
tified during earlier interactions.

The other component of the vision system’s two-level
storage scheme, visual short-term memory, is used as work-
ing memory for currently or recently perceived objects. In
visual short-term memory, data from the laser rangefinder
and two cameras are combined to build a model of the peo-
ple and objects surrounding the robot. The system is able
to detect and track people as they move about in the envi-
ronment. The location of a person is determined by com-
bining a pair of legs (determined by the laser rangefinder)
with a face. Face detection is performed using the combi-
nation of a hierarchical swarm system and a Haar cascade.
The Haar classifier is used to constrain the region in which
the swarm search is performed (i.e., only look for facial fea-
tures in face regions). The lower level swarms detect facial
features (specifically two eyebrows and a mouth), and the
higher level swarms define the geometric relationship be-
tween these features. The combination of the two techniques
allows for a higher framerate (as the Haar cascade update
need not be performed every cycle) and better tracking (as
the swarms are less sensitive to changes in facial orienta-
tion).

Object recognition is performed by capturing a frame of
the scene, determining its SIFT keypoints and the perform-
ing a least-squared regression between the object(s) in the
database (see Figure 3). If a sufficient number of keypoints
are found between an object in the database and the frame

just captured, it is possible to conclude with a fair degree of
certainty that the robot is “seeing” the object. The system is
thus able to answer queries (again with the help of the nat-
ural language subsystem) such as: “Do you see an X?” and
“What do you see?” Since the robot has two cameras, it is
possible to determine the three-dimensional location loca-
tion of such objects (combined with the height of the robot,
the position of the pan-tilt unit and the distance between the
two cameras). While this position is not extremely precise,
it is sufficient for the system to determine spatial relation-
ships between the objects. This allows the robot to answer
more interesting queries, such as: “Is X to the left of Y?” or
“What is the spatial relationship between X and Y?” Finally,
the system is able to answer queries from the perspective of
another person or object in the robot’s short-term memory.
This allows the robot to answer questions such as: “From
the perspective of X, is Y to the left of Z?”

Incremental Natural Language Processing
The robot interacts with humans by using spoken natural
language in the course of executing conversation and action
scripts. The natural language processing subsystem uses a
novel Parallel Incremental Processing (PIP) architecture to
interpret the phonetic, syntactic, and semantic levels of utter-
ances spoken. In this architecture, each word in an utterance
is phonetically interpreted and then simultaneously syntac-
tically analyzed and semantically understood as soon as it is
available to the system.

The interaction between the action interpreter and the PIP
natural language module is performed using the getBindin-
gOfType method. The action interpreter, based on its current
state, requests a specific type of binding from the discourse
model. In our Planetary Exploration Interaction, this is most
commonly a binding of type “action”. The discourse model



then seeks to interpret incoming utterances with the intent of
finding an action to be executed. The action interpreter can
then later check to see if the request has been fulfilled, and
to retrieve the resulting binding. This mechanism could be
used in other ways, however. For example, in a “robot bar-
tender” scenario, the action manager could request a bind-
ing of type “drink”, in the hopes of retrieving a drink request
from its customer. It is important to note that several binding
requests can be maintained simultaneously, so a request for
a drink would not invalidate any attempts to give the robot
commands, for example.

The first level of interpretation within the natural language
processing subsystem is performed by a modified version
of the CMU Sphinx4 natural language interpreter, which
translates the phonetic utterance, word-by-word, into strings
of words recognizable by the incremental discourse model.
These translations are limited by the addition of a regular
grammar, which is put into place by the action interpreter
when an interaction is started. The addition of this grammar
allows the natural language processing subsystem to “force”
an utterance to be heard as an appropriate string of words,
and to ignore utterances that are not in the grammar, signif-
icantly increasing the understanding of terms in a noisy en-
vironment. Furthermore, the grammar is easily and quickly
changed during runtime, so if the robot finds that it is enter-
ing a new context it can change the grammar accordingly in
order to improve recognition and understanding.

