
Using Logic to Handle Conflicts between System, Component, and
Infrastructure Goals in Complex Robotic Architectures

Paul Schermerhorn and Matthias Scheutz
Human-Robot Interaction Laboratory

Cognitive Science Program
Indiana University

Bloomington, IN 47406, USA
{pscherme,mscheutz}@indiana.edu

Abstract— Complex robots with many interacting compo-
nents in their control architectures are subject to component
failures from which neither the control architecture nor the im-
plementing infrastructure can recover. Moreover, the operating
conditions for these components might be at odds with goals
the robot might have adopted (e.g., through external commands
or in the course of the execution of the current task).

We argue that the best (if not the only) way to resolve any dif-
ficulties that arise from the different requirements at the agent,
component and infrastructure levels is to use a common formal
logical goal representation for all three layers. We discuss how
these representations can be integrated into a complex robotic
architecture and demonstrate in an experimental evaluation on
a robot how the architecture can recover from a failure situation
that it would not have been able to handle without explicit
multi-level unified goal representations and their associated
monitoring and reasoning processes.

I. INTRODUCTION
Robotic architectures have become increasingly complex

in a variety of application domains, including robots for
search and rescue missions, for elder care and other assistive
domains, or even various kinds of social robots. These
architectures are typically composed of many heterogeneous
functional components, ranging from components for sensing
(e.g., vision, speech processing, etc.) and actuating (e.g.,
navigation, manipulation, etc.), to components for natural
language interactions (e.g., parsers, semantic engines, text
planners, etc.), to planning (e.g., navigation and task plan-
ners) and reasoning components (problem solvers, etc.).

Managing all these components to produce coordinated
robot behavior is already a challenge in and of itself, which
has been addressed in several ways, both by the robotic
architecture community (e.g., explicitly managing and track-
ing the robot’s goals [17]) and the infrastructure community
(e.g., guaranteeing a robust execution environment [11],
[13]). While these two approaches have been concerned with
handling goals of the robot (e.g., as assigned by a human
operator) and goals of the infrastructure (e.g., providing
load balancing across multiple hosts), they are typically not
combined. More importantly, there is a third set of usually
only implicitly given goals, the goals of each component to
“maintain its conditions of normal operation” (e.g., that the
sound levels be low enough for a speech recognizer to be
able to recognize words), which interacts with the other two
sets of goals in important ways. For example, component

goals that are not met can lead to failures of robot goals
(e.g., speech not being understandable and the robot failing
to execute commands) and infrastructure goals (e.g., a parser
using up all the CPU time for exploring meaningless parse
trees causing the infrastructure’s load balancing goal to fail).

We believe that it is critical for the long-term reliable
operation of complex robots to better understand the possible
interactions among the three sets of goals and to provide
mechanisms that will be able to represent and resolve
possible conflicts among those goals as they occur, to the
extent possible. Our approach is to use a formal language
to represent goal conditions for the three types of goals
and use logical inference to detect goal inconsistencies.
The idea is to use logical representations as the “common
currency” throughout the system for the various different
goal types. This will not only allow the robot to reason about
various types of requirements at different system levels in
a unified way. In the future, this will also allow for better
communication between humans and robots, and easier ways
for tracking and resolving faults.

The paper proceeds as follows: we start by motivating the
need for explicit goal representation at the different levels in
Section II. Then we discuss the utility of common logical
representations in Section III and describe the architecture
which we used to integrate the new goal representation in
Section IV. Next, in Section V, we provide the details on the
task that was used for the evaluation of the utility of system-
wide logical representations and a detailed trace through
critical phases of the experimental run on the robot that
demonstrates how the various goal representations interact.
Section VI then discusses the implications of the evaluation,
and Section VII contains conclusions and directions for
future work.

