
March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

International Journal of Semantic Computing
c© World Scientific Publishing Company

NATURAL LANGUAGE INTERACTIONS IN
DISTRIBUTED NETWORKS OF SMART DEVICES

PAUL SCHERMERHORN and MATTHIAS SCHEUTZ

Human-Robot Interaction Lab, Indiana University
Bloomington, IN 47406, USA

{pscherme,mscheutz}@indiana.edu

http://hri.cogs.indiana.edu

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

Advances in sensing and networking hardware have made the prospect of ambient in-

telligence more realistic, but the challenge of creating a software framework suitable for
ambient intelligence systems remains. We present ADE, the Agent Development Envi-

ronment, a distributed agent infrastructure with built-in natural language processing

capabilities connected to a sophisticated goal manager that controls access to the world
via multiple server interfaces for sensing and actuating devices. Unlike other ambient

intelligence infrastructures, ADE includes support for multiple autonomous robots in-

tegrated into the system. ADE allows developers of ambient intelligence environments
to implement agents of varying complexity to meet the varying requirements of each

scenario, and it provides facilities to ensure security and fault tolerance for distributed

computing. Natural language processing is conducted incrementally, as utterances are
acquired, allowing fast, accurate responses from system agents. We describe ADE and

a sample of the many experiments and demonstrations conducted using the infrastruc-

ture, then an example architecture for a “smart home” is proposed to demonstrate ADE’s
utility as an infrastructure for ambient intelligence.

Keywords: Ambient Intelligence; Natural Language Processing; Robotics.

1. Introduction

Imagine the following scenario: you return home after a long day at work, and walk
into your house, a “smart home” equipped with ambient intelligence where different
software “agents” represent different parts of the house. As you enter the house,
the hallway agent recognizes you (based on visual, auditory, and other cues) and
greets you (“Hello Dave, I hope you had a good day at work.”). The agent begins
tracking your movements through the house (using a multi-modal “person tracking”
system) to determine where you will go first. Once it becomes clear that you are
heading to the living room, the living room agent consults a knowledge base
(for your previous actions when going to the living room upon returning home)
and determines that you are likely to want to watch the news while the kitchen

1



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

2 Paul Schermerhorn and Matthias Scheutz

agent begins heating the evening’s dinner, so it passes that information on to the
kitchen agent. The living room agent turns the lights and television on and
changes the channel to the one with your favorite news show (again, based on
information stored in the knowledge base). Meanwhile, the kitchen agent asks
you what you would like for dinner. Once you express your preference, the kitchen

agent verifies that the appropriate food is on hand and begins preparations. Then
you decide you’d like a drink: “I’d like a scotch, please.” The living room agent

handles the request, but also relays it to the kitchen agent, which, based on past
experience, knows that it is likely that you will want dinner delayed (had you asked
for wine, dinner preparations would have continued uninterrupted). The kitchen

agent asks, “Dave, would you like me to hold off on heating dinner for a while?” You
agree that a half-hour delay would be nice and settle in to watch the news, putting
dinner out of your mind until a little over 30 minutes later when the kitchen agent

informs you that the meal is ready.
This scenario could be dismissed as straight from science fiction, requiring a

great deal of work in multiple areas to approach reality. However, the feasibility
of ambient intelligence has been steadily increasing especially with advances in
hardware [12]. Miniaturization of sensors and actuators, as well as the increasing
presence of smart devices, for example, provide opportunities for “ubiquitous com-
puting” environments. Embedded computers can be found in virtually every area
of the modern household, from washing machines to kitchen appliances, televisions
to automobiles. Similarly, advances in networking, perhaps especially wireless tech-
nologies (e.g., Crossbow and ZigBee devices), open the possibility of bringing all
these elements together into a coherent system capable of responding to and even
anticipating users’ needs and desires in a variety of settings. Hence, it is clear that
sensing and networking technology has already advanced to the point at which the
scenario above could be realized.

What about software technology? Clearly, advances need to be made in the arti-
ficial intelligence for the reasoning processes described in this scenario. Approaches
such as case-based reasoning [22] attempt to bridge that gap—the present work
does not claim to solve the reasoning problem. However, in addition to the reason-
ing problem, two important characteristics of the “smart home” in this scenario
stand out: that various components are tightly interconnected by an advanced dis-
tributed computing infrastructure, and that most interaction with the human is
done via natural language dialogue. Hence, to realize the smart home scenario, we
need a software infrastructure that combines distributed computing with advanced
natural language processing capabilities. There are a number of projects focused
on addressing the software needs of ambient intelligence and ubiquitous computing
(e.g., [16, 11, 4]), but none of these attempts to integrate NLP in a way suitable
for ambient semantic computing. Other projects focus on multi-modal natural lan-
guage interactions [14, 13], however, they do not provide support for integration
of robotic agents in the architecture, an addition that will only become more im-
portant as the presence of household robots increases. We present here the Agent



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 3

Development Environment (ADE), a software infrastructure package that provides
the connectivity and fault-tolerance required for ambient intelligence and features
integrated incremental NLP and other components required for complex tasks and
natural language interactions with humans. In the rest of the paper, we will pro-
vide an overview of ADE and how it can be used to support ambient semantic
intelligence. Section 2 provides background, motivating the need for sophisticated
software support for ambient intelligence. In Section 3, we detail the requirements
that must be met to support ambient intelligence and discuss how ADE addresses
them. An example architecture is presented in Section 4. The paper closes with
some discussion in Section 5 and concluding remarks in Section 6.

2. Background

One motivating factor behind the smart home concept is the desire to be able to
assign simple tasks to “the system” that would normally require at least minor
intervention on the part of the user. Hence, many components of the smart home
architecture will have actuating capabilities (e.g., changing the temperature, select-
ing a CD to play) although some will be simply sensors. While most agents in an
ambient intelligence system are stationary (again, think of a home with multiple
smart appliances and other devices), support for mobile agents will allow for useful
expansion of system capabilities [25]. Mobile robots could serve as room cleaners
(e.g., dispatching the sweeper-bot to vacuum the floor), monitors for the elderly
(allowing for increased autonomy while still keeping an eye on vulnerable persons),
or the ever-popular “robot waiter,” bringing a drink from the refrigerator [30, 23].

The software required to realize ambient intelligence systems must provide a
solid infrastructure of mechanisms for programming and controlling large, complex
networks of heterogeneous devices (e.g., [1]). The infrastructure must enforce secu-
rity and privacy policies if users are to trust the system to operate sensitive aspects
of their homes; the system is likely to have access to a great deal of personal infor-
mation about the user, including preferences (e.g., for movies or TV shows), history
(e.g., food and drink requests), and passwords for accessing remote resources. Audio
and video streaming capabilities also raise security concerns with the possibility of
eavesdropping by tapping into the streams. The infrastructure also must implement
mechanisms for fault tolerance, to ensure that the failure of some component in one
area of the system does not cause cascading failures throughout the system. Finally,
the system needs to allow for easy, intuitive interactions for control and inquiry;
people are unlikely to use a system that provides a tedious, complex interface (e.g.,
requiring the user to be at a central location to interact via keyboard or mouse).