Once a word is phonetically determined, a structure is re-
trieved from memory containing possible semantic mean-
ings of the words and their related syntactic constraints.
These constraints are similar in nature to the synsets in
WordNet (Miller 1995) and verb senses in VerbNet(Kipper,
Dang, & Palmer 2005), but are specifically tailored to the
action primitives used by the action interpreter. That is, the
robot’s understanding of the semantic meaning of a com-
mand is the action interpreter primitive associated with that
command.

As each word is added, the syntactic and semantic con-
straints associated with each of its possible semantic mean-
ings are compared with the constraints of those sentence in-
terpretations that are still currently viable. Each later word
then selects only those sets of its own syntactic and semantic
constraints which do not conflict with the existing interpre-
tations, and additionally removes those possible interpreta-
tions which conflict with all of its own possible interpreta-
tions.

We include below (edited for space) a trace of the system
processing the phrase ”move to the left”. Different syntac-
tic/semantic possibilities are separated vertically, connected
by a vertical pipe (”|”). Parentheses (”()”) indicate optional
but likely additions, and triangle brackets (”<>”) indicate
the syntactic role of future arguments.

As the word ’move’ is understood by the system,
it generates three semantic/syntactic frames. The first
is associated with the action manager script ”start-
move¡direction¿:?extent”, and requires a following direction
and an optional extent. The second is associated with the ac-
tion script ”startmove:¡location¿”, and requires a preposition
and a location. As more words are processed, the system

further and further constrains the possible options. When
the utterance ends, only one possible interpretation remains,
so the action manager is passed that action command.
Word Processed: move, type Verb. Constraints:

|Move (<preposition:destination> <article:definite>)

| <direction>(<extent>)

| (startMove<direction>:?extent)

|

|Move <preposition:destination> <location>

| (startMove:<location>)

|

|Move <object> <preposition:destination> <location>

| (moveObject:<location>)

Possible Actions:

startMove, moveObject

Word Processed: to, type preposition:destination.

Constraints:

|Move to <article:definite> <direction> (<extent>)

| (startMove<direction>:?extent)

|

|Move to <location>

| (startMove:<location>)

Confirmed Action: startMove

Word Processed: the, type article:definite.

Constraints:

|Move to the <direction> (<extent>)

| (startMove<direction>:?extent)

|

|Move to [the <noun:inanimate>]

| (startMove:<location>)

Confirmed Action: startMove

Word Processed: left, type direction modifier.

Constraints:

|Move to the left (<extent>)

| (startMoveLeft:?extent)

Confirmed Action: startMove(Left)

The interpretations generated by the system are all ranked
by expected likelihood, so that there is always a “most
likely” interpretation (the top one in the trace) of a given
utterance. If more than one possible interpretation is avail-
able by the end of the utterance, the system either chooses
the most likely interpretation, or generates an appropriate
question.

Similarly, if only a single interpretation of the words is
found by the end of the utterance, but a constraint is still
unfulfilled at that point, the system generates a question re-
questing that type. For example, the word “look” generates
only one semantic/syntactic interpretation. It has the mean-
ing “look:¡direction¿?extent” (extent optional). If no words
follow that indicate a direction, the system will generate the
contextual question “which direction?”. A binding of type
“direction” will then be requested through the existing get-
BindingOfType mechanism. If the following utterance is
simply “left”, it will be recognized as a direction binding,
and passed back to fill the required slot, allowing the robot
to begin its look. Because binding requests do not inter-
fere with one another, a response of “look right” will still
be recognized normally. In this case, the temporary binding



request for a “direction” will be invalidated, since its context
is no longer valid.

