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Abstract

In this paper, | introduce the notion o “behavioral state” as a means to bridge the gap between functiona
spedficaions of cogntive achitedures and their physicd implementations based on ethdogicd methods of
describing animal behavior. After briefly sketching some of the problems resulting from mere functional de-
scriptions of cogntive achitedures, | define the nation d behavioral state and dscuss ®me of the properties
of behavioral states that are relevant for describing and modeling minds. | show that behavioral states can
serve & mediators between functional and physicd descriptions of cogrnitive systems, arguing in particular
that behavioral states can cepture “distance in time”, an esential asped of red world cogrition missng in
mere functional descriptions.

1 Introduction

Ever since Descartes, philosophers interested in the mind have divided the world into a mental and a
physicd redm and consequently contemplated the relation between these two redms, a topic today
widely known as the “mind-body” problem. While this problem is far from being resolved, today’s
most commonly held position on the “mind-body” relation in the philosophy of mind is functional-
ism, a view, which despite its appeaance in many different forms is based on the ceitra common
clam that mental states are functional states. The general understanding is that mental states (i.e.,
states guch as “believing that p” or “desiring X”, or even psychologicd predicaes sich as “pain” or
“pleasure”) can ke explained in terms of functional states and functional architectures.

Besides the fad that to my knowledge no one has ever attempted to spedfy concepts from folk
psychology in detail using a functional architedure, the cognitive scientist who wants to understand
and model cognitive systems will still facesignificant problems even if a complete functional speafi-
caion of a given cognitive system could be provided: for one, the question of how functional states
are related to physicad states remains unanswered. Usually, philosophers assume that functional
states “supervene” on physicd states without paying particular attention to the question as to how
(and consequently also why) they supervene.' In other words, what plays a secondary role (if at all),
Is of crucial importance to the cognitive scientist: (some) implementation details of the functional

' The questions of exadly how these states sipervene on the physica and in what kinds of structures they are redized
are rarely addressed in detail, let alone answered satisfadorily. Thisis most likely due to the fad that the notions of
“redization” and “supervenience” ae mostly used as unexplained “primitive” terms in the philosophicd literature
(which is quite surprising gven the theoreticd importance and pradicd consequences that hinge uponthem). Al-
thoughsome have d@tempted more or lesspredse definitions of “redizaion’—e.g., Kim, Block, et al.—these defini-
tions are not very helpful for thase who, interested in bulding minds, are trying to understand the relation between
architedures and their implementations.



architedure of these very abstrad mental states. For example, it is not clea whether functional
states can be redized as computational states (maybe only combined “computational-physicd” states
will redize functional states or maybe only physicd states alone). And more generaly, the question
arises what the cnstraints are that a functional architedure imposes on systems implementing it: are
functional descriptions besides being general enough to include dl possble mental architedures e-
cific enough to constrain the dassof possble redizing systems in such a way as to suggest posshle
ways of implementing them?

It seams that relating functional states directly to physicd states is very unlikely to succeeal in
the light of multiple redization arguments for functional architedures (the more cmplex the achi-
tedure gets, the lesswe will be &le to seewhat kinds of possbly very diverse physicd systems will
share the functional spedfication).”? The level of functional spedfication of the psychology of minds
will be too high and abstrad a level of description to suggest possible implementations of the func-
tional states (not to mention all the problems conneded with the involved notion of “implementa
tion” or “redization” that seem to be largely ignored by the philosophica community).’

It is my conviction that functional spedficaions of psychologies are not sufficient to suggest
ways of understanding and modeling minds. To be of any practical importance in modeling a mind
at all, alevel of description of a mgnitive achitedure hasto incorporate & least some of the relevant
physica properties of its possble implementations (which will constrain both possble implementa-
tions as well as functional architedures). In this paper, | will suggest such an intermediary level,
which | cdl the level of behavioral states. This level of description is largely inspired by ethologicd
studies of animal behavior (and to some extent by reseach in behavior-based robotics) and will
therefore bea the insignia of its intellectual sources very visibly on its deeves.

First, | will briefly point to one of the problems resulting from a mere functional description of
a mgnitive system (the “implementation problem”). Then | will i ntroduce the notion of “behavioral
state” and locae its place @ mediator between functional and physicd states, sketching briefly the
role behavioral states could play in understanding, designing, and implementing (simple) cognitive
architedures. Finaly, | argue that behavioral states are sufficient to cgpture relevant aspeds of cog-
nition and, thus, provide an intermediary level of architedura spedfication locaed between func-
tional and physicd descriptions.

2 Functionalism
2.1 TheFunctionalist Picture

A functional spedficaion of a mgnitive achitedure consists of a set of input states, a set of output
states, and a set of “inner” or “functional” states together with a spedficaion of how they are caus-
ally related. That way it is possble to determine what state a ©gnitive system will be in next, given
the arrent state and all the input conditions.* While input and output conditions have to be tied to
physicd inputs and outputs, the functional states do not require adired correspondence to their
physicd redizers as expressd in the phrase that “functional states supervene on physicd states’
(e.g., seeKim, 1997. Thislad of a*“dired” correspondence between functional and physicd states
Iswhat gives functionalism its explanatory power, while keeping it metaphysicadly palatable: it com-

? Even with simple functionally spedfied oljeds this is problematic. Think o tables as functionally spedfied, for
example, and consider all posshle physicd implementations of the spedfication “table” and what they could passbly
have in common at a physicd level.