We believe that natural language interactions will thus constitute the core inter-
face to complex systems such as “smart” homes, given that verbal communication
comes most naturally to humans, despite the challenges NLP poses for computer sys-
tems. Some system components, such as software agents representing the interfaces
to rooms in the above scenario, will have NLP capabilities (i.e., be able to respond



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

4 Paul Schermerhorn and Matthias Scheutz

to informational queries—“How many apples are there in the refrigerator?”—or ini-
tiate actions based on commands—“Please increase the volume by 10%”). In order
to provide the level of responsiveness (e.g., confirming commands, or asking for clar-
ification) that people expect in verbal interactions, incremental NLP, in which the
intelligent agent begins processing the human’s sentence before it is complete, will
be essential [7]. Much of the time, human interlocutors have already determined the
meaning of a spoken sentence even before it is complete; any delay for NLP after
the utterance will detract from the naturalness of the interaction. Incremental NLP
will also allow the agent to begin carrying out requests (e.g., “Could you lower the
blinds, please”) before the request has been completely uttered.

All these requirements seem to suggest a complex system that handles natural
language processing, knows user preferences, and has a large set of skills that can be
applied to useful real-world actions. The problem of designing such a system can be
simplified by decomposing it into several more tractable subsystems that interact
with each other. Instead of a single monolithic entity (a là the computer on Star
Trek), a successful approach to ambient intelligence will decompose a system into
multiple distributed components (“agents”) with multiple intelligences of varying
degrees of sophistication. The ambient intelligence system then is really a collection
of these different “cognitive agents” of varying complexity combined with various
low-level servers that do not have any “cognitive capabilities” per se. Different sub-
systems (e.g., different rooms in a house) are represented in the architecture by
different entities that are specialized to the kinds of tasks and requests that are
normally salient to their environments. For example, with regard to NLP, the prob-
lem of understanding can be greatly simplified by limiting the language domain to
fit the scenario. Similarly, not all capabilities will be needed in all scenarios (e.g., the
bathroom agent does not necessarily need to understand how to begin preparing
dinner, it only needs to know how to pass the request on to an agent that does, the
kitchen agent).a Finally, it is probable that different agent representations will be
better-suited to different scenarios, and the multi-agent approach will facilitate this
customization.

A number of projects have focused on one or more of the aspects described above.
The SmartKom architecture provides infrastructure support for multi-modal (e.g.,
speech, gesture) dialogue, utilizing a large number of components to interact with
humans [14]. SmartKom, based on the distributed integration platform MULTI-
PLATFORM [13], has been demonstrated in a variety of scenarios, including the
SmartKom-Home interface to home entertainment systems [24], with functionality
similar to the multimedia-related examples presented here (i.e., requests for informa-
tion about upcoming shows, etc.). SmartKom is a mixed-initiative architecture that

aClearly, the system must determine where to send the request, however the topic of the current

paper is the infrastructure, not the reasoning ability. The infrastructure needs to provide mecha-
nisms for forwarding messages when it is determined that such forwarding is required. How that

determination is made is beyond the scope of this paper.



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 5

addresses many of the NLP-related challenges posed by the smart home scenario.
The ADE infrastructure seeks to solve those problems, but also includes support
for multiple autonomous robots integrated into the smart home architecture.

3. The ADE Infrastructure

In general, ambient intelligence systems will require infrastructures capable of sup-
porting controlled access to different kinds of sensitive information (e.g., to prevent
illicit access to personal preferences or data stored within the system or listening in
to phone conversations, etc.), access to a variety of sensing devices, and interfaces for
the effective control of actuating devices found in the system. Moreover, refined in-
ternal monitoring and supervision tools are needed to detect failures of components,
initiate recovery from failure, and ensure the long-term autonomous operation of
the system. Finally, for natural communication interactions with humans, sophis-
ticated analysis and reasoning tools are needed that will integrate a great variety
of current and future AI technology (from natural language processing and under-
standing, to machine translation, hypothetical reasoning with uncertainty, various
forms of machine learning, and many others). What kind of system can provide the
necessary infrastructure for the implementation of such an autonomous intelligent
distributed application?

The natural place to look for an answer would be multi-agent systems (MAS),
which are concerned with providing an agent-based infrastructure for distributed
computing. Agents in the context of MAS, call them “MAS-agents,” are compu-
tational processes that implement the autonomous, communicating functionality
of a distributed application [9]. While many MAS provide the necessary tools to
implement secure, fault-tolerant distributed systems as determined by the “MAS-
architecture” (i.e., the overall blueprint of the multi-agent system), they do not
provide support for the implementation of functional components of the architec-
tures of their constituent MAS-agents. Yet, support for components like memories,
reasoning, planning, or learning engines, etc., is likely going to be necessary for the
implementation of the many different kinds of tasks described above.

This kind of support is typically found in single agent systems (SAS), which
focus on the organization of functional components in the “SAS-architecture” for
intelligent agents. These intelligent agents, call them “SAS-agents,” are typically
situated in some environment and are capable of flexible autonomous action in order
to meet their design objectives [15]. However, SAS are not concerned with highly
parallel processing environments with real-time requirements, having been largely
developed for single CPU architectures. Hence, they do not provide the kinds of
distribution mechanisms to preserve the parallelism that their architectures might
allow for, nor do they provide mechanisms for controlled, secure access to parts of
the architecture.

We believe that a synthesis of both kinds of systems is necessary, which can pro-
vide “computing infrastructure plus intelligence,” i.e., the support for SAS agent



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

6 Paul Schermerhorn and Matthias Scheutz

architecture development together with the infrastructure necessary for the interac-
tion of MAS components. Our ADE framework for embodied real-time systems has
been specifically developed as a MAS system infrastructure that allows for “MAS-
agents” to be designed with “SAS-architectures” (e.g., the cognitive architecture
SOAR [21]), where the components of these “SAS architectures” (e.g., rule-base,
working memory, etc.) are themselves “MAS-agents.” The main utility of such an
infrastructure for ambient intelligence systems is that it allows (1) for a secure,
fault-tolerant, large-scale distribution of the system at the level of architectural
components of SAS-agents, (2) for the implementation of sophisticated reasoning
tools in existing cognitive frameworks, and (3) for features resulting from inte-
grating SAS and MAS that will significantly improve the long-term operation and
maintenance of such systems.

