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Abstract

We proposea researchstrateyy to study the evolution of
affective statesand analyzethe requirementgor simulated
ervironmentsto be appropriatefor experimentswith affec-
tive agentarchitectures. We presentthe simulation model
and agentarchitectureusedin our experimentsto demon-
stratethat (1) primitive emotionalstateg(suchas“fear” and
“anger”) andprimitive motivational stategsuchas“hunger”
and“thirst”) canplay animportantrole in the controlandco-
ordinationof agentsn agentsocietiesand(2) suchstatesare
very likely to evolve (in certainervironments).

I ntroduction

The potential of affective statesas efficient and powerful
coordinatorsand controllersof agentbehaior hasbecome
appreciatedn recentyears,aswitnessecdby the increasing
numberof researclprojectsonthistopic (e.g.,Maes(1991),
Tyrrell (1993),the LEE model(MenczerandBelev 1996),
SpierandMcFarland(1998),the Catheis model(Velasquez
1997), the Abbot model (Caflamero1997) and its exten-
sions,the Kismet model (Breazeall998), Seth(2000), the
variousmodelsby the SAB community(e.g.,seeMeyer et
al. 2000) and mary others! Especiallyin complex and
unpredictableervironmentswhere agentshave limited re-
sourcege.g.,computationapower, memorycapacity etc.)
andsensorynformationis notreliable,classicalrationality-
based)ecisionmethodso determinethe bestactionfor an
agent(from its currentsensorynformation,its internalstate,
its currentgoals,its knowledge,etc.) arenot applicable.In
suchcircumstancesyhereit is impossibleto provide com-
plete,perfect,andreliableinformation,mechanismselying
on affective states(suchas motivations,desires,attitudes,
preferencesnoods,andsomeemotions)canbevery effec-
tive andcansene ascontet-sensitve initiatorsmodulators,
andregulatorsof anagentsbehavior. While naturalsystems
are the canonicalmodelsfor affect-basedcontrol systems,
little is known aboutthe evolutionarytrajectoriesof affec-
tive mechanismsi.e., underwhat conditionsvariouskinds
of affective statesarelikely to evolve in competitve multi-
specieernvironmentsandwhatthe evolutionaryadvantages

For spacereasonsve only list projectsherethat arealsore-
ferredto laterin this paper For anoverview of othermodels,see
for examplePfeiffer (1988)or Picard(1997).

of affective statesare qua control statesover othercontrol
states An answelto thesequestiongnayhelpusunderstand
how affectis groundedn theinteractionof agentswith each
otherandtheirervironments.

In this paperwe attemptto contributeto answeringhese
questionsby focussingon two differentkinds of affective
states:primitive “motivationalstates”(or drive§ andprim-
itive “emotionalstates”.For easyreferencewe will putthe
labels“hunger” and“thirst” on the former, and “fear” and
“anger” on the latter, while keepingin mind that the states
usedn thesimulationsbelov maybearvaryingresemblance
to the variousstateswith the samelabelsfound in nature.
Wefirst sketcharesearclstratayy to studyaffective statesn
agentarchitecturesand then demonstratehis strat@y by
examining the evolutionary trajectory of particularagents
without the above affective statesto agentwith thosestates
in a simulatedervironment. While we stresgthe functional
rolesandevolutionaryadvantagegrovided by mary affec-
tive mechanismswe do not claim that all affective states
arebiologically advantageougsomemay be by-productsof
usefulmechanismsvithout beingusefulin themseles,e.g.,
seeSloman2000a). An analysisof disadwantageousffec-
tive processediowever, is beyondthe scopeof this paper

A Strategy for Studying Affective States and
their Origin

The notion of an “affective state” stateis a so-calledclus-
ter conceptwhich defiesthe usualcharacterizatiomnf clas-
sical conceptsin terms of necessanand sufiicient condi-
tions. Worseyet, mostof its subspecieareclusterconcepts
themseles,in particularthe notion of “emotion” (thereare
numeroudifferent,partlyincompatiblecharacterizationef
what emotionsarein psychologyalone,e.g., seeGriffiths
1997). Not surprisingly neitherterminology nor concep-
tual underpinningsof differentforms of affect form a uni-
form picture in Al either While some seeemotionsas
specialkinds of motivations(e.g., Breazeal,1998), others
draw a distinctionbetweemmotivationsand emotions(e.g.,
Calamerol997). We believe thatthesediscrepanciesesult
to alarge extentfrom the factthat mentalconceptseemto
be intrinsically architectue-basedconcepts.Hence,a sat-
isfactory analysisof suchconceptswill needto shav how
affective statesdependon andcontributeto importantcapa-



bilities within anagentarchitecturgSloman2000a).

