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Abstract

We proposea researchstrategy to study the evolution of
affective statesand analyzethe requirementsfor simulated
environmentsto be appropriatefor experimentswith affec-
tive agentarchitectures. We presentthe simulation model
and agentarchitectureusedin our experimentsto demon-
stratethat (1) primitive emotionalstates(suchas“fear” and
“anger”) andprimitive motivationalstates(suchas“hunger”
and“thirst”) canplayanimportantrole in thecontrolandco-
ordinationof agentsin agentsocieties,and(2) suchstatesare
very likely to evolve (in certainenvironments).

Introduction
The potential of affective statesas efficient and powerful
coordinatorsandcontrollersof agentbehavior hasbecome
appreciatedin recentyears,aswitnessedby the increasing
numberof researchprojectsonthis topic(e.g.,Maes(1991),
Tyrrell (1993),theLEE model(MenczerandBelew 1996),
SpierandMcFarland(1998),theCathexis model(Velásquez
1997), the Abbot model (Cañamero1997) and its exten-
sions,the Kismet model(Breazeal1998),Seth(2000), the
variousmodelsby the SAB community(e.g.,seeMeyer et
al. 2000) and many others.1 Especiallyin complex and
unpredictableenvironmentswhereagentshave limited re-
sources(e.g.,computationalpower, memorycapacity, etc.)
andsensoryinformationisnotreliable,classical(rationality-
based)decisionmethodsto determinethebestactionfor an
agent(from its currentsensoryinformation,its internalstate,
its currentgoals,its knowledge,etc.) arenot applicable.In
suchcircumstances,whereit is impossibleto provide com-
plete,perfect,andreliableinformation,mechanismsrelying
on affective states(suchas motivations,desires,attitudes,
preferences,moods,andsomeemotions)canbevery effec-
tiveandcanserveascontext-sensitiveinitiatorsmodulators,
andregulatorsof anagent’sbehavior. While naturalsystems
are the canonicalmodelsfor affect-basedcontrol systems,
little is known aboutthe evolutionarytrajectoriesof affec-
tive mechanisms,i.e., underwhat conditionsvariouskinds
of affective statesarelikely to evolve in competitive multi-
speciesenvironmentsandwhattheevolutionaryadvantages

1For spacereasonswe only list projectsherethat arealsore-
ferredto later in this paper. For anoverview of othermodels,see
for examplePfeiffer (1988)or Picard(1997).

of affective statesarequa control statesover othercontrol
states.An answerto thesequestionsmayhelpusunderstand
how affect is groundedin theinteractionof agentswith each
otherandtheirenvironments.

In this paper, we attemptto contributeto answeringthese
questionsby focussingon two different kinds of affective
states:primitive “motivationalstates”(or drives) andprim-
itive “emotionalstates”.For easyreference,we will put the
labels“hunger” and“thirst” on the former, and“fear” and
“anger” on the latter, while keepingin mind that the states
usedin thesimulationsbelow maybearvaryingresemblance
to the variousstateswith the samelabelsfound in nature.
Wefirst sketcharesearchstrategy to studyaffectivestatesin
agentarchitectures,and then demonstratethis strategy by
examining the evolutionary trajectoryof particularagents
without theabove affective statesto agentwith thosestates
in a simulatedenvironment.While we stressthefunctional
rolesandevolutionaryadvantagesprovidedby many affec-
tive mechanisms,we do not claim that all affective states
arebiologically advantageous(somemaybeby-productsof
usefulmechanismswithoutbeingusefulin themselves,e.g.,
seeSloman2000a). An analysisof disadvantageousaffec-
tiveprocesses,however, is beyondthescopeof thispaper.