To be able to distribute architectural components and implement them as MAS-
agents, ADE, the Agent Development Environment [2], provides a basic network
infrastructure of connected ADE server objects, with each server able to obtain ref-
erences to other servers in the system that serve as remote representations of the
resources offered by the remote server. The client-server subsystem is then used
to implement various kinds of ADE MAS-agents, i.e., autonomous computational
processes consisting of one or more clients and/or a server that communicate with
other MAS-agents in the system (via client-server connections). The base ADE
server provides the necessary run-time infrastructure and environment for derived
ADE server MAS-agents, which implement the interfaces to the sensors, actuators,
and computational resources of the ambient intelligence system. ADE defines sev-
eral special MAS-agents as part of the MAS-architecture of an ADE system. For
example, there are ADE registry MAS-agents that implement a system-wide yellow
pages service, allowing other MAS-agents to register and advertise their services.

The ADE server model was designed for potentially vulnerable distributed dy-
namic multi-OS computing environments, where connections between any two hosts
participating in the ADE system cannot be assumed to be secure nor present
throughout the lifetime of an application. Consequently, mechanisms are required
for ADE servers to protect communicated information, detect failures of connec-
tions, and recover from failure. These features are discussed in some detail below.
Further details of the ADE system can be found in [19, 28, 3, 17, 18]; [19] in partic-
ular provides a comparison with many other agent development environments.

3.1. Security Features

ADE’s security features rely in part on the Java security model.b All new ADE
servers must be derived from the base ADEServerImpl abstract class, which en-
capsulates all of the ADE-related bookkeeping and credentials out of reach of the

bOf course, sophisticated users intent on bypassing the protections described here could implement
a custom class loader to bypass, for example, private declarations. This is inherent to the Java

security model, not specific to ADE’s security features.



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 7

derived class by declaring these fields private. The superclass constructor makes
the connection to the ADE registry, which requires a valid username and password
to allow the server to register, thereby becoming part of the system.c

The ADE registry plays a key role in ensuring the security of the infrastructure.
All methods in the ADERegistryImpl class are declared final, so users cannot
bypass security methods by deriving a registry class and overwriting key methods.
The registry checks to see, based on the server’s credentials, whether it is allowed to
join the system. At that point, the server is allocated a dynamically-generated key
as part of the heartbeat, which is used both for security and fault-tolerance (see
below). All communication between a server and the registry must be accompanied
by that key, and verified against the registry’s own key in the acknowledgement.
Hence, even attempts to spoof heartbeat packets to access the registry will be
difficult, as the correct (dynamically-generated) key must be provided.

The ADE registry has access to some important information in the
ADEServerImpl via remote methods, which must be declared public. To protect
the sensitive data, these methods require the calling class to pass as its creden-
tial an instance of an ADERegistryImpl, which the ADEServerImpl verifies using
the isInstanceOf Java language primitive. Because the registry defines everything
as final, only a class instance matching the already-defined registry class will be
accepted as a valid credential.

When an ADE server needs a reference to another ADE server, it must contact
the registry with the request, providing its credentials as described above. If the
registry determines that the request is legitimate, it passes on the request to the
remote server. Each server can set its own local access control for users, using
usernames and passwords, to determine which other ADE servers should be allowed
to use it. When the remote server accepts the request, subsequent interaction is peer-
to-peer. A heartbeat is established between the two, including remote references
to the server objects. These references are kept private by the ADEServerImpl, so a
derived class does not have direct access to the remote resource. Instead, it is given
a reference to the heartbeat, via which remote calls can be made and checked for
access control by the ADEServerImpl. The servers exchange keys, ensuring that a
new client cannot simply join and acquire a reference to another server.

These security measures ensure that, if architectural components are imple-
mented in terms of ADE MAS agents, it will be possible to have very detailed
control of access to functional components (e.g., the subset of servers with access to
the parser component may be very different from the set given access to conceptual
long-term memory). Hence, even though someone could inspect the system and look
at the setup, that individual cannot examine internal states, request information,

cUsers are prevented (by means of a private variable that can only be set by the ADEServerImpl)

from bypassing these protections by instantiating an ADEServerImpl; instead, a derived class must

call (in its own Java Virtual Machine) the main method of ADEServerImpl, which is protected, and
therefore can only be called from a derived class. The main method then instantiates the derived

class via reflection, which can then call the superclass constructor.



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

8 Paul Schermerhorn and Matthias Scheutz

or make method calls without appropriate access rights. It is possible to build a
system in which components are visible, yet malicious users cannot get references
to them and thereby gain access to sensitive data. In an ambient intelligence envi-
ronment, for example, service personnel may be allowed access to the system and
to manipulate components relevant to their tasks without being able to gain access
to personal settings, user preferences, and sensitive data.

3.2. Reliability Features

The ADE registry provides the backbone of an ADE system; all components must
register to become part of the architecture. Hence, the registry is a key part of
system reliability. For this reason, an ADE infrastructure may contain multiple
concurrent ADE registries that mutually register with one another, providing both
redundancy and the means of maintaining distributed knowledge about the system.

All connected components of an implemented architecture (i.e., ADE servers,
ADE registries) maintain communication links during system operation, consisting
of periodic heartbeat signals indicating that a component is still functioning. An
ADE server sends a heartbeat to the registry with which it is registered. Similarly an
ADE server also sends heartbeat messages to each ADE component to which it has
a reference. The receiving component periodically confirms heartbeat reception; if
none arrive, the sending component receives an error, while the receiving component
times out. An ADE registry uses this information to determine the status of its
servers, which in turn determines their accessibility. Similarly, an ADE server uses
heartbeats to determine the status of its remote references, which determine if the
remote server’s services remain available.

Once a failure has been detected (via the heartbeat mechanism), the ADE in-
frastructure’s recovery mechanisms can allow the system to restore itself to a fully
running state. During the registration process, each ADE server provides informa-
tion about how it was invoked, including command-line parameters, working direc-
tories, etc. The ADE registry uses this information to connect to the remote host
(via a secure shell) and restart the Java process for that ADE server. In the case
of a catastrophic host failure, the registry also has the option to restart the server
on a different host. To support this functionality, each ADE server must inform the
registry of what resources it requires to function correctly (e.g., a microphone for
a speech recognition component) and each host must be defined in terms of the re-
sources it makes available. When a match is available, the server is restarted on the
new host. In some cases, it will not be possible to recover the failed server. When
that happens, the ADE servers with references to that lost component are informed
and can respond as appropriate (e.g., if the speech recognition component fails, the
user could be informed: “There is a problem with my speech recognition, so you
will need to use the keyboard interface to communicate with me.”). More detail on,
including experimental validation of, the reliability features described here can be
found in [17].



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 9

Fig. 1. A robotic platform for human-robot interaction (left) and its virtual representation in the
USARSim simulation environment.

3.3. Applications of ADE

ADE has been developed primarily for the development of robotic control architec-
tures. The system has been used with robots for several years in many experimental
and demonstration scenarios. In this section, we provide an overview of many of the
functional components that have been developed in ADE and are in current use in
our lab. Subsequent sections examine in more detail specific components of partic-
ular interest.