Without beingableto gointo ary detailin this paperwe
suggesthat what underwritesthe commonuseof theterm
“affective” is essentiallythe conceptof a control state(Slo-
man1993),andthatwhile notevery controlstateis anaffec-
tive state thesubclas®f affective controlstatescanbechar
acterizedoy a distinctionbetweert'belief-like” and“desire-
like” statesif asystems behaior changesninternalstate
to malke it fit reality, thenthis stateis “belief-like”, whereas
if the systemchangeseality to malke it fit theinternalstate,
thenit is “desire-like” (ScheutandSloman2001). 1t is this
distinctionbetweerbelief-like anddesire-like control states
thatcangive usahandleon how to construeaffective states,
namelyasdesie-like contmol states whoserole is initiating,
evaluatingandregulating,internal or externalbehaior (as
opposedo merelyacquiring,interpreting,manipulatingor
storinginformationthat might or might not be usedin con-
nectionwith affective statesto initiate or control behaior).
We shallusethe term“affective states’in this sensdor the
remainderof this paper

Sinceaffective states—thavay we construethem-arethe
springsandguidesof action(andsometimeslisruptive side-
effects of suchspringsand guides)in naturalsystemswe
would like to understandhe logical spaceof possibleaf-
fective stateso be ableto utilize themin artificial systems.
Thereseemto be two partly overlappingclassesof three
guestionseachthatarerelevantin the context of our under
standingof affective states. The first classconcernsaffec-
tive statesasthey occurin nature,asking(1) whataffective
statesare and what differentkinds of affective statesthere
are,(2) how andwhy affective mechanismsameabout,and
(3) whattheir function (if they have a function)is in infor-
mationprocessin@rchitecturesThe secondcclassaskssim-
ilar questionsabouta wider setof affective statesin actual
organisms theoreticallypossiblebiological organismsand
artificial agents. This leadsto an additionalquestion: (4)
how cansuchaffective mechanismbeincorporatedn agent
architecturesindimplementedn realandsyntheticagents?

Conceptuahnalyse®f affective statesaremostlytargeted
atansweringjuestiong1) and(3), investigationsn theem-
pirical sciencesnostly attemptto answerquestiong2) and
(3) (especiallyin thelastdecadecognitive scientistgaidin-
creasingattentionto the evolutionary contet, in which af-
fective stateshave developed). Successfuimplementations
of Al models,on the other hand, which employ (simple)
affective statesto control the behavior of simulatedor real
agents,provide (partial) answersto questions(3) and (4)
(with respecto theimplementednodel),but do notanswer
guestiong1) or (2) (for one,becausenodelsthatdonotcon-
trasttheirimplementatiorwith alternatvewaysof achieving
thesamegoal,arein a sensemere“existenceproofs” show-
ing thatcertainaffective statescanassume particularfunc-
tionalrole in a particularsystem).

We believe that an answerto thesequestionwill likely
not comeforth from independeninquiries,but from the in-
terplay of conceptuahnalysesempiricalfindingsandcon-
creteexperimentswith agentarchitecturesTheproposede-
searclstratgy thenis to startwith anotionof affective state,
which is applicableto naturalsystemsdetermine/definés

functionin a particularagentarchitectureandsubsequently
try to explorethe propertiesof this statefor concreteagents
in differentervironmentswith the goal of extendingthe no-
tion to more complex cases. This includesinvestigating
waysin which slight changedn environmentscan change
thetradeofs betweerdesignoptionsfor thearchitectureand
hencefor the functional role of the affective state. Such
explorationsof “neighborhoodsn designandnichespace”
(e.g.,Sloman2000b)will helpusunderstanavhatthecom-
petitive advantageof a particularchangein architectureor
mechanisnmmight be in a particularenvironment,and how
thebenefitschangen slightly differentervironments.