II. MOTIVATION

Consider a scenario in which a robot is a member of
a security team tasked with patrolling a remote area of a
facility. The robot is equipped with an array of sensors to
detect intruders, is able to move around its assigned area to
investigate potential break-ins, and can communicate with
a human operator in the central monitoring station. Among
the robot’s behaviors is an automatic motion-based trigger
to emit a loud alarm siren whenever it detects what seems



with very high probability to be an intruder. During one of its
patrols, the robot senses motion where there is no authorized
presence and enables its siren. It then contacts the remote
operator to inform her of the alarm and request instructions.
The operator instructs the robot to perform an auditory
sensory sweep of the area to detect the direction in which
the intruder has retreated. However, due to the continuing
siren, no other sounds are audible to the robot. Moreover, the
robot’s control system is distributed across multiple onboard
and offboard computers, including the speech production and
recognition units, which are run on a computer in the control
room that has a microphone and a speaker. The operator,
therefore, hears only the “clean” verbal output from the
robot, without the background noise from the siren.

The problem in the above scenario is, of course, that the
human operator does not know (or recall) that the siren
is wailing, and the robot is simple-mindedly following its
directives without regard to how some actions will affect
the functionality of other components. While it might be
possible to track down the problem (e.g., with a series of
targeted queries on the part of the operator), it is also possible
that the problem will go undetected (i.e., that the absence of
audible evidence will lead the operator to conclude that it
was a false alarm). Moreover, without mechanisms in place
to specify and communicate information about operational
conditions and requirements of different parts of the robot’s
control system, it may be difficult or impossible to track
down a problem like the above.

What is needed is a uniform representation of conditions
of normal operations (CONO) and their constraints that can
be used throughout the system to facilitate the coordination
among requirements, actively avoid potential conflicts (when
they can be predicted), and facilitate resolution of conflicts
when they are unavoidable (including recovery from failures
if possible).

III. LOGICAL REPRESENTATIONS AS “COMMON
CURRENCY”

In the introduction, we identified three (non-exclusive)
sources of (different types of) goals in complex robotic
architectures:1

• agent goals, including “built-in” goals in the archi-
tecture (e.g., safety of human operators and self-
preservation) as well as dynamic goals arising from
changes in the environment (e.g., commands from a
human operator)

• infrastructure goals of the middleware or software en-
vironment, in which the architecture is implemented,
including goals for maintaining system reliability or bal-
ancing the load across multiple computational resources

• component goals of the functional components in the
architecture (i.e., the software and/or hardware unit that
implements the particular component algorithm such as
a navigation planner or speech synthesizer)

1Some robotic architectures (e.g., behavior-based, [4]) do not represent
goals explicitly in the architecture. The discussion of goals and, indeed, the
mechanisms described in this paper do not apply to such architectures.

All three types of goals can take the form of “mainte-
nance” and “ achievement” goals, where maintenance goals
typically have CONOs attached that have to be maintained
true by the robot (possibly augmented by a set of pre-
conditions), while achievement goals are typically defined
in terms of their post-conditions that have to be made
true by the robot (possibly augmented by a set of initial
pre-conditions and operating conditions) while the robot is
attempting to achieve the post-conditions. The challenge here
is how to best represent these different types of goals so that
they can be compared in a unified way and that conflicts
among them can be detected and possibly resolved—in most
robotic architectures, infrastructure goals are not compared
to agent goals (but see [7] for an exception), and component
goals are almost never explicitly represented (but see [10]
for an example of a robot’s being aware of its auditory
environment to improve natural language interactions).

A logical representation that is rich enough to express all
three types of goals but limited enough to allow for efficient
inference (about goal conflicts) is a natural candidate, given
the diversity of types and sources of goals (possible can-
didates are temporal logics and subsets of first-order logic).
This requires explicit representation of goal requirements for
each functional component in the architecture together with
the definition and implementation of monitoring processes
that will be able to update those representations (e.g., a
component’s preconditions need to be checked whenever
information is requested from it, and the requesting process
needs to be informed if the preconditions are not met).

In the example above, there may be a central control
or goal management component that is responsible for
coordinating the actions of the robot, in which case there
may already be a representation of the postcondition of
activating the siren: enabled(speakers) (since the goal man-
ager is responsible for triggering that behavior in response
to the motion). The auditory tracking component, then,
needs to encode its own operational constraints, including
¬enabled(speakers). When the auditory tracking function
is invoked by the human operator, it can then either (a)
check with other components in the system to see whether its
operational constraints are violated, or (b) perform a check of
its own to determine whether it would be possible to detect
retreating footsteps given the current background noise. The
advantage of the former is that it is a simple check, whereas
the latter will detect problems not related to the robot’s own
actions (e.g., sirens from a passing ambulance).