The robot architecture DIARC (the “distributed integrated affect cognition and
reflection” architecture) has been implemented in ADE, combining many of the
features described here. DIARC is specifically designed for social robots that need
to interact with humans in natural ways. It integrates cognitive capabilities (such
as natural language understanding and complex action planning and sequencing)
[32, 7, 6] with lower level activities (such as multi-modal perceptual processing, fea-
ture detection and tracking, and navigation and behavior coordination [33, 29]) and
has been used in several human subject experiments and at various AAAI robot
competitions [37, 36, 27, 26].

Multiple mobile robotic platforms are supported directly by ADE. Servers have
been implemented that support the MobileRobots Pioneer P2-DX, P3-AT, and Peo-
pleBot and the Segway RMP 200, in addition to custom platforms (e.g., a robotic



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

10 Paul Schermerhorn and Matthias Scheutz

golf cart). In addition, an ADE server is available that wraps the Player robot con-
trol system, making available a large number of additional platforms [10]. ADE also
supports the RoboMotio Reddy robot torso (shown on the left of Figure 1). This
robot, in concert with ADE servers for speech production and vision, provides a
platform well-suited for human-robot interaction. In addition to verbal communica-
tion, the platform is capable of multi-modal non-verbal communication, including
affect expression via facial expression (e.g., smiling, frowning), voice modulation
(e.g., making the voice sound “stressed”), gesture (e.g., pointing to objects of inter-
est), and shared-reference vision tracking (e.g., conveying understanding by turning
to look at an object the user is describing). ADE also includes an implementation of
the Reddy platform in the 3D simulation environment USARSim (Figure 1, right)
that is presently being used to explore possible differences in how people respond
to embodied versus virtual robotic agents. The virtual Reddy server implements
the same interface as the physical Reddy, including facial expressions, gestures, and
speech production. It can, therefore, be used as a drop-in replacement in exactly
the same way as the real robot without requiring programming changes.

Despite the focus on robotic architectures, ADE development is not limited to
the control of robots. In many cases it is beneficial to have supporting software
packages integrated into the system (e.g., having all related components use ADE’s
built-in logging mechanisms can help with synchronization of timestamps, an impor-
tant factor in subsequent analysis of experimental results). For example, an audio
and video streaming architecture was created using ADE servers for recording and
playing both media types; this streaming system allows events recorded in one area
of the home to be displayed in another area, in real time. This functionality has
been employed in experiments exploring the use of language in (human-human) ex-
ploration tasks [31]. Moreover, because the streaming architecture is implemented
as a set of ADE servers, we are able to use it to aid in the distribution of multimedia
analysis in a robot architecture (e.g., to stream onboard camera images to a remote
machine for offboard processing).

Another example of a non-robotic application developed in ADE is a survey-
administration system to assist in data collection for human-subjects experiments.
The system allows users to use action scripts (see below) to specify questions for
multiple response formats (e.g., text box, radio button, slider); the user’s response
is logged and returned to the script, allowing the experimenter to design “con-
ditional” surveys (e.g., ignoring irrelevant lines of questioning based on user re-
sponses). This interface is currently being used to gauge subjects’ impressions of
robots in a (human-robot) exploration task, and would be useful in any situations
in which verbal communication would be unwanted or awkward, as it is fully inte-
grated into the ADE system.



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 11

Fig. 2. A partial view of the DIARC robotic architecture for HRI consisting of only
those components that were used in the experiment described here. Boxes depict con-
currently running components of varying complexity and arrows indicate the information
flow through the architecture. Dashed items are related to a simulated field sensor, and
are not part of the architecture per se (see the experiment description).

4. Example Architecture

Figure 2 shows the subset of DIARC used in an experiment involving a hypothetical
planetary exploration scenario (described briefly here; for further details, see [36]).
The subject’s task was to direct the robot in exploring an area, searching for a
location from which the robot could transmit to an orbiting satellite. The subject
could direct the robot’s movements (e.g., “turn right,” “go straight,” etc.) and also
ask for a reading of the current signal strength (simulated using an ADE “field”
server that calculated the reported signal based on the robot’s position in a map).
When a location with a high enough signal strength was found, the subject would
instruct the robot to transmit, and the experimental run was deemed a success.
Performance was measured in terms of the time it took to locate the transmission
point and transmit the data. Subjects were not told ahead of time that there was an
artificial time limitation: after a fixed period of time, the robot would begin issuing
low-battery reports, indicating the time remaining to complete the task. In some
experimental conditions, the robot’s voice was modulated to indicate affect (i.e.,
“fear” or “stress”) after the first battery warning.

The flow of information in the architecture described here is depicted in Figure 3;
this information flow is typical for ADE NLP configurations, although in many cases
there are additional sensors/inputs and effectors/outputs. The speech recognizer
provides words to the incremental parser (1), which can (2) instantiate a goal to
(3) perform some actions during the parse (e.g., nodding to indicate agreement or



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

12 Paul Schermerhorn and Matthias Scheutz

Fig. 3. NLP-related information flow in the example architecture. Ovals represent functional units

of the architecture, and may correspond to more than a single box in Figure 2. Arrows indicate

the (possibly parallel) flow of information, and the (temporally ordered) numbers on the arrows
correspond to the events described in the text.

understanding while the speaker talks). When the parser has reached a conclusion, it
(5) forwards the resulting semantic parse to the dialog manager. The dialog manager
will sometimes (6) submit goals to the goal manager (e.g., when a command is
recognized: “Turn left.”), and will often (9) initiate a verbal response in the sentence
planner. The action script interpreter dispatches action requests as allowed by the
goal manager, such as (4) sending a nod command to the robot server (or saying
‘OK, turning left.”) or beginning to execute the command (8). The sentence planner
then passes the generated sentences to the speech synthesizer (10) for output.

Analysis of the results indicated that affect expression on the part of the robot
improved subjects’ performance ([36]), both in terms of time to complete the task
and in terms of success rate, over subjects in the control condition. Expressing
affect seems to induce a sense of urgency in humans, even when coming from a
very mechanistic, non-humanlike robot, the PeopleBot. This is just one example of
successful deployment of an architecture constructed using ADE; for others, see the
references.

4.1. Goal Management

The DIARC goal manager’s job is to determine which actions should be performed
at any given time. It does this by assessing the priority of each goal associated with
an action sequence that can achieve it (e.g., the housekeeper’s goals of keeping the
building clean and remaining unobtrusive) and awarding resources to high-priority
goals. A goal’s priority is based on its expected utility and its urgency. The expected
utility u = p · b− c, where p is an estimate of the probability of achieving the goal
(e.g., based on prior experience), b is the benefit of achieving the goal, and c is the
cost of attempting to achieve the goal. The urgency is based on the time remaining
within which to achieve the goal: g = te

ta
· (gmax− gmin) + gmin, where te and ta are

the time elapsed so far in pursuing the goal and the total time allowed to pursue
the goal, and gmax and gmin are upper and lower bounds on the urgency of that
particular goal. Hence, as the time spent working towards a goal approaches the



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 13

maximum time allowable for that goal, the urgency rises, subject to upper and lower
bounds. The goal’s priority p = u · g.d

The goal manager uses the priorities to control which goals have access to which
resources. When there is no conflict over resources, multiple goals can be serviced
concurrently. For example, when there is no human in the building, the two house-
keeper goals (unobtrusiveness and cleaning) are not in conflict, so it can clean. In
general, when there is a human present, the higher-priority unobtrusiveness goal
gets control of the robot’s motors so that the cleaning goal cannot operate. How-
ever, if that priority is overridden (e.g., by a human calling to have a spill cleaned
up), the cleaning goal has higher priority and is able to assume control.