A Strategy for Studying Affective States and
their Origin

The notion of an “affective state”stateis a so-calledclus-
ter concept,which defiestheusualcharacterizationof clas-
sical conceptsin termsof necessaryand sufficient condi-
tions.Worseyet,mostof its subspeciesareclusterconcepts
themselves,in particularthenotionof “emotion” (thereare
numerousdifferent,partly incompatiblecharacterizationsof
what emotionsare in psychologyalone,e.g., seeGriffiths
1997). Not surprisingly, neitherterminology, nor concep-
tual underpinningsof different forms of affect form a uni-
form picture in AI either. While someseeemotionsas
specialkinds of motivations(e.g., Breazeal,1998), others
draw a distinctionbetweenmotivationsandemotions(e.g.,
Cãnamero1997).We believe thatthesediscrepanciesresult
to a largeextent from thefact thatmentalconceptsseemto
be intrinsically architecture-basedconcepts.Hence,a sat-
isfactoryanalysisof suchconceptswill needto show how
affectivestatesdependon andcontributeto importantcapa-



bilities within anagentarchitecture(Sloman2000a).
W
�

ithout beingableto go into any detail in this paper, we
suggestthat what underwritesthe commonuseof the term
“affective” is essentiallytheconceptof a controlstate(Slo-
man1993),andthatwhile noteverycontrolstateis anaffec-
tivestate,thesubclassof affectivecontrolstatescanbechar-
acterizedby adistinctionbetween“belief-like” and“desire-
like” states:if a system’s behavior changesaninternalstate
to make it fit reality, thenthis stateis “belief-like”, whereas
if thesystemchangesreality to make it fit theinternalstate,
thenit is “desire-like” (ScheutzandSloman2001).It is this
distinctionbetweenbelief-likeanddesire-likecontrolstates
thatcangiveusahandleonhow to construeaffectivestates,
namelyasdesire-likecontrol states, whoserole is initiating,
evaluatingandregulating,internalor externalbehavior (as
opposedto merelyacquiring,interpreting,manipulating,or
storinginformationthatmight or might not beusedin con-
nectionwith affective statesto initiate or controlbehavior).
We shallusetheterm“affective states”in this sensefor the
remainderof this paper.

Sinceaffective states–theway we construethem–arethe
springsandguidesof action(andsometimesdisruptiveside-
effectsof suchspringsandguides)in naturalsystems,we
would like to understandthe logical spaceof possibleaf-
fective statesto beableto utilize themin artificial systems.
Thereseemto be two partly overlappingclassesof three
questionseachthatarerelevantin thecontext of our under-
standingof affective states.The first classconcernsaffec-
tive statesasthey occurin nature,asking(1) whataffective
statesareandwhat differentkinds of affective statesthere
are,(2) how andwhy affectivemechanismscameabout,and
(3) what their function (if they have a function) is in infor-
mationprocessingarchitectures.Thesecondclassaskssim-
ilar questionsabouta wider setof affective statesin actual
organisms,theoreticallypossiblebiological organismsand
artificial agents. This leadsto an additionalquestion: (4)
how cansuchaffectivemechanismsbeincorporatedin agent
architecturesandimplementedin realandsyntheticagents?

Conceptualanalysesof affectivestatesaremostlytargeted
at answeringquestions(1) and(3), investigationsin theem-
pirical sciencesmostlyattemptto answerquestions(2) and
(3) (especiallyin thelastdecadecognitivescientistspaidin-
creasingattentionto the evolutionarycontext, in which af-
fective stateshave developed).Successfulimplementations
of AI models,on the other hand,which employ (simple)
affective statesto control the behavior of simulatedor real
agents,provide (partial) answersto questions(3) and (4)
(with respectto theimplementedmodel),but do not answer
questions(1)or (2) (for one,becausemodelsthatdonotcon-
trasttheir implementationwith alternativewaysof achieving
thesamegoal,arein a sensemere“existenceproofs” show-
ing thatcertainaffectivestatescanassumeaparticularfunc-
tional role in a particularsystem).

We believe that an answerto thesequestionwill likely
not comeforth from independentinquiries,but from thein-
terplayof conceptualanalyses,empiricalfindingsandcon-
creteexperimentswith agentarchitectures.Theproposedre-
searchstrategy thenis to startwith anotionof affectivestate,
which is applicableto naturalsystems,determine/defineits

function in a particularagentarchitectureandsubsequently
try to explorethepropertiesof this statefor concreteagents
in differentenvironmentswith thegoalof extendingtheno-
tion to more complex cases. This includesinvestigating
ways in which slight changesin environmentscanchange
thetradeoffsbetweendesignoptionsfor thearchitectureand
hencefor the functional role of the affective state. Such
explorationsof “neighborhoodsin designandnichespace”
(e.g.,Sloman2000b)will helpusunderstandwhatthecom-
petitive advantageof a particularchangein architectureor
mechanismmight be in a particularenvironment,andhow
thebenefitschangein slightly differentenvironments.