Requirementsfor the Experimental Setup

To be able to study the origins of affective statesfrom
anevolutionaryperspectie andeffectively experimentwith
differentkindsof agentarchitecturesagenuineartificial life
simulationervironmentis required,within which different
specienf agents(with differentarchitecturesandpossibly
differentbodies)can coexist and procreate Both require-
mentsare crucial; thefirst, becausaffective statesn natu-
ral systemglid notevolve in isolation,but ratherin compet-
ing multi-speciessocieties. Hence,to fully appreciatehe
benefitsof affective states,we needto studythe tradeofs
betweendifferentcontrol architecturesn competitionwith
eachother A modelemploying affective statesn the con-
trol of a particularisolatedagentor a group of agentswith
identical architectuesis necessarilysilent aboutthe evo-
lutionary advantageof affective control over otherways of
controlling andregulatingbehaior (e.qg.,by virtue of vari-
ouskindsof non-afectivereactive or deliberatve processes)
in a multi-specieservironment. The factthatagentsof one
kind performbetterthanagentsof anotherkind if testedin-
dependentlgloesnot shedary light ontheir performanceén
mixedgroups.

The secondrequirementis equally important, because
classicgeneticalgorithms(GAs) assesshefitnessof agents
basedon a static, predetermineditnessfunction and can
hardly (if atall) dojusticeto thedynamicsof thelocalinter-
actionsof agentawith their (changing)ervironmentswhich
in the enddetermineseproductve succesge.g.,seeKauff-
man1995). Thereareseveral problemswith specifyingfit-
nessexplicitly besidesevolutionaryplausibility. For one, it
is not clear what architecturalfeaturesto selectfor if the
taskat handis to evaluatetherole andpotentialof affective
statesin differentagentarchitecturegrom an evolutionary
perspectie. Furthermoreasagentsandtheir architectures
changeover time togetherwith the ervironment, adaptve
fithnesschangesaswell, which would have to be somehav
reflectedn thefithnessfunction (for amoredetaileddescrip-
tion of the differenceshetweenexogenousand endagenous
fithnessand somereasonsvhy endogenouditnessis to be
preferredn suchasimulationsetup seeMenczerandBelew
1996). In generalt seemghatwe shouldrefrainfrom im-
posingary particularbehaioral criteriaon agentotherthan
their ability to procreateso asto not biastheir evolutionary
trajectories.

This is not to say that GAs cannotbe employed suc-
cessfullyto evolve functioningagentswith certainkinds of



affective states. In fact, our resultsbelov indicatethat it

shouldbe (relatively) easyto evolve agentswith controllers
thatimplementcertainprimitive affective stateswith aclas-
sic GA, if they evolve evenin competitve multi-agentervi-

ronments.Whatsimply doesnot follow automaticallyfrom

classicGA experimentss that the sameresultscould have

beenobtainedif fithesshadbeenassessednplicitly by al-

lowing the agentsto procreatein competitionwith other
specier subspeciefunlessall thefactorsthatcouldpossi-
bly leadto andberesponsibldor the procreatiorof anagent
arepartof theexplicit fithessfunction).

Otherdesideratanclude spatial continuity (to eliminate
ary potential influenceof grid structures),temporalsen-
sitivity (to be able to study temporaltrade-ofs of actions
and processingmechanisms)at leasttwo resourcesthat
agentsneedto obtain (to make the decisionprobleminter-
esting, e.g., Tyrrell 1993, or Spier and McFarland 1998),
and Lamarckianmutationmechanismgto be ableto con-
trol modificationsand extensionsof certaincomponentof
anarchitecturef.

We have developedthe SimWorld® model basedon the
above requirementsn orderto be ableto studythe origins
androlesof affective statesn agentsocietieswith possibly
mary differentkinds of agents. In the following, we will
first describethe experimentalsetup,the agentsand their
architecturesisedin the experiments andthenpresenthe
mainresults.