The knowledge base includes factual knowledge relevant to the goals of the agent
(e.g., the preferences of the human with regard to drinking scotch with dinner, when
the human typically arrives home at the end of the day, visual cues used to dis-
tinguish individual humans) as well as procedural knowledge of how to accomplish
goals and subgoals. Procedural knowledge is encoded in the form of action scripts,
specifications of the steps required to perform a task, along with information about
the other agents, people, and objects that are relevant to the task.

4.2. Natural Language Processing

Figure 4 gives a NLP-centric view of DIARC, showing how the discourse manager
fits into the architecture while providing a more detailed view of the discourse man-
ager. Information flows are indicated by the arrows. The ADE speech recognition
and vision servers process input from hardware sensors, generating representations
of the data to be used by TIDE, the Timing-sensitive Incremental Discourse En-
gine (described briefly below, and in more detail in [5, 6]). Sound data is converted
to words by the speech recognition server, and visual data into a situation model
represented in visual short term memory (VSTM) and maintained by the vision
server. In the course of processing an utterance, TIDE relies on the vision server
for information about the visual environment and interacts with the action server
to provide back-channel feedback and head movements for referent confirmation.
Verbal responses are sent to the speech production server, and any commands that
TIDE interprets are passed to the goal management system, where they are evalu-
ated for execution as described above.

Natural language understanding is handled by the robotic incremental semantic
engine (RISE) [7], part of an ADE discourse server, which incrementally processes
utterances as they are provided by the speech recognizer (typically word-by-word).
Incremental processing allows the integration of perceptions (e.g., information from
the vision subsystem that helps with reference resolution). As new words arrive,
RISE reduces the size of the set of possible referents based on the words’ asso-
ciated syntactic constraints and semantic constraints established after meaning is

dFor further details on ADE’s goal management component, see the references, e.g., [35]



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

14 Paul Schermerhorn and Matthias Scheutz

Robotic Incremental Semantic Engine (RISE)

Speakers

Effector
Motors

Subinteraction Stack
Discourse
Context

Timing-sensitive Incremental Discourse Engine (TIDE)

Camera

Microphone

Sensory 
Inputs

  Vision Server 

SIFT Point
Identification

 End EffectorsAction Manager

Speech
 Recognition

Speech 
Generation

HMM 
Listeners

Grammar /
Vocabulary

Visual 
Short-
Term

Memory
Color

Extractor

SIFT 
Object

Identification

SIFT
Long-
Term
(Type)

Memory

Decision
Module

Goal-based 
Priority Manager

Motor
Locks

Action 
Threads

Discourse
Action

Festival

Interaction Repository
Current Semantic

Parse Trees
Current Semantic

Parse Trees
Current Semantic

Parse Trees
Current Semantic

Parse Trees

Fig. 4. A representation of the DIARC architecture from the perspective of TIDE, ADE’s dialog

management component.

established. For example, given the command “put the glass on the floor in the
refrigerator” in a scenario in which there is a glass on the table and a glass on the
floor, RISE is able to correctly identify the referent once the “on the floor” has been
processed. This allows more natural interactions and avoids problems such as the
overspecification of referents, which can cause confusion [8]. Moreover, processing
incrementally allows RISE to suggest actions (e.g., demonstrating understanding
by looking at the glass on the floor once the reference has been resolved) that can
facilitate smooth interactions.

In addition, incremental processing helps make the system more robust to mis-
understood or incomplete speech. Discourse management in ADE is done by TIDE.
TIDE provides a discourse context structure that can be used in the resolution of
anaphoric expressions in conversation and an interaction template structure that
contains semantic and syntactic structures for words and their associated mean-
ings in the context of commonly-seen interactions/sentences. The discourse context
keeps an annotated stack of past referents. When an anaphoric expression needs to
be resolved, for example, following up the previous command with “no, just dump it



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 15

in the sink,” there “it” refers to the glass on the floor, TIDE examines the stack and
selects the most likely recent referent that meets syntactic and semantic guidelines.

TIDE’s interaction templates provide information about which syntac-
tic/semantic elements should be present in a given sentence. As a sentence is in-
terpreted, these elements are retrieved from the interaction template and used in
a constraint-propagation system to incrementally determine the meaning of an ut-
terance. In the event that a necessary binding cannot be found, a subinteraction
is added to the interaction stack and a clarifying question or set of questions is
generated. The subinteraction adds the context of a limited interaction meant to
resolve the missing variable (i.e., referent) bindings. For example, if the user issues
the command “change to disc 3” but the number is somehow garbled, TIDE can
determine from the template that it needs a number before it can create a complete
command request, and it generates a question to clarify (“What number should I
change to?”). This approach to natural language understanding allows for much
more natural interactions between users and the system.

5. Discussion

ADE’s combination of distributed computation, security, fault tolerance, and func-
tionality make it a good fit for ambient intelligence applications, such as a smart
home. While no particular smart home architecture has been implemented in ADE
yet, many of the already deployed ADE systems used components (i.e., ADE servers)
that could be used in smart home applications. Because of ADE’s focus on mobile
robots, many of the challenges that are posed by ambient intelligence are already
solved, as they are required to effectively control robotic platforms. Specifically,
robots rely heavily on multiple sensor modalities (e.g., laser rangefinders, cameras,
and microphones) that require varying degrees of cognitive complexity to translate
into useful information, from simple reactive “broken beam” detection for obsta-
cle avoidance to complex visual analysis of images in real time. Moreover, natural
language processing plays a crucial role in human-robot interaction, requiring fast,
responsive semantic analysis of speech input.

ADE’s NLP subsystem has been qualitatively validated in multiple experimental
setups demonstrating aspects of the system such as the use of visual perceptions to
aid resolution of disfluencies [7] to the integration of incremental language processing
with action management [6]. However, we have yet to embark on a quantitative
evaluation of the system’s performance. That said, issues such as system scalability
are addressed in ADE’s design; given the complexity of NLP and other tasks in both
human-robot interaction and ambient intelligence, effective system control will often
require the resources of multiple computers that must communicate via networks.
ADE has been successfully deployed in multi-robot scenarios, and SWAGES [34], a
version of ADE, is routinely used for distributed high-performance computing for
agent-based modeling on hundreds of hosts.