With the logical representation mechanisms in place, the
problem in the hypothetical scenario will be much simpler to
diagnose and remedy. When the auditory tracking component
is enabled, it can immediately detect that the speakers are
enabled and inform the operator of the conflict. It is then
up to the operator to decide whether to instruct the robot to
disable the siren or not. Extending the logical checks into the
remote components reduces the possibility of a false negative
(i.e., the conclusion that there is nothing to track), and allows
the operator to decide which is a higher priority: tracking the
fugitive or continuing to sound the alarm.



IV. INTEGRATING EXPLICIT MULTI-LEVEL
GOAL REPRESENTATION INTO A COMPLEX

ROBOTIC ARCHITECTURE

The architecture of choice for the implementation of
the goal representation and inference mechanisms above
was the Distributed Integrated Affective Reflective Cognitive
(DIARC) architecture because it already provides explicit
goal representations for agent and infrastructure goals.

a) Agent goals: DIARC facilitates HRI by integrating
high-level natural language understanding [3], [2], [5] with
lower level perceptual and action processing (e.g., vision [1],
[15], [12], navigation, behavior coordination [16]). DIARC’s
integrated NLP (natural language processing) component can
take natural language directives and convert them into logical
representations of the commands. Specifically, a natural
language parser treats English words as lexical items with
syntactic annotations from a combinatorial categorial gram-
mar and semantic annotations from temporal and dynamic
logics extended by λ-expressions [5]. These are then mapped
onto λ-free temporal and dynamic logic expressions, which
represent the goal and action specified in the natural language
directive, respectively. This approach of extracting goal and
action sequences incrementally at the same time has several
advantages: (1) it allows for in-line backchannel responses
(e.g., to indicate early on failure to understand [3]), (2) it can
enable the robot to begin consistency checking of new goals
against existing goals, (3) it can give the robot an (at least
partial) action sequence to achieve the goals, and may allow
initiation of action before the utterance is complete, and (4) it
allows the robot to immediately detect and react to (syntactic,
semantic, or pragmatic) ambiguities in the directive.

The logical representations extracted from a human in-
struction are then passed on to the goal management com-
ponent. DIARC’s goal management component supports con-
current progress toward the achievement of multiple goals.
The goal manager maintains a database of procedural knowl-
edge in the form of action scripts, indexed by post-conditions
achieved. Each top-level goal, such as a command from a
human operator, is serviced by an action script interpreter
that steps through the script that achieves that goal. When
conflicts arise between goals (e.g., when two scripts call
for the robot to move in different directions), the script
interpreter associated with this highest-priority goal is given
precedence and allowed to control the resource. Since natural
language goals have already been converted into logical
form, the goal manager can simply query its knowledge base
to find a suitable sequence of actions with postconditions
including the goal state. If an appropriate action is found,
the goal manager dispatches the task description to the task
management component to be carried out. In cases where no
solution can be readily found, the unmodified logical form of
the goal is passed to a planner component, which generates
a plan sequence and returns it to the goal manager to be
stored as procedural knowledge suitable for achieving the
new goal, as well as future requests with the same logical
form. The system supports two kinds of agent goals: hard

goals that have to be achieved (e.g., follow the team leader’s
commands), and soft goals that should be achieved if possible
(i.e., if the robot detects an opportunity to satisfy the soft goal
without violating a hard goal and if its utility u > 0).

b) Infrastructure goals: DIARC is implemented in
the Agent Development Environment (ADE), a distributed
multi-agent robotic development infrastructure [8], [14] with
mechanisms for distributing architectural components across
multiple hosts that has been previously used successfully
for developing infrastructure reflection mechanisms for fault
detection and error recovery and evaluating them in human-
robot interaction experiments [7], [9], [6]. Functional com-
ponents of DIARC then are implemented as ADE servers
(i.e., individual computational processes or “agents”) that can
interact with each other by virtue of establishing connections
among them as required by the architecture. To establish con-
nections, the ADE registry provides a yellow-pages service
that allows ADE servers to locate each other without needing
to know their physical hosts in the distributed system. Once
contact has been made via the registry, ADE servers interact
directly, while maintaining periodic contact with the registry
to facilitate error detection and recovery.