Requirements for the Experimental Setup
To be able to study the origins of affective statesfrom
anevolutionaryperspectiveandeffectively experimentwith
differentkindsof agentarchitectures,agenuineartificial life
simulationenvironmentis required,within which different
speciesof agents(with differentarchitecturesandpossibly
differentbodies)cancoexist andprocreate. Both require-
mentsarecrucial; thefirst, becauseaffective statesin natu-
ral systemsdid notevolve in isolation,but ratherin compet-
ing multi-speciessocieties. Hence,to fully appreciatethe
benefitsof affective states,we needto study the tradeoffs
betweendifferentcontrol architecturesin competitionwith
eachother. A modelemploying affective statesin thecon-
trol of a particularisolatedagentor a groupof agentswith
identical architectures is necessarilysilent about the evo-
lutionaryadvantageof affective control over otherwaysof
controlling andregulatingbehavior (e.g.,by virtue of vari-
ouskindsof non-affectivereactiveor deliberativeprocesses)
in a multi-speciesenvironment.The fact thatagentsof one
kind performbetterthanagentsof anotherkind if testedin-
dependentlydoesnotshedany light on their performancein
mixedgroups.

The secondrequirementis equally important, because
classicgeneticalgorithms(GAs)assessthefitnessof agents
basedon a static, predeterminedfitnessfunction and can
hardly(if atall) do justiceto thedynamicsof thelocal inter-
actionsof agentswith their (changing)environments,which
in theenddeterminesreproductivesuccess(e.g.,seeKauff-
man1995). Thereareseveralproblemswith specifyingfit-
nessexplicitly besidesevolutionaryplausibility. For one,it
is not clear what architecturalfeaturesto selectfor if the
taskat handis to evaluatetherole andpotentialof affective
statesin differentagentarchitecturesfrom an evolutionary
perspective. Furthermore,asagentsandtheir architectures
changeover time togetherwith the environment,adaptive
fitnesschangesaswell, which would have to be somehow
reflectedin thefitnessfunction(for amoredetaileddescrip-
tion of the differencesbetweenexogenousandendogenous
fitnessand somereasonswhy endogenousfitnessis to be
preferredin suchasimulationsetup,seeMenczerandBelew
1996). In general,it seemsthatwe shouldrefrain from im-
posingany particularbehavioral criteriaonagentsotherthan
their ability to procreatesoasto not biastheir evolutionary
trajectories.

This is not to say that GAs cannotbe employed suc-
cessfullyto evolve functioningagentswith certainkindsof



affective states. In fact, our resultsbelow indicatethat it
should� be(relatively) easyto evolve agentswith controllers
thatimplementcertainprimitiveaffectivestateswith a clas-
sic GA, if they evolveevenin competitivemulti-agentenvi-
ronments.Whatsimply doesnot follow automaticallyfrom
classicGA experimentsis that the sameresultscould have
beenobtainedif fitnesshadbeenassessedimplicitly by al-
lowing the agentsto procreatein competitionwith other
speciesor subspecies(unlessall thefactorsthatcouldpossi-
bly leadto andberesponsiblefor theprocreationof anagent
arepartof theexplicit fitnessfunction).

Otherdesiderataincludespatialcontinuity (to eliminate
any potential influenceof grid structures),temporalsen-
sitivity (to be able to study temporaltrade-offs of actions
and processingmechanisms),at least two resourcesthat
agentsneedto obtain(to make the decisionprobleminter-
esting,e.g., Tyrrell 1993, or Spier and McFarland1998),
andLamarckianmutationmechanisms(to be able to con-
trol modificationsandextensionsof certaincomponentsof
anarchitecture).2

We have developedthe SimWorld3 modelbasedon the
above requirementsin orderto be ableto studythe origins
androlesof affective statesin agentsocietieswith possibly
many differentkinds of agents. In the following, we will
first describethe experimentalsetup,the agentsand their
architecturesusedin the experiments,andthenpresentthe
mainresults.