The SimWorld Simulation Environment

SimWorld consistsof anunlimited continuoussurfacepop-

ulatedwith variousspatially extendedobjectssuchasvar-

ious kinds of agents,static obstaclesof varying size, and
food and water sourceswhich pop up within a particular
area(usuallyof about700by 700units) anddisappeasafter
a pre-determinegberiodof time, if not consumedy agents
earlier Agentsarein constantneedof food andwateras
moving consumesenegy and water proportionalto their

speed—eenif they do not move, they will still consumea

certainamountof both. Whenthe enegy/waterlevel of an

agentdropsbelow a certainthresholdw, agents‘die” and
areremovedfrom the simulation. They alsodie andarere-

moved,if they runinto otheragentsor obstacles.

All agents are equipped with exteroceptve “sonar”,
“smell”, and“touch” sensors.Sonaris usedto detectob-
staclesandotheragentssmellto detectfood andwater and
touchto detectimpendingcollisions with agentsor obsta-
clesaswell asconsumabldood andwatersources.In ad-
dition, the touchsensoris connectedo a global alarmsys-

2Note thatthis is for methodologicateasonnly. As long as
thesemutationoperationsare feasibleusing Darwinian mutation,
we canjustify performingoperationgdirectly on the architecture
insteadof performingthemongeneticrepresentationgis anaside,
it is always possibleto regard architecturesas representationsf
themseles,althoughit is doubtful that organismswvould usesuch
anuncompressedode.

%The SimWorld ervironment builds on the SimAgent
toolkit developed by Aaron Sloman and colleaguesat the
University of Birmingham, which is freely available at
http://www.cs.bham.ac.uk/research/simagent/.

tem, which triggersa reflex beyond the agents control to
movetheagentaway from otheragentsaindobstaclesThese
movementsare somavhat erraticand will slightly reorient
theagent(thushelpingit to getout of “local minima”). Fur
thermore,agentshave two proprioceptve sensorgo mea-
suretheir enegy andwaterlevels,respectiely.

On the effector side, they have motorsfor locomotion
(forward and backward), motorsfor turning (left andright
in degrees)and a mechanisnfor consumingfood and wa-
ter (which canonly be active, whenthe agentis not mov-
ing). Whenagentscometo a halt on top of a food or water
sourcetheiringestionmechanisnsuppressethe motorsfor
locomotionuntil the item is consumedwhich will take a
time proportionalto the amountof enegy/water storedin
the food/water sourcedependingthe maximumamountof
food/wateranagentcantake in atary giventime.

After a certainagea (measuredn termsof simulation
cycles),agentsreachmaturity and can procreateasexually.
Sincethe enegy for creatingoffspring is subtractedrom
the parent,agentswill have a variablenumberof offspring
dependingntheir currentenegy level (from 0 to 4), which
pop up in the vicinity of the agentoneat a time. Sincea
mutationmechanisnmodifieswith a certainprobability
someof the agents architecturalparameterge.g., suchas
connectiorweightsin aneuralnetwork), someoffspringwill
startoutwith the modifiedparametermsteadof beingexact
copiesof the parent. Note that both parametersq and w,
canbe usedto specify whetherthe simulationis usedasan
exogenousr asanendogenoufitnessmodel.