The Goal and Task Managers
Action selection and execution in this implementation of DI-
ARC are performed by the Action Manager and the Action
Interpreters it controls. The Action Manager’s role is to in-
stantiate new processes when goals are added and mediate
between goals when conflicts arise. Each new high-level
goal is assigned to an Action Interpreter, which executes a
script that satisfies that goal. Scripts can be viewed both
as encoding situational knowledge of how certain common
interactions tend to proceed, and as encoding procedural
knowledge that the robot can employ as steps in a plan. Var-
ious control constructs (e.g., conditionals, loops, etc.) are
available to script writers. This allows the system to, for ex-
ample, branch on the success or failure of an action to react
appropriately. Scripts can call other scripts (i.e., instanti-
ate subgoals and and perform the actions required to satisfy
them), which execute in the same context as the parent script
(i.e., a script invocation does not lead to the instantiation of
a new Action Interpreter).

As a trivial example, the following script (activated
from a higher-level script as move-to-transmit self
data location3) instructs the robot to return to the
transmission location location3 (previously identified
and stored in a map as part of long-term memory), check
to make sure the signal strength remains sufficient for suc-
cessful transmission, and transmit the data:
move-to-transmit ; transmit data at xmit-pt

robot

data

xmit-pt

move-to robot xmit-pt ; go to location xmit-pt

verify-signal robot ; is signal strong enough?

transmit robot data ; transmit data

The action interpreter substitutes the arguments passed for
each of the roles in the script and begins executing the first
event. A behavioral primitive like move-to then has a par-
ticular meaning to the robotic system. In this case, the ac-
tion interpreter passes the action on to the navigation sys-
tem, which interprets it as a command to move the robot to
the coordinates (x, y) of xmit-pt. The high-level navi-
gation system generates a plan which translates the action
into commands for the low-level navigation system, eventu-
ally causing the robot to move in a particular direction, if
possible (e.g., it will not move there if obstacles block the
location, although it will attempt to move around obstacles
that obstruct the path to the final location).

Failure recovery actions can be encoded directly in
the scripts. For example, if the signal strength at
the transmission point no longer exceeds the minimum
threshold, transmitting is pointless (and may be costly).
In the script above, verify-signal fails, which in
turn causes move-to-transmit to fail, avoiding the
transmit step. The calling script can detect the failure of
move-to-transmit and react appropriately (e.g., find-
ing a human to ask for further instructions, or initiating a
search for another transmission point).

The Action Manager periodically updates the priority of
each goal. These goal priorities are used to determine the
outcome of conflicts between Action Interpreters (e.g., re-
source conflicts, such as when each wants to move in a dif-
ferent direction). A goal’s priority is determined by two
components: the importance and the urgency. The impor-
tance of a goal is determined by the cost and benefit of sat-
isfying the goal. This utility is scaled by the urgency com-
ponent, which is a reflection of the time remaining within
which to satisfy the goal:

Urg =
Timeelapsed

Timeallowed
× (Urgmax − Urgmin) + Urgmin,

(1)
where Urgmax and Urgmin are upper and lower bounds on
the urgency of the goal. The goal’s priority, then, is simply:

Priority = (Benefit− Cost)× Urg. (2)

This formulation allows goals of lower importance, which
would normally be excluded from execution in virtue of their
interference with the satisfaction of more important goals, to
be “worked in” ahead of the more important goals, so long
as the interrupted goal has sufficient time to satisfy the goal
after the less important goal completes (i.e., so long as the
urgency of the more important goal is sufficiently low).

The Robot at the Competition
The system described above is well-suited to perform in
many of the categories of the Human-Robot Interaction
Competition. However, due to hardware failures (see be-
low), we were able to successfully participate in only two
of the seven: Category 3 (Natural language understanding
and action execution) and Category 4 (Perceptual learning
through human teaching and subsequent recognition and cat-
egorization of people, objects, locations or actions).1 This
section describes the robot’s performance for each of these
tasks.

Natural language understanding and action execution.
This category includes following requests from humans to
move in particular ways; getting a requested item from some
other person; understanding descriptions of directions and
applying them to lead other people to specific places; etc. It
was here that we had the most success, having been awarded
the technical award for this category.