Similar to the goal manager component, the ADE in-
frastructure uses logical forms to explicitly keep track of
actual and desired system states and logical inference to
determine operations on the infrastructure to achieve desired
configurations (e.g., an ADE server that went down can be
restarted, or a server can be moved to another host to achieve
better load balancing). These mechanisms are implemented
in the ADE registry, which has access to all ADE servers.

c) Component goals: Since DIARC already pro-
vides agent and infrastructure goals in logical form, only
component-level goal representations had to be added to-
gether with the processes necessary to update them. This
can, however, be a very complex task depending on the
components and the nature of the processes they implement.
To make this task tractable, we only added representations
and update processes to those components that we are
going to use in the proof-of-concept evaluation. Since our
chosen evaluation scenario requires visual processing, we
have augmented the DIARC vision component to include
logical representations of its required operating conditions,
specifically, that there be sufficient light in the environment
for the camera to be able to deliver reasonable images.
A monitoring process was thus added to the server that
periodically checks images coming from the camera for their
overall brightness values, and when the overall brightness
falls below a “darkness threshold” the vision server’s opera-
tional condition light-level(OK) will be changed to ¬light-
level(OK), which, in turn, will trigger the goal request for
on(light)—whether or not this request results in an action to
turn lights on will then depend on the other goals the agent
might have, as we illustrate next in our evaluation.

V. EVALUATION

For the evaluation, we chose a scenario that has become
increasingly important in recent robotic efforts: an urban



search and rescue (USAR) task. USAR has several attractive
aspects for our evaluation: it usually requires a remote human
operator to interact with the robot (given that robots are
used instead of humans for the exploration of potentially
dangerous environments to be able to reduce the risk to
human rescue personnel); as such, it requires the robot to be
very explicit in its interactions with the human (i.e., about its
perceptions, its current position in the environment, etc.) who
often only has limited situational awareness and might not
be able to fully comprehend the robot’s situation; and lastly,
it requires the robot to be able to autonomously respond to
task contingencies as the operator will not be able to step in
if things go wrong.

The hardware platform was a Pioneer P3-AT equipped
with several sensors, including a SICK laser range-finder for
navigation and obstacle detection, two cameras for visual
processing (an infrared camera, and a normal-light camera),
and a wireless microphone for speech input. In addition to
the mobile robot base, the robot was equipped with multiple
other effectors, including a light effector and speakers for
speech production. The setup includes the two camera types
so that the robot can be used for conducting searches under
any lighting conditions; the light effector is included so that
the robot can use the natural-light camera even in low light
conditions (e.g., to detect particular colors).

We chose a scenario in a “dark indoor environment” where
the robot was supposed to search for wounded human victims
that might be hiding in rooms. The robot starts out at the
beginning of a hallway that has several open doors to the
left leading to rooms that might contain victims. The robot
has no map of the environment, hence cannot plan ahead. It
also has no information about possible locations of victims
other than the prior knowledge that wounded people might
be located in rooms. The goal to locate wounded people
is given as a “soft goal” which the robot should pursue if
it can afford it without violating any hard goals (e.g., for
this particular soft goal, the robot can schedule perception
actions for doorways to be able to detect opportunities for
satisfying the soft goal). The only hard goal the robot has
in the beginning is to obey the commands of the human
operator.

The system configuration for the evaluation experiments
required a setup with multiple ADE servers implementing
critical components in the DIARC architecture, including a
“Pioneer robot control server” (for controlling the robotic
platform), a “laser range-finder sensing server” (for detecting
doors and avoiding obstacles), two “vision servers” (one with
an infrared camera and one with a regular light camera),
a “light effector server” to be able to actuate a flash light
onboard the robot, a “goal manager server” (to manage the
different kinds of goal representations), as well as various
servers for natural language processing, jointly referred to
as the “NLP servers”.