The SimWorld Simulation Environment
SimWorld consistsof anunlimitedcontinuoussurfacepop-
ulatedwith variousspatiallyextendedobjectssuchasvar-
ious kinds of agents,static obstaclesof varying size, and
food and water sources,which pop up within a particular
area(usuallyof about700by 700units)anddisappearafter
a pre-determinedperiodof time, if not consumedby agents
earlier. Agentsare in constantneedof food andwater as
moving consumesenergy and water proportional to their
speed–even if they do not move, they will still consumea
certainamountof both. Whenthe energy/waterlevel of an
agentdropsbelow a certainthreshold� , agents“die” and
areremovedfrom thesimulation.They alsodie andarere-
moved,if they run into otheragentsor obstacles.

All agents are equipped with exteroceptive “sonar”,
“smell”, and“touch” sensors.Sonaris usedto detectob-
staclesandotheragents,smellto detectfoodandwater, and
touch to detectimpendingcollisionswith agentsor obsta-
clesaswell asconsumablefood andwatersources.In ad-
dition, the touchsensoris connectedto a globalalarmsys-

2Note that this is for methodologicalreasonsonly. As long as
thesemutationoperationsarefeasibleusingDarwinianmutation,
we can justify performingoperationsdirectly on the architecture
insteadof performingthemongeneticrepresentations.As anaside,
it is alwayspossibleto regardarchitecturesasrepresentationsof
themselves,althoughit is doubtful thatorganismswould usesuch
anuncompressedcode.

3The SimWorld environment builds on the SimAgent
toolkit developed by Aaron Sloman and colleagues at the
University of Birmingham, which is freely available at
http://www.cs.bham.ac.uk/research/simagent/.

tem, which triggersa reflex beyond the agent’s control to
movetheagentawayfrom otheragentsandobstacles.These
movementsaresomewhat erraticandwill slightly reorient
theagent(thushelpingit to getoutof “local minima”). Fur-
thermore,agentshave two proprioceptive sensorsto mea-
suretheir energy andwaterlevels,respectively.

On the effector side, they have motors for locomotion
(forward andbackward), motorsfor turning (left andright
in degrees)anda mechanismfor consumingfood andwa-
ter (which canonly be active, whenthe agentis not mov-
ing). Whenagentscometo a halt on top of a food or water
source,their ingestionmechanismsuppressesthemotorsfor
locomotionuntil the item is consumed,which will take a
time proportionalto the amountof energy/waterstoredin
the food/watersourcedependingthe maximumamountof
food/wateranagentcantake in at any giventime.

After a certainage � (measuredin termsof simulation
cycles),agentsreachmaturity andcanprocreateasexually.
Sincethe energy for creatingoffspring is subtractedfrom
the parent,agentswill have a variablenumberof offspring
dependingon theircurrentenergy level (from 0 to 4), which
pop up in the vicinity of the agentoneat a time. Sincea
mutationmechanismmodifieswith a certainprobability �
someof the agent’s architecturalparameters(e.g., suchas
connectionweightsin aneuralnetwork),someoffspringwill
startoutwith themodifiedparametersinsteadof beingexact
copiesof the parent. Note that both parameters,� and � ,
canbeusedto specify, whetherthesimulationis usedasan
exogenousor asanendogenousfitnessmodel.

Agents, Architectures and Behaviors
While differentagentsmay have different(implicit) short-
termgoalsat any giventime (e.g.,gettingaroundobstacles,
consumingfood, reachinga water sourcefasterthan an-
otheragent,or having offspring),commonto all of themare
two (implicit) long-termgoals: (1) survival (to get enough
food/waterandavoid runninginto obstaclesor otheragents),
and(2) procreation(to live longenoughto haveoffspring).