In this section, we present an example architecture for ambient intelligence for



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

16 Paul Schermerhorn and Matthias Scheutz

Fig. 5. Overview of a subset of the smart house architecture. Dotted ovals represent SAS ambient

intelligence agents. Dotted arrows indicate logical connections between SAS agents. Solid ovals

represent ADE MAS agents, including goal management, NLP, and servers for sensors and actu-
ators. Solid arrows indicate references in the MAS agents from which they originate to the MAS

agents to which they point.

the scenario of a “smart building” (e.g., a home, as described in the introduction).
This example is intended to demonstrate some of the types of features made avail-
able by ADE, not to advocate a particular design over any other.e The example
system combines multiple sensors, effectors, and software agents of varying com-
plexity to allow users to perform routine tasks via a natural language interface.

The example presented here is an architecture that allows users to:

• request information from the system (e.g., sensor readings)
• operate simple devices (e.g., changing the channel on the television)
• monitor and log sensor readings and state changes within the system (e.g.,

to monitor the activity of a resident to facilitate independent living)
• control mobile robots for household tasks

Figure 5 shows a subset of the “smart home” architecture. It depicts a number
of high-level SAS agents and zooms in on the living room agent to depict its
constituent ADE MAS agents. The figure is simplified for the sake of clarity; in
a realistic rendering of the architecture, there may be more SAS (room) agents,
and each of the agents would have references to many more ADE servers. Notice
that the SAS agents can have references to each other directly, without having to
send requests to a (yet) higher-level house agent (again, the details of how they
determine when to communicate with another agent and how they determine which
ones to contact are beyond the scope of this paper). Several ADE servers will be
instantiated multiple times with different configurations, associated with different
SAS agents (e.g., NLP, Vision). This allows for specialization of the server based on
the scenario, such as limiting the grammar and vocabulary of the NLP component
or tuning the vision component to conditions in a particular room. Many SAS agents

eWhile the system as described here has not been implemented/realized in this specific configura-

tion, all individual components have been implemented and used in a variety of different scenarios.



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 17

can hold references to a single ADE server (e.g., the person tracker). In this case,
the room agents have references to the person tracker and to their individual vision
servers, in addition to the person tracker having references to the individual rooms’
vision servers.

The architecture for this scenario includes a “base” room package (e.g., the
Living Room Agent in Figure 5, but without references to specialized ADE servers
such as the home entertainment server) that is available in each room of the building,
including a set of common sensors (e.g., light, motion, temperature, microphone)
and actuators (e.g., light switch, thermostat, window shades, speakers). The base
agent includes a very simple goal manager, a limited knowledge base, and an action
script interpreter (more detailed descriptions of these components can be found
in [35, 20]).

A library of action scripts is needed to handle the variety of requests that may
be made by humans or initiated by the reasoning components of the smart home.
The action script interpreter routes calls for sensing or actuating events to the ap-
propriate ADE servers. So, for example, when the living room agent is informed
that you are on your way down the hall, it starts an action script that instructs the
light switch server to bring up the lights, makes a knowledge base query regarding
your TV show preference, and instructs the home entertainment server to turn on
the TV and tune to that show:

script: prepareRoom

agent: livingroom

agent: person

name: show

activateLights (livingroom)

show := queryPrefs (livingroom, person, "TV show", currenttime)

activateTV (livingroom)

selectTVshow (livingroom, show)

For the simple room agent, the goal manager has a single goal: to listen for and
carry out user requests (e.g., for information, or actions to be performed). Given this
simple scenario, the natural language processing capabilities of the base room are
fairly simple. Some scenarios require specialized goal management and capabilities,
tailored to fit the needs and desires of the user in those scenarios. For example, in
a living or family room, the user may want to be able to control an entertainment
system. This requires the system to understand many queries (e.g., “What is the
title of this track?” “How much time is remaining?” “Are there other songs by
this artist?”), as well as many commands (e.g., “Turn up the volume,” “Change
to disc 3,” “Switch to the satellite receiver and turn on the television.”). The goal
manager is provided with scripts corresponding to each of these, and can supervise
the execution of multiple scripts in parallel, unless there are conflicts (e.g., a request
that would require playing two discs at once). The natural language processing



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

18 Paul Schermerhorn and Matthias Scheutz

demands on this agent are substantial, given the potential variety of (song, show,
movie, etc.) titles. This is a case in which incremental language processing with
contextual feedback is highly beneficial; the system can have access to the library
of CDs, the shows being broadcast currently (or in the near future), etc., and can
use that information to help rule out possibilities. For example, suppose you tell
the system, “Play the first Star Trek movie—no, actually, play the Cure.” In this
case, “‘the Cure” is both a movie and a band, but given the context (i.e., your
initial request for a movie) the system is able to select the more likely one and start
the movie. The base package can also easily be extended to include cameras and
visual processing capabilities that would be useful in providing semantic constraints
during NLP (e.g., disambiguation between similar objects based on color).

These examples are all contained within a single room. However, there are many
ways to extend the architecture further. For example, the smart home could track
multiple people concurrently, allowing easy access to information (“where are the
kids?”) and communication (“let the kids know it’s time for dinner”). The infor-
mation could be used in many ways, such as user-configurable controls (e.g., re-
strictions on which devices can be operated by whom, or limits on their operation)
and alarms (e.g., to inform an adult when a child enters a potentially dangerous
area). Moreover, ADE’s distribution capabilities allow the rooms to be connected
to form a coherent system that extends the capabilities of the “room agent” for
any particular room to include many of the capabilities in more complex agents
from other scenarios. Should the agent in the current room fail to understand the
speaker, however, the system is able to pass on the request to another (more com-
plex) agent, at the potential cost of increased response time. For example, a user
in the bedroom could give the command “Heat up the pasta from last night.” The
bedroom agent’s NLP server does not include food preparation vocabulary, so it
does not understand the request. It can “broadcast” the request to other agents to
find one that can handle it; ADE servers for audio streaming relay the user’s speech
to the remote servers. When the kitchen agent recognizes the command, it can
begin warming up the leftovers and send the response (“The pasta will be ready
in five minutes.”) back to the bedroom. Hence, the underlying system is actually
composed of multiple independent agents; an open question is whether people will
prefer a system in which multiple agents are present (e.g., with each room agent
having a different representation, such as an individualized avatar), or one in which
it appears to the user as though there is a single “house” agent, consistent through-
out the home. With ADE, either is possible, and it is a matter of determining what
a particular individual prefers.