In the following, we will describe various phases of one
experimental run. For each phase, we first describe the events
happening in that phase, followed by the agent-level goals
AG, infrastructure-level goals IG, and component-level goals

CG for that phase (note that for clarity’s sake, expressions
marked with a ? are simplified representations of the actual
internal representations). We also show a snippet of the
dialogue exchanges that occurred between the human H and
the robot R, followed by a brief description of the processes
occurring in the architecture and any additional clarifying
remarks about the phase.

BEGIN: The robot is awaiting orders in a dark hallway.

AG: obey commands(robot)
IG: maintain health(servers)

PHASE 1: The operator contacts the robot with orders,
instantiating two hard goals and one soft goal (as indicated
by the “try” keyword).

H: “Go to the end of the hallway. Keep the lights off at all
times. And try to report the locations of wounded people.”
R: “OK.”

AG: obey commands(robot),
at(end-of-hallway,robot),
¬on(light),
looked for(victim,room)?

IG: maintain health(servers)

Notes: The robot begins to traverse the hallway, attempting
to detect doorways (i.e., opportunities to pursue the soft goal
of locating wounded people). The robot detects a doorway
and enters the room.

PHASE 2: The robot searches the room and detects a
wounded person.

R: “There is a wounded person in the first room on the left.”

AG: obey commands(robot),
at(end-of-hallway,robot),
¬on(light),
looked for(victim,room)?

IG: maintain health(servers)

Notes: The robot leaves the room.

PHASE 3: The robot continues down the hallway. For
demonstration purposes, the IR camera is sabotaged by the
experimenter.

R: “I have lost contact with the infrared camera.”

AG: obey commands(robot),
at(end-of-hallway,robot),
¬on(light),
looked for(victim,room)?

IG: maintain health(servers),
recovered(vision server)

Notes: The infrastructure notices that a fault occurred and
attempts to recover the IR camera server, but is unable to do
so.

PHASE 4: The robot continues down the hallway. The



infrastructure attempts to find a substitute for the sabotaged
vision server.

R: “Switching to the regular camera.”

AG: obey commands(robot),
at(end-of-hallway,robot),
¬on(light),
looked for(victim,room)?

IG: maintain health(servers),
find substitute(vision server)

Notes: The normal-light vision server is successfully started
and takes the place of the IR vision server in the architecture.
This substitution occurred at the infrastructure level without
DIARC noticing. Because both vision servers implement the
same API, this notification is unnecessary; the registry could
swap in the normal-light server without giving a warning
and the goal manager would not need to know about the
change. The warning is given to facilitate the operator’s
understanding of the current state.

PHASE 5: The robot detects a second doorway and enters
the room to search. When the vision processing command
fails, the request to enable the robot’s onboard light is
submitted to the goal manager, which detects the conflict.

R: “I need to activate a light, but I have a goal to keep lights
off. What shall I do?”

CG: light-level(OK)
AG: obey commands(robot),

at(end-of-hallway,robot),
¬on(lights),
looked for(victim,room)?

IG: maintain health(servers)

Notes: The required operating conditions of the normal-light
camera are different, a fact that is expressed by a logical
formula (lighted(room)).

PHASE 6: The operator gives permission to cancel the
lights-off goal.

H: “Um, cancel keep lights off.”
R: “OK, goal cancelled.”

CG: light-level(OK)
AG: obey commands(robot),

at(end-of-hallway,robot),
looked for(victim,room)?

IG: maintain health(servers)

Notes: The robot enables the light and conducts the search,
finding no victim. It leaves the room and continues to the
rendezvous point, watching for doorways on the way.

The execution trace demonstrates how goals and op-
erational constraints at different levels interact. The goal
manager uses a simple first-order resolution-type inference
procedure to detect conflicts; this is only possible because
all components maintain their goals and constraints in a

common (quantifier-free) first-order logical representation.
In many cases, the goals persist throughout the run (e.g.,
the agent-level obey commands(robot) or the infrastructure-
level maintain health(servers)). These represent long-term
goals built into the system. A video of the full evaluation
can be viewed at http://hri.cogs.indiana.edu/
videos/icra10.wmv.