Agents, Architectures and Behaviors

While differentagentsmay have different(implicit) short-
termgoalsat ary giventime (e.g.,gettingaroundobstacles,
consumingfood, reachinga water sourcefasterthan an-
otheragentor having offspring),commonto all of themare
two (implicit) long-termgoals: (1) survival (to getenough
food/waterandavoid runninginto obstacle®r otheragents),
and(2) procreation(to live long enoughto have offspring).
In the following experiments,we study different kinds
of relatedagents,which all possesshe samearchitectural
componentgbut not all the samelinks amongthem). All
agentgprocesssensonyinformationand producebehaioral
responsessingaschema-baseapproachArkin 1989).Let
Ent = {f,w,0,a} beanindex setof the four typesof ob-
jectsfood, water, obstacle andagent-all subscriptvariables
will rangeover this setunlessstatedotherwise. For each
objecttypein Ent, aforcevectorF; is computedwhichis
the sum, scaledby 1/[v|?, of all vectorsv from the agent
to the objectsof type+ within the respectie sensoryrange,
where*|v|" is the lengthof vectorv. Thesefour perceptual
schemasarethenmappednto motor spaceby the transfor
mationfunctionT (x) = g;-F5+9uw-Fuw+90-Fo+9q-F, for
1 € Ent, whereeachyg; is therespectie gainvalue. These
gainvaluesareprovidedby the outputlayerof athree-layer
interactiveactivationand competition(IA C) neuralnetwork
with four inputunitsin, four hiddenunits hid, andfour out-
put units out (Rumelhartand McClelland, 1986) via indi-
vidual scalingfunctions f;(z) = z - ¢; + b; (whereb; is



the basegain valueandc; the scalingfactorfor the activa-
tion of out;). Theinputlayeris connectedagainvia simi-
lar scalingfunctions)to theinternalwater(in,,) andenegy
level sensorgin;) aswell asthe global alarmmechanism
(which sendsanimpulseto in, or in, units dependingon
whetherthe alarmwastriggeredby animpendingcollision
with anagentor anobstacle) Notethatneuralnetworksem-
ployedin othersimulationgo controlthe behaior of agents
(MenczerandBelew 1996, Seth2000,et al.) usuallycom-
putethe mappingfrom sensorgo effectors,while theneural
network hereis intendedto implementthe affective system,
thus addinganotherlayer on top of the input-outputmap-
ping (which is accomplishedn a schema-baseahanner;of
coursethis mapping,in turn, could have beenimplemented
asneuralnetwork aswell).

The choice of IAC units over standardperceptronss
basedon their updaterule, which is particularly suitedto
implementimportanttemporalfeaturesof affective statedn
thatit (1) takesinto accounthe previousactivation(hence,
canbe usedto implement“inner states”),and (2) incorpo-
ratesa decaytermto raiseor lower the activationto a pre-
determinedbaselevel (both featuresthat seemto be typi-
cal of the temporaldevelopmentof certainaffective states,
e.g.,basicemotionalstates) Very similar updaterules(with
only minor differencedo IAC units) arealsousedin other
implementationof systemswith affective states,although
they usuallygo by a differentname(e.g.,in the Catheis or
Kismetmodels).

Althoughfully connectedAC networksarepossible we
will focusonasubsebf networksatthis pointto avoid com-
plexity, whereweightshetweerin; andhid; arealwaysnon-
zeroandweightsbetweerhid; andout;, call themow;, may
be non-zeroall otherweightsbeingzero. In basicagents
then,eachow; is zeroandasaresultthe correspondingain
valueg; = b;, i.e., constant.Consequentlythe behaior of
suchagentss completelydetermineddy their inputs: inner
statesaspossiblyimplementedoy the hiddenunits, do not
contributeto their behavior, which is entirely reactve. Ba-
sic agentsarecontrastedvith extendedagents wheresome
ow; arenon-zeraandgainvaluesin T’ canconsequentlyary
dependingn the stateof the neuralnetwork.

As onemight expect,the differencesn behaior between
the variouskinds of agentscanbe very subtleasthe influ-
enceof thehiddenunitsonthegainvaluescanbevery grad-
ual, andhencevery difficult to detect.lt is thereforecrucial
to look at a time-framelargerthanthe life-time of a single
agentto be able to evaluatethe advantagesand disadwan-
tagesof differentweight values,in particular in competi-
tive multi-agentervironments. In fact, mosttradeofs are
only visible in simulationsof mary generation®f agentdn
differentcombinationsinderdifferentervironmentalcondi-
tions. Neverthelessijt is possibleto sketcha few general
behaior tendenciesThe basicagentsfor example,always
behaein the sameway giventhattheir gainvaluesarecon-
stant:with positve gy = g,, they behave like the“consume
nearest’strat@y in ervironmentswithout obstacleqSpier
andMcFarland1998). Negative g, = g, valueswill make
themavoid obstaclesand otheragents.In extendedagents
(with thesamegainvalues)the degreeto which they engage

in the respectie behaiors will in additionto the sign and
strengthof the weightsdependon the activation of the re-
spectve hiddenunitsandhencevaryfrom timeto time (e.g.,
they tendto avoid food, if they arenot “hungry”).