ADE’s support for multiple mobile robot platforms will be useful in a smart
building scenario. Although currently the technology does not exist for all the smart
devices described above (actuators to load the microwave with food from the refrig-
erator, etc.), there are robots that are designed for the purpose of interacting with
people and may be good additions to the smart home. For example, some users



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 19

may not like speaking to a “disembodied voice” and would prefer a visual represen-
tation of the various room agents. The use of a mobile robot like this allows more
sophisticated monitoring in addition to the base capabilities of the room agents.
For example, the robot platform can be equipped with more sensitive or expensive
sensors than those placed in each room. The robot then serves as a mobile sens-
ing platform, moving from room to room, as needs demand, providing extended
coverage with the sophisticated sensors without multiplying their cost. Moreover,
the robot has access to all of the information in the system (via the other agents),
allowing it to efficiently perform its tasks without requiring the user to reiterate
preferences, desires, etc., as would be required by a robot that was not integrated
into the home system.

Similarly, the simulated version of the Reddy robot can be used as a visual
interface to the architecture. Hence, it can serve as the “face” of the ambient intel-
ligence system in supplement to the room agents throughout the building. ADE’s
distribution mechanisms make it easy to display the avatar for the kitchen agent

on a screen in the living room, for example, to check whether you want your dinner
delayed. This makes it possible to give people the impression that the robot is in
charge of the house’s operation, although, as stated above, it is probably a matter
of preference which people will like better, a single agent, or multiple agents.

As described above, ADE’s security features are designed to prohibit unautho-
rized access to ADE servers. This prevents malicious access to sensitive information
(e.g., streaming audio, personal preferences, etc.) via the wireless network. More-
over, ADE has built-in mechanisms for fault tolerance and recovery to help prevent
system failures. For example, although the architecture can be organized hierarchi-
cally, even if a higher-level system or agent should fail, the lower (room) level agents
would continue to operate as normal, modulo the ability to pass on requests out-
side the room. In the meantime, ADE’s recovery mechanisms will initiate restarting
the affected servers, bringing the system up to full functionality without interfering
with local functionality, barring any unrecoverable hardware failure. If the problem
should be due to a hardware failure, ADE has the ability to select other hardware
with similar capabilities, if available, on which to restart the failed server. We have
conducted experiments to verify that the recovery mechanisms can operate “behind
the scenes,” restoring ADE servers without users noticing they had failed [20].

6. Conclusion

Ambient intelligence systems pose many challenges to developers, ranging from in-
terfacing with a large number of distinct devices to communication in a complex
network environment. In fact, those challenges are not unique: robot architectures,
particularly complex cognitive architectures for human-robot interaction, must of-
ten solve many of the same problems. The ADE infrastructure addresses the secu-
rity, communication, and reliability issues necessary for ambient intelligence, and
provides many interfaces to sensors that would be of useful in ambient semantic com-



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

20 Paul Schermerhorn and Matthias Scheutz

puting systems. One major challenge for any such system is fast, accurate natural
language processing. ADE’s incremental natural language processing capabilities
address both issues, increasing speed performance by starting processing before the
utterance is complete and by allowing the system to discard incorrect possibilities
earlier than would otherwise be possible. Other sensing modalities, such as vision
processing, provide additional information that can be used to further refine parsing
and overall NLP performance [32].

ADE’s support for robotic platforms allows mobile agents to be tightly inte-
grated into the smart home architecture; mobile robots will be very useful for the
automation of many simple (cleaning, delivery) tasks, as well as allowing for fine-
grained dynamic control of sensor placement (e.g., for elder care monitoring). In
addition, virtual implementations of robot platforms provide natural alternatives
for visual agent representations (avatars) where video monitors are present. This
makes it possible to remove the physical robot from the system entirely, if desired,
while still providing a “personal” interface to the smart home. The virtual domain
is also very useful for prototyping and testing purposes; it is likely that the optimal
configuration of a smart building will be different for different people, and the vir-
tual environment and agents allow for easy experimentation with features to find
the best setup for a particular individual.

ADE also has sophisticated mechanisms for distributed computing, allowing
systems to share resources remotely. The ability to operate multiple goal managers
concurrently with differing degrees of cognitive complexity makes it possible to tailor
the individual agents (e.g., the “room agent”) to the scenario; this can also be very
beneficial to NLP, as the language domain can be simplified to speed up semantic
analysis. Moreover, ADE’s distributed SAS/MAS agent model makes reconfiguring
the system simple. For example, to change a room’s configuration, or add another
agent for a new area, it is not necessary to write new code and recompile the whole
software package. Instead, the startup configuration can be changed to specify a
new set of ADE servers and their connections (to each other). Selecting a different
language model for a particular room is as simple as specifying a different configu-
ration file for the NLP server. Finally, new servers can be brought online at runtime
as well, allowing dynamic reconfiguration of the system.

In short, ADE is a distributed agent infrastructure that has natural language
processing built in and is connected to sophisticated goal management mechanisms
which interact with the world via multiple server interfaces for sensing and actuat-
ing devices. We are currently working with HRI experimental setups that contain
many of the features of the described smart home environment, and are planning
to implement some of the findings in user studies in a smart home environment for
real-world tests. Servers for more sensors and devices relevant to general ambient
intelligence systems are being implemented, and we are working on improving the
incremental natural language processing capabilities of the system to increase speed
and accuracy via semantic constraints. Finally, testing in the virtual environment
needs to be conducted, to determine whether and how people respond differently to



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 21

virtual agents (such as room agent avatars) than to physically present agents (such
as an autonomous mobile robot).

References

[1] Erwin Aitenbichler, Jussi Kangasharju, and Max Mühlhäuser. MundoCore: A Light-
weight Infrastructure for Pervasive Computing. Pervasive and Mobile Computing,
2007.

[2] Virgil Andronache and Matthias Scheutz. Integrating theory and practice: The agent
architecture framework APOC and its development environment ADE. In Proceedings
of Autonomous Agents and Multi-Agent Systems, pages 1014–1021, 2004.

[3] Virgil Andronache and Matthias Scheutz. ADE—an architecture development envi-
ronment for virtual and robotic agents. International Journal of Artificial Intelligence
Tools, 15(2):251–286, 2006.

[4] Christian Becker, Gregor Schiele, Holger Gubbels, and Kurt Rothermel. Base—a
micro-broker-based middleware for pervasive computing. IEEE International Con-
ference on Pervasive Computing and Communications, 0:443, 2003.

[5] Timothy Brick. TIDE: A timing-sensitive incremental discourse engine. Master’s the-
sis, University of Notre Dame, Notre Dame, IN, 2007.

[6] Timothy Brick, Paul Schermerhorn, and Matthias Scheutz. Speech and action: In-
tegration of action and language for mobile robots. In Proceedings of the 2007
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1423–
1428, San Diego, CA, October/November 2007.

[7] Timothy Brick and Matthias Scheutz. Incremental natural language processing for
HRI. In Proceedings of the Second ACM IEEE International Conference on Human-
Robot Interaction, pages 263–270, Washington D.C., March 2007.

[8] Kathleen Eberhard, Michael Spivey-Knowlton, Julie Sedivy, and Michael Tanenhaus.
Eye movements as a window into real-time spoken language comprehension in natural
contexts. Journal of Psycholinguistic Research, 24:409–436, 1995.