In the following experiments,we study different kinds
of relatedagents,which all possessthe samearchitectural
components(but not all the samelinks amongthem). All
agentsprocesssensoryinformationandproducebehavioral
responsesusingaschema-basedapproach(Arkin 1989).Let���	��

�����������������

beanindex setof thefour typesof ob-
jectsfood, water, obstacle, andagent–all subscriptvariables
will rangeover this set unlessstatedotherwise. For each
objecttypein

���	�
, a forcevector ��� is computed,which is

the sum,scaledby �! #" $	" % , of all vectors $ from the agent
to theobjectsof type & within therespective sensoryrange,
where‘ " $	" ’ is the lengthof vector $ . Thesefour perceptual
schemasarethenmappedinto motorspaceby the transfor-
mationfunction ')(+*-, 
/.10-2 � 0�34.65�2 � 5�34.1712 � 763�.1892 � 8 for&;: ���	� , whereeach

. � is therespective gainvalue. These
gainvaluesareprovidedby theoutputlayerof a three-layer
interactiveactivationandcompetition(IAC) neuralnetwork
with four inputunits & � , four hiddenunits <#&>= , andfour out-
put units

�!?��
(RumelhartandMcClelland,1986)via indi-

vidual scalingfunctions
� ��(@*�, 
 * 2�A � 3CB � (where

B � is



thebasegain valueand
A � thescalingfactorfor the activa-

tion of
�!?�� � ). The input layer is connected(againvia simi-

lar scalingfunctions)to theinternalwater( & �D5 ) andenergy
level sensors( & �E0 ) aswell as the global alarmmechanism
(which sendsan impulseto & � 7 or & � 8 units dependingon
whetherthe alarmwastriggeredby an impendingcollision
with anagentor anobstacle).Notethatneuralnetworksem-
ployedin othersimulationsto controlthebehavior of agents
(MenczerandBelew 1996,Seth2000,et al.) usuallycom-
putethemappingfrom sensorsto effectors,while theneural
network hereis intendedto implementtheaffectivesystem,
thusaddinganotherlayer on top of the input-outputmap-
ping (which is accomplishedin a schema-basedmanner;of
course,this mapping,in turn,couldhavebeenimplemented
asneuralnetwork aswell).

The choice of IAC units over standardperceptronsis
basedon their updaterule, which is particularly suitedto
implementimportanttemporalfeaturesof affectivestatesin
that it (1) takesinto accountthepreviousactivation(hence,
canbe usedto implement“inner states”),and(2) incorpo-
ratesa decayterm to raiseor lower the activation to a pre-
determinedbaselevel (both featuresthat seemto be typi-
cal of the temporaldevelopmentof certainaffective states,
e.g.,basicemotionalstates).Verysimilarupdaterules(with
only minor differencesto IAC units) arealsousedin other
implementationsof systemswith affective states,although
they usuallygo by a differentname(e.g.,in theCathexis or
Kismetmodels).

Althoughfully connectedIAC networksarepossible,we
will focusonasubsetof networksat thispointto avoid com-
plexity, whereweightsbetween& � � and <9&F= � arealwaysnon-
zeroandweightsbetween<9&F=G� and

�!?�� � , call them
�!� � , may

be non-zero,all otherweightsbeingzero. In basicagents,
then,each

�!� � is zeroandasaresultthecorrespondinggain
value

. � 
HB � , i.e., constant.Consequently, thebehavior of
suchagentsis completelydeterminedby their inputs: inner
states,aspossiblyimplementedby thehiddenunits,do not
contribute to their behavior, which is entirely reactive. Ba-
sic agentsarecontrastedwith extendedagents, wheresome�!� � arenon-zeroandgainvaluesin ' canconsequentlyvary
dependingon thestateof theneuralnetwork.

As onemightexpect,thedifferencesin behavior between
the variouskinds of agentscanbe very subtleasthe influ-
enceof thehiddenunitsonthegainvaluescanbeverygrad-
ual, andhencevery difficult to detect.It is thereforecrucial
to look at a time-framelarger thanthe life-time of a single
agentto be able to evaluatethe advantagesand disadvan-
tagesof differentweight values,in particular, in competi-
tive multi-agentenvironments. In fact, most tradeoffs are
only visible in simulationsof many generationsof agentsin
differentcombinationsunderdifferentenvironmentalcondi-
tions. Nevertheless,it is possibleto sketch a few general
behavior tendencies.Thebasicagents,for example,always
behavein thesamewaygiventhattheir gainvaluesarecon-
stant:with positive

. 0 
I. 5
they behave like the“consume

nearest”strategy in environmentswithout obstacles(Spier
andMcFarland1998). Negative

.17J
H.18
valueswill make

themavoid obstaclesandotheragents.In extendedagents
(with thesamegainvalues)thedegreeto which they engage

in the respective behaviors will in additionto the sign and
strengthof the weightsdependon the activation of the re-
spectivehiddenunitsandhencevaryfrom timeto time(e.g.,
they tendto avoid food, if they arenot “hungry”).