The Evolution of Simple Emotional States

We have shawvn elsavhere (althoughin a slightly different
setup,seeScheutzand Sloman2001)that agentswith pos-
itive owy andow,, weights,call themmotivationalagents
arelikely to evolve from basicagentsndependenbf mary
ervironmentalconditionssuchasthe frequeng of appear
anceof new food and water sources,or the numbersand
initial distributionsof food andwatersourcespbstaclesand
agents. We arguedthat theseagentsimplementtwo prim-
itive motivational states,i.e., “hunger” and “thirst” drives.
Herewe extendtheseresultsto agentswith additionalaffec-
tive states,the primitive emotional“fear” or “anger” state
(we first presentheresultsandthenjustify thelabelsin the
next section).

We start with ervironmentspopulatedonly by motiva-
tional agentsand allow for mutationof w, andw, by the
fixed mutationfactorr = 0.05. Whene&er anagenthasoff-
spring,the probability 1 for modificationof ary of the two
weightsis 1/3(i.e., 1/6for increaser decreasby 7, respec-
tively). Theresultsareshavnin Tablel: in 8 outof 20runs
of the simulation,where 20 agentswere randomly placed
in anervironmentwith 30 obstaclessome(mutatedlagents
survived after the maximumnumberof 100000updatecy-
cles(whichis theequialentof 400to 500generationgiven
thatthe averagelife-time of agentsis around220 cyclesin
thosesimulations).Table2 shows averageandstandardlis-
tribution of the variousweightvaluesthatwere evolved by
eachsurviving group. Note that surviving groupsare ex-
tremely uniform, i.e., agentswithin suchgroupsall have
very similar weights. If we correlatethe numberof surviv-
ing agentqabbreriatedby ‘s’) with the magnitudef their
respectie weights,thenwe find a stronganti-correlatiorof
-0.97 betweens and positive w, (indicatingthat beingat-
tractedby obstacless not conducve to survival), little cor
relationbetweers andpositive w, (indicatingthatbeingat-
tractedby otheragentamayonly do very little for survival),
but quite strong correlationsof 0.66 betweens and nega-
tive w,, and0.79 betweens andw, (indicatingthat being
repelledby obstaclesandespeciallyotheragentswill facili-
tatesurvival). We alsocomputedvariousothercorrelations
betweenthe two weightsand groupsof agents(e.g.,taken
over the whole courseof evolution or over a restrictedpe-
riod) and have found a similar picture with respectto the
orderingof thecorrelationgalthoughwith differentvalues).

Analysis

Giventhe above results,how canwe saythat agentsdo or
do not implementcertainaffective states?First, it is cru-
cial to distinguishbetween(atleast)two classe®f affective
stateghataresupportedy thearchitectureandgroundedn
a differencebetweenthe inputsto the neuralnet andtheir
connectiorto entitiesin the world: inputscomingfrom the
enegy andwaterlevel sensorsan be regardedasindicat-



Table1: Theresultof placing 20 motivationalagentswith
wy, = 0.7 andw; = 0.5 in anenvironmentwith 30 obstacle
using a plant rate of 0.25 and waterrate of 0.25 averaged
over 20 runsof 100000simulationcycleseach.

| ¢ | o [ Con |
Alive 485] 737] 285
Thirst || 157.25| 103.87| 40.16
Hunger || 1011.25] 631.39| 244.11
Crashed|| 2064.85] 1299.83| 502.54

Table 2: The numberof surviving agentsandthe average
valuesof their evolvedw, andw, weightsfor the 8 simula-
tionswith ary surviving agent.