The natural language processing and action execution
modules of the robot performed approximately at the level of
expectation, with one primary failure: high levels of human-
voice noise defeated our noise-reduction attempts, and made
it difficult for the robot to perform even simple natural lan-
guage tasks on the exhibition floor. We were able to mit-
igate this difficulty to some extent by forcing the robot to
interpret each sound it heard as the closest reasonable utter-
ance within its regular grammar, but this unfortunately an

1See http://www.nd.edu/˜mscheutz/humanrobotinteraction.html
for an overview of all categories.



increase in the frequency with which the robot would incor-
rectly classify noise as a valid utterance. In environments
with relatively low human-voice noise, the robot was able to
recognize commands via human speech, interpret them, and
carry out an appropriate action.

Many of the collaborative tasks prepared for the competi-
tion involved movement on the part of the robot. However,
a catastrophic failure of the robot base left the robot without
onboard computer or drive motors. This failure limited the
collaborative abilities the robot could demonstrate to head
movements and verbal responses to questions from its per-
ceptual learning engine. While it performed reasonably well
at this limited set of tasks, the overall demonstration was not
representative of the robot’s total skill set.

Specifically, a demonstration was prepared of a collab-
orative exploration task in which the human team member
would direct the robot to locate optimal transmission loca-
tions, as indicated in a map of simulated “signal strengths”
detectable only to the robot. This collaboration required the
robot to understand natural spoken language and respond ap-
propriately (e.g., reporting the local signal strength or mov-
ing in the direction indicated). In parallel with this collab-
orative task, the robot would independently pursue a goal
of locating certain (previously learned) objects placed in the
environment. The object here was to catalog their locations,
demonstrating the robot’s ability to perform multiple tasks
concurrently.

Perceptual learning through human teaching and subse-
quent recognition and categorization of people, objects, lo-
cations or actions. This category includes remembering
the face of a person; learning of a location in the environ-
ment and being able to remember and recognize it; learning
what it means to “turn around” and being able to repeat it;
learning what an object like a Coke can looks like and rec-
ognizing it among other different objects; etc.

Our proposed perceptual learning system performed
rather well at the conference. It was able to visually de-
tect and track (using dual fire-wire cameras and a pan-tilt
unit) a number of people in its surroundings. It had some
difficulty performing this behavior in extremely crowded
surroundings, though this could likely be improved by aug-
menting the leg tracking code. It was able to learn objects
and identify them with a relatively high success rate. Most
of the shortcomings in this area were due to problems with
the SIFT algorithm. SIFT works very well on objects with
a high number of distinguishable characteristics. However,
it has trouble on more “plain” objects, or objects that have
few easily distinguishable patterns (e.g., angles). The sys-
tem also had some trouble with objects that were so far away
they lacked detail, due to lack of camera resolution. The in-
tegration of the visual system with the other systems, partic-
ularly the natural language recogntion system, worked well
and provided an effective interface for interacting with the
perceptual learning subsystem.

Related Work

Spartacus (Michaud et al. 2005), the Laborius project’s en-
try in the Human-Robot Interaction event, handled the un-
structured environment of the conference quite gracefully.
Most impressively, the speech recognition issues that contin-
ually challenge our system, Rudy, are non-issues for Sparta-
cus. The ability to extract voices even in noisy conditions
is essential to natural HRI, and will need to be addressed in
our platform.

Washington University’s Lewis (Smart et al. 2003) in-
corporates many features similar to those of our system. In
particular, Lewis’ software framework includes mechanisms
for graceful failure recovery, similar in some ways to the
infrastructure mechanisms for recovery provided by ADE.
In addition, some of the experiments being conducted us-
ing Lewis are similar in spirit to some conducted in our own
lab. Lewis has been used for experiments based on a scav-
enger hunt in which a human subject interacts with the robot
to locate objects of interest (Heckel & Smart 2006); this is
similar in many ways to a planetary exploration task used
in some of our experiments, although at this point Lewis is
teleoperated for their experiments.