The Evolution of Simple Emotional States
We have shown elsewhere(althoughin a slightly different
setup,seeScheutzandSloman2001)thatagentswith pos-
itive

�!� 0
and

�!� 5
weights,call themmotivationalagents,

arelikely to evolve from basicagentsindependentof many
environmentalconditionssuchasthe frequency of appear-
anceof new food and water sources,or the numbersand
initial distributionsof foodandwatersources,obstaclesand
agents.We arguedthat theseagentsimplementtwo prim-
itive motivationalstates,i.e., “hunger” and “thirst” drives.
Hereweextendtheseresultsto agentswith additionalaffec-
tive states,the primitive emotional“fear” or “anger” state
(we first presenttheresultsandthenjustify thelabelsin the
next section).

We start with environmentspopulatedonly by motiva-
tional agentsandallow for mutationof

�K7
and

�K8
by the

fixedmutationfactor L 
NM9O M1P
. Wheneveranagenthasoff-

spring,theprobability � for modificationof any of the two
weightsis 1/3(i.e.,1/6for increaseor decreaseby L , respec-
tively). Theresultsareshown in Table1: in 8 out of 20 runs
of the simulation,where20 agentswere randomlyplaced
in anenvironmentwith 30obstacles,some(mutated)agents
survivedafter the maximumnumberof 100000updatecy-
cles(which is theequivalentof 400to 500generationsgiven
that the averagelife-time of agentsis around220cyclesin
thosesimulations).Table2 showsaverageandstandarddis-
tribution of thevariousweightvaluesthatwereevolvedby
eachsurviving group. Note that surviving groupsare ex-
tremely uniform, i.e., agentswithin such groupsall have
very similar weights. If we correlatethenumberof surviv-
ing agents(abbreviatedby ‘ Q ’) with themagnitudesof their
respectiveweights,thenwe find a stronganti-correlationof
-0.97 betweenQ andpositive

� 7
(indicating that beingat-

tractedby obstaclesis not conducive to survival), little cor-
relationbetweenQ andpositive

��8
(indicatingthatbeingat-

tractedby otheragentsmayonly do very little for survival),
but quite strongcorrelationsof 0.66 betweenQ and nega-
tive

�K7
, and0.79 betweenQ and

�K7
(indicatingthat being

repelledby obstaclesandespeciallyotheragentswill facili-
tatesurvival). We alsocomputedvariousothercorrelations
betweenthe two weightsandgroupsof agents(e.g., taken
over the whole courseof evolution or over a restrictedpe-
riod) and have found a similar picture with respectto the
orderingof thecorrelations(althoughwith differentvalues).

Analysis
Given the above results,how canwe saythat agentsdo or
do not implementcertainaffective states?First, it is cru-
cial to distinguishbetween(at least)two classesof affective
statesthataresupportedby thearchitectureandgroundedin
a differencebetweenthe inputs to the neuralnet and their
connectionto entitiesin theworld: inputscomingfrom the
energy andwater level sensorscanbe regardedas indicat-



Table1: The resultof placing20 motivationalagentswith�KRS
TM#OVU
and

�XWY
NM9OVP
in anenvironmentwith 30 obstacle

usinga plant rateof 0.25 andwater rateof 0.25 averaged
over20 runsof 100000simulationcycleseach.Z [ \^]`_