Num. Wo W, Kinds

p | o p | o Obsts | Agents
4 0.0 | 0.07 || -0.41| 0.03 f

4 0.48 | 0.05|| 0.31 | 0.06 -

7 0.0 | 0.04| -0.01| 0.13
12 -0.43 | 0.08 || 0.68 | 0.08
13 -0.09| 0.05( 0.16 | 0.03
16 0.24 | 0.12 || 0.51 | 0.10 -
18 0.11 | 0.11 || -0.61 | 0.09 -
23 -0.56 | 0.07 || -0.79 | 0.08 f

[ e I <V

— = |1 [@]|

ing discrepang valuesbetweerthe actuallevel andthe nor-

mal/optimallevel of a controlled“physiological” variable.
Hence thelinks from proprioceptve sensorgo input units,
to hiddenunits, to outputunits, andfinally to gain values
canbe seento implementthe processingf anerror signal,

whichindicateghatahomeostatizalueis outsideof its nor-

mal range,to adjustbehaior. Suchprocessesretypically
identifiedwith drives(e.g.,seethevariousreferenceso Mc-

Farlands earlierworksin Spier1998).In theabove casepy
virtue of the connectiongo the (simulated)enegy andwa-
ter level sensorsthesecorrespondo “hunger” and“thirst”

drives.

The other two links, basedon inputs coming from the
globalalarm,however, donotseento implementdrives.For
one, they arenot connectedo a proprioceptve sensorthat
measureshe stateof aninternalvariable. Rather they are
connectedo a mechanismshatcanbeusedto measureghe
frequeng of encountersvith certainkindsof objectsovera
particularperiodof time. While onealarmtriggeringmight
not have mucheffect at all, high frequencief alarmtrig-
geringwill leadto highactivationsof thecorrespondindpid-
denunit, whichin turn exertinfluenceontheassociatedain
valuein T'. Thisinfluencecanbeseerasanamplifyingor di-
minishingmodificationof the behavior asdeterminedy the
drives, which is typical of (someconstrualsof) emotional
states(e.g., seeCaiamerol997 for a similar view). More
specifically the implementedstatesseemto correspondo
so-called“primary emotions”(e.g., Sloman2000a)in that
they (1) playaregulatoryrole, (2) areengagedutomatically
(by virtue of the global alarmsystem),and (3) alterthe in-
ternalstateof the agentandconsequentlyts behavior. Note
that the relationbetweensensoractivation and hiddenunit
activationis not asdirectasin the caseof drives,but rather

indirect involving integration over time. Furthermore the
intensity level of theseemotionalstateswill returnto nor-
mal by itself by virtue of the decayrate of the hiddenunits
unlessnew interferingalarmtriggeringskeepit up, in con-
trastto the activationsof the drive stateswhich aretightly
coupledto the activationsof the proprioceptve sensors.
The procesf building up activationover time, which is
not directly relatedto the activation level of someinternal
sensoy but to the frequeny of external simulation,seems
to be typical of emotionalstateslike “fear” and “anger”.
We suggestthat dependingon the signs and strengthsof
their w, andw, weights,agentswill implementone of the
two stateswith asufficiently strongnegative weight,which
createsa repulsie force causingthe agentto avoid either
otheragentsor obstaclesa “fear-like” statewill beimple-
mented whereaswith a sufficiently strongpositive weight,
which createsanattractive forceleadingto increasingnsis-
tenceontheagents partto continueits currentmovement—a
behavior that could be describedas aggressie—an“anger
like” statewill beimplemented:'Sufficiently strong”in this
contt means‘to be ableto influencethe behavior signif-
icantly”, which is usuallythe casefor absoluteweightval-
uesgreaterthanabout0.5 (+/- 0.1), a level reachedby half
of the weightsin surviving agents(the resultsare summa-
rizedin the rightmostcolumnof Table 2, where‘a’ stands
for “anger”, ‘f’ for “fear”, and‘-’ for “no state”). How-
ever, aword of cautionseemsappropriatetthis pointaswe
areawarethatattributionsof affective stateso agentsof the
above kind, which dependon whethera variablehasvalue
greaterthan a given threshold,are highly problematicand
it may be betterto speakof degreesof affectiveinfluencein
suchcircumstancegin particular if we arelooking atinter-
mediarystagesf evolutionarytrajectories).