Grace and George (Gockley et al. 2004) and Hermes
(Bischoff & Graefe 2003) are probably the closest to our
project in terms of being capable of natural language inter-
actions with humans and integrating higher level delibera-
tive components in the underlying distributed implementa-
tion of the robotic architecture (e.g., with respect to delib-
erative modules, action interpretation, etc. the modular de-
sign of Hermes is closer in spirit to our proposed MAS sys-
tem than the somewhat “adhoc” integration of components
in Grace and George). Yet, both architectures lack the in-
trinsic involvement of affect mechanisms in the architecture
and many of the infrastructure mechanisms provided by a
MAS like ADE, both of which are characteristic features of
DIARC.

Conclusion

DIARC supplies a variety of interaction capabilities and
mechanisms to ensure robust system operation, making it
a good choice as an experimental testbed for research into
human-robot interaction. Although hardware failures pre-
vented the robot from demonstrating all of its abilities, suc-
cessful participation in the “natural language understanding
and action execution” and “perceptual learning” categories
of the Human-Robot Interaction event at the 2006 AAAI
Robot Competition even in the face of these catastrophic
failures serves as evidence of DIARC’s promise as an ar-
chitecture for HRI. We have successfully used the architec-
ture for a variety of experiments with human subjects, albeit
in the controlled environment of the laboratory. Although
a great deal more work is required before any present ar-
chitecture is able to provide natural human-robot interaction
ability, DIARC is a start at addressing some of the critical
issues facing researchers in HRI.



References
Bischoff, R., and Graefe, V. 2003. Hermes – an intelligent
humanoid robot, designed and tested for dependability. In
Experimental Robotics VIII, Proceedings of the 8th Inter-
national Symposium ISER02.
Gockley, R.; Simmons, R.; Wang, J.; Busquets, D.; DiS-
alvo, C.; Caffrey, K.; Rosenthal, S.; Mink, J.; Thomas, S.;
Adams, W.; Lauducci, T.; Bugajska, M.; Perzanowski, D.;
and Schultz, A. 2004. Grace and george: Social robots at
aaai. In AAAI 2004 Mobile Robot Competition Workshop
(Technical Report WS-04-11).
Heckel, F., and Smart, W. D. 2006. Non-speech aural com-
munication for robots. In to appear in Proceedings of the
2006 AAAI Fall Symposium.
Kipper, K.; Dang, H.; and Palmer, M. 2005. Class-based
construction of a verb lexicon. In Proceedings of AAAI
2000.
Michaud, F.; Brosseau, Y.; Ct, C.; Ltourneau, D.; Moisan,
P.; Ponchon, A.; Raevsky, C.; Valin, J.-M.; Neaudry, .; and
Kabanza, F. 2005. Modularity and integration in the de-
sign of a socially interactive robot. In Proceedings IEEE
International Workshop on Robot and Human Interactive
Communication.
Miller, G. 1995. Wordnet: A lexical database. Communi-
cations of the ACM 38(11).
Scheutz, M.; Schermerhorn, P.; Middendorff, C.; Kramer,
J.; Anderson, D.; and Dingler, A. 2005. Toward affective
cognitive robots for human-robot interaction. In AAAI 2005
Robot Workshop.
Scheutz, M.; Schermerhorn, P.; and Kramer, J. 2006.
The utility of affect expression in natural language inter-
actions in joint human-robot tasks. In Proceedings of the
IEEE/ACM 1st Annual Conference on Human-Robot Inter-
action.
Scheutz, M. 2006. ADE - steps towards a distributed de-
velopment and runtime environment for complex robotic
agent architectures. Applied Artificial Intelligence 20(4-5).
Smart, W. D.; Dixon, M.; Melchior, N.; Tucek, J.; and
Srinivas, A. 2003. Lewis the graduate student: An entry in
the aaai robot challenge. In AAAI Mobile Robot Competi-
tion 2003: Papers from the AAAI Workshop.