Ali ve 4.85 7.37 2.85
Thirst 157.25 103.87 40.16

Hunger 1011.25 631.39 244.11
Crashed 2064.85 1299.83 502.54

Table 2: The numberof surviving agentsand the average
valuesof their evolved

�K7
and

�K8
weightsfor the8 simula-

tionswith any surviving agent.
Num. acb acd KindsZ [ Z [ Obsts Agents

4 0.0 0.07 -0.41 0.03 - f
4 0.48 0.05 0.31 0.06 a -
7 0.0 0.04 -0.01 0.13 - -
12 -0.43 0.08 0.68 0.08 f a
13 -0.09 0.05 0.16 0.03 - -
16 0.24 0.12 0.51 0.10 - a
18 0.11 0.11 -0.61 0.09 - f
23 -0.56 0.07 -0.79 0.08 f f

ing discrepancy valuesbetweentheactuallevel andthenor-
mal/optimallevel of a controlled“physiological” variable.
Hence,the links from proprioceptivesensorsto input units,
to hiddenunits, to output units, andfinally to gain values
canbeseento implementtheprocessingof anerror signal,
whichindicatesthatahomeostaticvalueis outsideof its nor-
mal range,to adjustbehavior. Suchprocessesaretypically
identifiedwith drives(e.g.,seethevariousreferencesto Mc-
Farland’searlierworksin Spier1998).In theabovecase,by
virtue of theconnectionsto the(simulated)energy andwa-
ter level sensors,thesecorrespondto “hunger” and“thirst”
drives.

The other two links, basedon inputs coming from the
globalalarm,however, donotseemto implementdrives.For
one,they arenot connectedto a proprioceptive sensorthat
measuresthe stateof an internalvariable. Rather, they are
connectedto a mechanismsthatcanbeusedto measurethe
frequency of encounterswith certainkindsof objectsovera
particularperiodof time. While onealarmtriggeringmight
not have mucheffect at all, high frequenciesof alarmtrig-
geringwill leadto highactivationsof thecorrespondinghid-
denunit,whichin turnexertinfluenceontheassociatedgain
valuein ' . Thisinfluencecanbeseenasanamplifyingor di-
minishingmodificationof thebehavior asdeterminedby the
drives,which is typical of (someconstrualsof) emotional
states(e.g.,seeCãnamero1997for a similar view). More
specifically, the implementedstatesseemto correspondto
so-called“primary emotions”(e.g.,Sloman2000a)in that
they (1)playaregulatoryrole,(2) areengagedautomatically
(by virtue of the globalalarmsystem),and(3) alter the in-
ternalstateof theagentandconsequentlyits behavior. Note
that the relationbetweensensoractivation andhiddenunit
activationis not asdirectasin thecaseof drives,but rather

indirect involving integrationover time. Furthermore,the
intensity level of theseemotionalstateswill return to nor-
mal by itself by virtue of thedecayrateof thehiddenunits
unlessnew interferingalarmtriggeringskeepit up, in con-
trastto the activationsof the drive states,which aretightly
coupledto theactivationsof theproprioceptivesensors.

Theprocessof building up activationover time,which is
not directly relatedto the activation level of someinternal
sensor, but to the frequency of externalsimulation,seems
to be typical of emotionalstateslike “fear” and “anger”.
We suggestthat dependingon the signs and strengthsof
their

� 7
and

� 8
weights,agentswill implementoneof the

two states:with asufficiently strongnegativeweight,which
createsa repulsive force causingthe agentto avoid either
otheragentsor obstacles,a “fear-like” statewill be imple-
mented,whereaswith a sufficiently strongpositive weight,
which createsanattractive forceleadingto increasinginsis-
tenceontheagent’spartto continueits currentmovement–a
behavior that could be describedasaggressive–an“anger-
like” statewill beimplemented.“Sufficiently strong”in this
context means“to be ableto influencethe behavior signif-
icantly”, which is usuallythe casefor absoluteweight val-
uesgreaterthanabout0.5 (+/- 0.1), a level reachedby half
of the weightsin surviving agents(the resultsaresumma-
rized in the rightmostcolumnof Table2, where‘a’ stands
for “anger”, ‘f ’ for “fear”, and ‘-’ for “no state”). How-
ever, awordof cautionseemsappropriateat thispointaswe
areawarethatattributionsof affectivestatesto agentsof the
above kind, which dependon whethera variablehasvalue
greaterthana given threshold,arehighly problematicand
it maybebetterto speakof degreesof affectiveinfluencein
suchcircumstances(in particular, if we arelooking at inter-
mediarystagesof evolutionarytrajectories).