VI. DISCUSSION

As we demonstrated, a logical language used to rep-
resent dynamic functional constraints in complex robotic
architectures can significantly simplify the identification and
handling of conflicts among different types of goals in a
complex robotic architecture. The common representation
not only streamlines the communication of constraint viola-
tions (e.g., to the central goal management component), but
it also allows for the use of common inference mechanism
across the board (e.g., to check for goal consistency or to
determine possible ways on how to resolve goal conflicts).
However, which way to resolve a conflict if there are multiple
options, or whether to resolve it at all when it is detected,
is not clear. In the example scenario above, for example, the
vision system continuously monitored the light conditions,
and could have actively informed the goal manager. Instead,
a passive approach was taken in which the vision system gave
no indication of the problem until the task manager made a
sensing request. This suggests that there are several options
on how the system could react to goal inconsistencies,
including:

• Actively monitor and attempt to resolve problems imme-
diately when detected. In some cases this will have the
benefit of saving time at the point when the component
is used, for example, the operator query could be issued
while the robot is traversing the hallway and the conflict
resolved before the task manager makes the request for
visual information. Moreover, in cases where conflict
cannot be resolved, the system can rule out future
actions that depend on the component in question (e.g.,
bypassing any rooms encountered instead of entering
them if the human operator does not give permission to
activate the light).

• Actively monitor, but postpone resolution attempts until
it becomes clear that the fault is critical. This could
save a busy operator from having to respond to the
request in cases where the fault is unimportant, such
as a case in which an added time constraint precludes
any further searching and the constraint violation would
never cause a problem for the robot’s goals. Moreover,
the information would be immediately available in case
the goal manager (or some other system component)
actively seeks information about the present operating
conditions.

• Postpone constraint-checking until the request is made.
In some cases, detecting a problem may be prohibitively
expensive, or the probability that the component will be
accessed very small, making active monitoring unattrac-
tive. This option would not preclude other servers



from making preemptive checks on the components
constraints, although it would take longer to respond
to such requests.

In the example scenario described above, the policy was
to actively monitor but postpone notifying the goal manager
(while the operator was informed). Monitoring the light level
is relatively inexpensive, but the uncertainty regarding the
need for visible-light sensing (i.e., the possibility of dynamic
temporal constraints precluding future room searches) made
the policy of immediate constraint repair unsuitable. The
assumption here is that the operator in a USAR scenario
will typically be under significant cognitive load, potentially
interacting with multiple robots at different stages of their
searches, so a higher emphasis is placed on avoiding unnec-
essary interactions. In some cases, such as when resolving
the problem will be time-consuming, the added request may
be deemed appropriate. Consequently, the decision on which
strategy to use in response to actual and possible goal incon-
sistencies will dependent on multiple factors, and isolating
these factors seems a worthwhile direction for future work.

VII. CONCLUSION

In this paper, we proposed the use of a common logical
representation for agent goals, infrastructure goals, and oper-
ating constraints on functional components in the architecture
(“component goals”). Encoding constraints of these different
types of goals in a logical form allows for the detection and
possible resolution of conflicts that could otherwise severely
impact if not end a complex robot’s operation. We integrated
this common representation into the DIARC architecture,
implemented in the ADE infrastructure, and demonstrated its
use in a urban search and rescue scenario. In the evaluation,
the system was able to resolve a potentially fatal conflict
between a goal from the human operator and the operational
requirements of a system component.

System-wide integration of a common logical represen-
tation of these constraints not only facilitates a systematic
approach to handing conflicts, but it also opens the door
to more informed conflict resolution approaches with the
potential to further streamline and improve the coordination
among heterogeneous components. In future work, we intend
to explore questions such as how to deal with potential
conflicts. It is likely that some problems could be detected
early on by examining future execution traces of currently
active scripts (in service of currently active goals). This
could allow for better action selection, such as when multiple
action sequences lead to outcomes that satisfy a given goal,
but one or more has the possibility of running afoul of the
requirements of a needed component.