[9] FIPA agent management specification (SC00023K).
http://www.fipa.org/specs/fipa00023/, 2004.

[10] Brian Gerkey, Richard Vaughan, and Andrew Howard. The Player/Stage project:
Tools for multi-robot and distributed sensor systems. In Proceedings of the 11th In-
ternational Conference on Advanced Robotics, pages 317–323, Coimbra, Portugal,
June 2003.

[11] Robert Grimm. One.world: Experiences with a pervasive computing architecture.
IEEE Pervasive Computing, 3(3):22–30, 2004.

[12] IST Advisory Group. Ambient intelligence: from vision to reality. In Giuseppe Riva,
Francesco Vatalaro, Fabrizio Davide, and Mariano Alcaniz, editors, Ambient Intelli-
gence. IOS Press, 2005.

[13] Gerd Herzog, Alassane Ndiaye, Stefan Merten, Heinz Kirchmann, Tilman Becker, and
Peter Poller. Large-scale software integration for spoken language and multimodal
dialog systems. Natural Language Engineering, 10:283–305, 2004.

[14] Gerd Herzog and Norbert Reithinger. The SmartKom architecture: A framework for
multimodal dialogue systems. In Wolfgang Wahlster, editor, SmartKom: Foundations
of Multimodal Dialogue Systems. Springer-Verlag, Secaucus, NJ, 2006.

[15] Nicholas Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent re-
search and development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

[16] Anthony Joseph, Joshua Tauber, and M. Frans Kaashoek. Mobile computing with



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

22 Paul Schermerhorn and Matthias Scheutz

the Rover toolkit. IEEE Transactions on Computers, 46(3):337–352, 1997.
[17] James Kramer and Matthias Scheutz. ADE: A framework for robust complex robotic

architectures. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 4576–4581, Bejing, China, October 2006.

[18] James Kramer and Matthias Scheutz. ADE: Filling a gap between single and multiple
agent systems. In Proceedings of the ACE 2004 Symposium at the 18th European
Meeting on Cybernetics and Systems Research, Vienna, Austria, 2006.

[19] James Kramer and Matthias Scheutz. Robotic development environments for au-
tonomous mobile robots: A survey. Autonomous Robots, 22(2):101–132, 2007.

[20] James Kramer, Matthias Scheutz, and Paul Schermerhorn. ‘Talk to me!’: Enabling
communication between robotic architectures and their implementing infrastructures.
In Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 3044–3049, San Diego, CA, October/November 2007.

[21] John Laird, Allen Newell, and Paul Rosenbloom. SOAR: An architecture for general
intelligence. Artificial Intelligence, 33:1–64, 1987.

[22] David Leake, editor. Case-Based Reasoning: Experiences, Lessons, and Future Direc-
tions. MIT Press, Cambridge, MA, 1996.

[23] Bruce A. Maxwell, William Smart, Adam Jacoff, Jennifer Casper, Brian Weiss, Jean
Scholtz, Holly Yanco, Mark Micire, Ashley Stroupe, Dan Stormont, and Tom Lauwers.
2003 AAAI robot competition and exhibition. AI Magazine, 25(2):68–80, 2004.

[24] Thomas Portele, Silke Goronzy, Martin Emele, Andreas Kellner, Sunna Torge, and
Jürgen te Vrugt. SmartKom-Home: The interface to home entertainment. In Wolfgang
Wahlster, editor, SmartKom: Foundations of Multimodal Dialogue Systems. Springer-
Verlag, Secaucus, NJ, 2006.

[25] Alessandro Saffiotti and Mathias Broxvall. Peis ecologies: ambient intelligence meets
autonomous robotics. In SOC-EUSAI ’05: Proceedings of the 2005 joint conference
on Smart objects and ambient intelligence, pages 277–281, New York, NY, USA, 2005.
ACM.

[26] Paul Schermerhorn, James Kramer, Timothy Brick, David Anderson, Aaron Dingler,
and Matthias Scheutz. DIARC: A testbed for natural human-robot interactions. In
Proceedings of AAAI 2006 Robot Workshop, 2006.

[27] Paul Schermerhorn, Matthias Scheutz, and Charles R. Crowell. Robot social presence
and gender: Do females view robots differently than males? In Proceedings of the Third
ACM IEEE International Conference on Human-Robot Interaction, Amsterdam, NL,
March 2008.

[28] Matthias Scheutz. ADE—steps towards a distributed development and runtime en-
vironment for complex robotic agent architectures. Applied Artificial Intelligence,
20(4-5), 2006.

[29] Matthias Scheutz and Virgil Andronache. Architectural mechanisms for dynamic
changes of behavior selection strategies in behavior-based systems. IEEE Transac-
tions of System, Man, and Cybernetics Part B, 34(6):2377–2395, 2004.

[30] Matthias Scheutz, Virgil Andronache, James Kramer, Philip Snowberger, and Eric
Albert. Rudy: A robotic waiter with personality. In Proceedings of AAAI Robot Work-
shop. AAAI Press, 2004.

[31] Matthias Scheutz and Kathleen Eberhard. Towards a framework for integrated nat-
ural language processing architectures for social robots. In Proceedings of the 5th In-
ternational Workshop on Natural Language Processing and Cognitive Science, pages
165–174, Barcelona, Spain, June 2008.

[32] Matthias Scheutz, Kathleen Eberhard, and Virgil Andronache. A parallel, distributed,
realtime, robotic model for human reference resolution with visual constraints. Con-



March 20, 2009 10:3 WSPC/INSTRUCTION FILE semcomp

Distributed Natural Language Interaction 23

nection Science, 16(3):145–167, 2004.
[33] Matthias Scheutz, John McRaven, and Gyorgy Cserey. Fast, reliable, adaptive, bi-

modal people tracking for indoor environments. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 1340–1352, 2004.

[34] Matthias Scheutz, Paul Schermerhorn, Ryan Connaughton, and Aaron Dingler.
SWAGES–an extendable parallel grid experimentation system for large-scale agent-
based alife simulations. In Proceedings of Artificial Life X, pages 412–418, June 2006.

[35] Matthias Scheutz, Paul Schermerhorn, James Kramer, and David Anderson. First
steps toward natural human-like HRI. Autonomous Robots, 22(4):411–423, May 2007.

[36] Matthias Scheutz, Paul Schermerhorn, James Kramer, and Christopher Middendorff.
The utility of affect expression in natural language interactions in joint human-robot
tasks. In Proceedings of the 1st ACM International Conference on Human-Robot In-
teraction, pages 226–233, 2006.

[37] Matthias Scheutz, Paul Schermerhorn, Christopher Middendorff, James Kramer,
Dave Anderson, and Aaron Dingler. Toward affective cognitive robots for human-
robot interaction. In AAAI 2005 Robot Workshop, pages 1737–1738. AAAI Press,
2005.