Discussion and Future Work
The above experimentsdemonstratethe researchstrategy
suggestedearlier, which we believe will helpusunderstand
the role and origins of affective statesas well as the po-
tential usesaffective statescanbe put to in the control of
agents.Furthermore,the experimentsconfirm that if there
arearchitecturalcomponentsthat canimplementthem,af-
fectivestateslike “hunger”,“thirst”, “fear”, and“anger”are
likely to evolve, even in very competitive multi-agenten-
vironments. The degreeof competitivenessof theseenvi-
ronmentsis apparentfrom the fact that on averageany ba-
sic agentis still alive after 100000updatecyclesin only 1
out 20 runsof a simulationwithout mutation. This goesto
show that the evolved affective statesare not only benefi-
cial to theindividualagent,but alsoleadto behavior, which
benefitsthewholespecies.More specifically, agentsusean
improvedversionof the

Ae?-fhg = f�� & A & � strategy (e.g.,Spier
andMcFarland1998) to foragefor food andwater, which
takesthe“clumpiness”(Seth2000),i.e.,thedegreeto which
agentstendto stick together, into account.

We useda schema-basedagentarchitecture(quite com-
monin behavior-basedrobotics,but ratherunusualfor such
anevolutionarysetting)to show how affective statescanbe
implementedin componentslinking proprioceptivesensory
inputsandinternalglobalalarmmechanismsto components



implementingthegainvaluesof motorschemas.Thecausal
linkagesi effectedby this architecture,which enableaffec-
tive statesto exert influenceon the agent’s behavior at any
given time, is what makesthemaffectivestatesin the first
place. Furthermore,the architectureobviatesthe needfor
explicit action-selectionmechanismsandexplicit represen-
tationsof behaviors at the architecturelevel, which we be-
lieve to rest on a conflation of a behavioral and a mech-
anistic level of descriptionand explanation(seealso Seth
2000). In otherwords,our agentscanstill canbe engaged
in a “go-towards-food”behavior, thenget interruptedby a
“veer-around-obstacle”behavior, becomeattractedto wa-
ter andengagein a “deviate-from-original-course-to-drink-
water” behavior, and so on without the needfor similarly
labeled,functionalcomponentsin theagentarchitecture(as
seemsto beverycommon,e.g.,Maes1991,Velásquez1997,
Breazeal1998,etal.). A unwantedconsequenceof suchex-
plicit representationsof behavior is thataffectivestates(e.g.,
“hunger”) areoften, in our view unnecessarily, associated
with a particularbehavior (e.g., “seeking-food”)at the ar-
chitecturelevel. Suchdesigndecisions,however, needto
be justified and a caseneedsto be madethat thesestates
are indeed“affective states”andnot merely local parame-
ters that exert influenceon the behavior “only” when the
behavior is “active” or whenthe behavior is selected(e.g.,
by animplicit action-selectionmechanismusinga “winner-
takes-it-all” comparisonof “activation levelsof behaviors”,
e.g.,Velásquez1997).Suchimplementationsmissthepoint
of affectivestatesaspropertiesof thewholesystemthat in-
fluencethebehaviorof thewholesystemat anygiventime.
Not surprisingly, theattribution of “affect” to suchsystems
is usuallystipulated,not arguedfor.

Theinvestigationsproposedin thispaperareastart.Many
more experimentsusing different kinds of affective states
areneededto explorethespaceof possibleusesof affective
statesandthestateof possibleaffectivestatesitself. Adding
recurrentweightsin the hiddenlayer, for example,would
allow emotionalstatesto influencemotivationalstates(and
viceversa)in amoredirectway(e.g.,thehungerdrivecould
be suppressedby strong fear, or increasinghungercould
keeptheangerlevel up). Anotherdirectionwouldbeto em-
ploy a moresophisticatedbody model(e.g.,with an artifi-
cial hormonesystemsimilar to Cãnamero1997)to increase
the numberof controllableparametersandhenceopenup
room for other affective statesto evolve. Finally, switch-
ing to sexual procreationwould facilitatemore interaction
amongagents(e.g.,competingfor mates),providing yetan-
otherdimensionfor affectivestatesto takecontrol.
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