Similarly, extending the capabilities of a planner to an-
ticipate and handle component requirements could signifi-
cantly improve a robot’s performance. E.g., a planner could
schedule a sensing action to check whether the current
operating conditions are outside the acceptable range of
critical components and trigger replanning based on the new
information; or better yet, generate a conditional plan that
includes the sensing action to check the current conditions

and includes a branch to handle that contingency, potentially
obviating the need for replanning. Using a common logical
representation for operational constraints would simplify
the application of these techniques, which should lead to
quantifiable performance improvements.

REFERENCES

[1] Virgil Andronache and Matthias Scheutz. Design and experimental
validation of a minimal adaptive real-time visual motion tracking sys-
tem for autonomous robots. In Proceedings of the 2005 International
Conference on Artificial Intelligence, pages 663–669, Las Vegas, NV,
June 2005.

[2] Timothy Brick, Paul Schermerhorn, and Matthias Scheutz. Speech
and action: Integration of action and language for mobile robots.
In Proceedings of the 2007 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1423–1428, San Diego, CA,
October/November 2007.

[3] Timothy Brick and Matthias Scheutz. Incremental natural language
processing for HRI. In Proceedings of the Second ACM IEEE
International Conference on Human-Robot Interaction, pages 263–
270, Washington D.C., March 2007.

[4] R. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, 1986.

[5] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn.
What to do and how to do it: Translating natural language directives
into temporal and dynamic logic representation for goal management
and action execution. In Proceedings of the 2009 International
Conference on Robotics and Automation, Kobe, Japan, May 2009.

[6] James Kramer and Matthias Scheutz. ADE: A framework for robust
complex robotic architectures. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4576–4581, Bejing, China,
October 2006.

[7] James Kramer and Matthias Scheutz. Reflection and reasoning
mechanisms for failure detection and recovery in a distributed robotic
architecture for complex robots. In Proceedings of the 2007 IEEE
International Conference on Robotics and Automation, pages 3699–
3704, Rome, Italy, April 2007.

[8] James Kramer and Matthias Scheutz. Robotic development environ-
ments for autonomous mobile robots: A survey. Autonomous Robots,
22(2):101–132, 2007.

[9] James Kramer, Matthias Scheutz, and Paul Schermerhorn. ‘Talk to
me!’: Enabling communication between robotic architectures and their
implementing infrastructures. In Proceedings of the 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages
3044–3049, San Diego, CA, October/November 2007.

[10] Eric Martinson and Derek Brock. Improving human-robot interaction
through adaptation to the auditory scene. In HRI ’07: Proceedings of
the ACM/IEEE international conference on Human-robot interaction,
pages 113–120, New York, NY, USA, 2007. ACM.

[11] N. Melchior and W. Smart. A framework for robust mobile robot
systems. In Proceedings of SPIE: Mobile Robots XVII, volume 5609,
2004.

[12] Christopher Middendorff and Matthias Scheutz. Real-time evolving
swarms for rapid pattern detection and tracking. In Proceedings of
Artificial Life X, pages 419–425, June 2006.

[13] K. Reichard. Integrating self-health awareness in autonomous systems.
Robotics and Autonomous Systems, 49(1-2):105–112, November 2004.

[14] Matthias Scheutz. ADE - steps towards a distributed development and
runtime environment for complex robotic agent architectures. Applied
Artificial Intelligence, 20(4-5):275–304, 2006.

[15] Matthias Scheutz. Real-time hierarchical swarms for rapid adaptive
multi-level pattern detection and tracking. In Proceedings of the 2007
IEEE Swarm Intelligence Symposium, pages 234–241, April 2007.

[16] Matthias Scheutz and Virgil Andronache. Architectural mechanisms
for dynamic changes of behavior selection strategies in behavior-based
systems. IEEE Transactions of System, Man, and Cybernetics Part B,
34(6):2377–2395, 2004.

[17] J. Trafton, N. Cassimatis, M. Bugajska, D. Brock, F. Mintz, and
A. Schultz. Enabling effective human-robot interaction using
perspective-taking in robots. IEEE Transactions on Systems, Man and
Cybernetics, 25(4):460–470, 2005.