Discussion and Future Work

The abore experimentsdemonstratehe researchstratey
suggestearlier which we believe will help usunderstand
the role and origins of affective statesas well as the po-
tential usesaffective statescan be put to in the control of
agents. Furthermorethe experimentsconfirmthatif there
are architecturalcomponentghat canimplementthem, af-
fective statedike “hunger”, “thirst”, “fear”, and“anger”are
likely to evolve, evenin very competitve multi-agenten-
vironments. The degreeof competitvenessof theseervi-
ronmentsis apparenfrom the factthat on averageary ba-
sic agentis still alive after 100000updatecyclesin only 1
out 20 runsof a simulationwithout mutation This goesto
shaw that the evolved affective statesare not only benefi-
cial to theindividual agent but alsoleadto behaior, which
benefitshe whole speciesMore specifically agentausean
improvedversionof the cue x deficit stratay (e.g.,Spier
and McFarland1998)to foragefor food and water which
takesthe“clumpiness”(Seth2000),i.e., thedegreeto which
agentdendto stick togetherinto account.

We useda schema-basedgentarchitecturg(quite com-
monin behaior-basedobotics,but ratherunusualfor such
anevolutionarysetting)to shov how affective statescanbe
implementedn componentsinking proprioceptve sensory
inputsandinternalglobalalarmmechanism$ components



implementinghe gainvaluesof motorschemasThecausal
linkageseffectedby this architecture which enableaffec-
tive statesto exert influenceon the agents behaior at ary
giventime, is what makesthem affectivestatesin the first
place. Furthermorethe architectureobviatesthe needfor
explicit action-selectioormechanisms&ndexplicit represen-
tationsof behaiors at the architecturdevel, which we be-
lieve to reston a conflation of a behaioral and a mech-
anistic level of descriptionand explanation(seealso Seth
2000). In otherwords, our agentscanstill canbe engaged
in a “go-towards-food"behaior, thengetinterruptedby a
“veeraround-obstaclebehaior, becomeattractedto wa-
terandengagen a “deviate-from-original-cairseto-drink-
water” behaior, and so on without the needfor similarly
labeled functionalcomponentsn the agentarchitecturgas
seemgo beverycommong.g.,Maes1991,VelasqueA 997,
Breazeall998,etal.). A unwantedconsequencef suchex-
plicit representationsf behavior is thataffective statege.g.,
“hunger”) are often, in our view unnecessarilyassociated
with a particularbehaior (e.g., “seeking-food”) at the ar
chitecturelevel. Suchdesigndecisions,however, needto
be justified and a caseneedsto be madethat thesestates
areindeed“affective states”and not merelylocal parame-
ters that exert influenceon the behaior “only” whenthe
behaior is “active” or whenthe behaior is selectede.qg.,
by animplicit action-selectiomechanisnusinga “winner-
takes-it-all” comparisorof “activationlevels of behaiors”,
e.g.,Velasquez1997). Suchimplementationsnissthe point
of affectivestatesas propertiesof the whole systenthat in-
fluencethe behaviorof the wholesystemat any giventime.
Not surprisingly the attribution of “affect” to suchsystems
is usuallystipulatednot arguedfor.
Theinvestigationgroposedn thispaperareastart. Many
more experimentsusing differentkinds of affective states
areneededo explorethe spaceof possibleusesof affective
statesandthe stateof possibleaffective statestself. Adding
recurrentweightsin the hiddenlayer, for example,would
allow emotionalstatesto influencemotivationalstates(and
viceversa)in amoredirectway (e.g.,thehungerdrive could
be suppressedby strongfear, or increasinghungercould
keeptheangenevel up). Anotherdirectionwould beto em-
ploy a more sophisticatedbody model (e.g., with an artifi-
cial hormonesystemsimilar to Callamerol997)to increase
the numberof controllableparametersand henceopenup
room for other affective statesto evolve. Finally, switch-
ing to sexual procreationwould facilitate more interaction
amongagentge.g.,competingfor mates) providing yetan-
otherdimensionfor affective statego take control.
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