° Note that this obviously does nat hald for all functional spedfications: afunctional spedficaion o an abstrad finite
state automaton, for example, can be eaily related to physicd states in a standard PC by “implementing”’ the
automaton in a programming language.

“ Of course, the behavior elicited by the organism redizing the cogritive system is pedfied as well.



bines advantages of behaviorist approadies to mind (i.e., considering solely the input-output behav-
lor of an organism) with advantages of identity theories (i.e., mental state/event tokens are physicd
state/event tokens) leaving out the pitfalls of both such as the lad of being able to acount for “inner
states’ in the former, and the requirement of type identities between mental and physicd state/event
types of the latter. Yet, this grength comes at a price it is not clea what it means to implement or
realize a functional architecure.

2.2 Implementation of a Functional Architecture

So what are the implementation conditions for a functional architedure? To say that a system im-
plements a functionalist description is to require that in addition to the input and output mapping, it
has to get the mapping of the inner states right. Usually, these “inner states’ are assumed to be mul-
tiply redizable, i.e., many different, possbly very diverse physicd systems will redize agiven func-
tional architedure. Therefore, the mapping between physicd states and functional states hasto be a
many-to-one (very much in the spirit of Chalmers, 1997). Yet, inner states are viewed by function-
dists as intrinsicaly relational states, being mutually defined by all states in the functional architec-
ture (which is sometimes expressed by saying that they are defined by their “causal role” in the func-
tional architecture).

To illustrate this interdependence, consider, for example, the following automaton, which hes
two inner states ‘E’ and ‘O’ standing for “even” and “odd’. Depending on whether the number of
‘1'sthat the automaton has e so far is even or odd, it outputs either ‘& or ‘b’, respectively.

1/h

1/a
Figure 1 The even-odd transducer with two inner states.

A functionalist acount (e.g., seeBlock, 1996 of what it meansto be in state E would look like this:

Being in E =4 Being an x such that [P [Q [x isin P O (if x isin P and recaves input ‘1’,
then it goesinto Q and outputs ‘b’) [ (if x isin Q and gets input *1’, then it goes into P and
outputs ‘a)].’

Sinceit is only claimed that there has to be an arrangement of physicd states that corresponds to the
functional statesin away that preserves inputs and outputs as well as transitions between states, it is
posshle for one physicd state to serve & the instantiation of more than one functional state (and
viceversa). Therefore, the arrespondence between physica and functional states is not necessarily
that of a mapping between physica types and functional types (let alone al-1 mapping), but rather
that of a relation that preserves gate transitions. “Implementation of a functional architedure”,
therefore, has to be viewed as me sort of “bismilarity” between functional and physicd architec-
ture rather than some sort of isomorphic relation from a functionalist point of view.® As a cnse-

° Note that the existential quantifiers could be viewed as ranging over properties or as picking ou particular physica
states of the system.

® The notion d “bisimil arity” is defined as follows: let | and O be two finite sets (e.g., the sets of input and ouput
states, respedively) and let M,=[§,~>,0and M,=[8,,~> ,[0be two structures with damains S, and S, respedively, where
relation -, isdefined over SxI1xSx0 andrelation >, isdefined over SxIxSx0. These structures are then said to be
bismilar if there exists a nonempty relation R between S to S, such that for all s0S, s0S, ill, and oJO the fol-
lowing two condtions hald: (1) i f R(s,s,) and (s,i)~>,(t,,0), then (s,i)~>,(t,,0) and R(t,.t,), and (2) if R(s,s,) and



guence, not every functional state might have aunique arrespondence in the physicd system, i.e.,
functional difference might not amount to physicd difference, as it is possble that two different
functional states are redized by the very same physicd state (e.g., think of virtual memory systemsin
computers), a posshility that can complicae the search for a physicd correlate of functional states
(in sedion 4 | will addressanother essential difficulty of merely “causal” descriptions, namely their
fallure to cgpture “distancein time”).

3 Behavioral States
3.1 An Ethological Perspective

To overcome the difficulties of tying functional spedfications to physicd implementations, | suggest
to consider work done in animal behavior research as a venture point. According to animal behav-
lorists (e.g., McFarland, 1981), animal behavior can be cdegorized in terms of

(1) reflexes(i.e., rapid, involuntary responses to environmental stimuli)
(2) taxes(i.e., responses orienting the animal towards or away from a stimulus)
(3) fixed-adion patterns (i.e., time-extended sequences of sSimple responses)

While (1) and (2) are solely conneded to external stimulation, (3) can have a ontributing “internal”
component as well (fixed adion patterns can be “motivated”; take, for example, the “egg-retrieving”
behavior of the greyling goose, seelLorenz, 1981, or Lorenz and Leyhausen, 1973. All threekinds
of behaviors can be cmbined in complex ways to form hierarchies of behaviors (seefigure 2).

In these behaviora structures, behaviors form “competitive dusters’, in which behaviors are
mutually exclusive (e.g., in figure 2 the “fighting behavior” is sich a cmpetitive duster comprising
the mutually exclusive behaviors “chasing”, “biting”, and “display”).

territoriality

parenting fighting

courtship nestin

chasing

variousfin controls

Figure 2 A part of a behavioral hierarchy for the male stickleback fish (seeLorenz, 1981). The
various fin controls can be divided further into rays of each fin, the muscle fibers for each ray,
and the motor neurons for each fiber.

To make these ideas of behavioral hierarchies more concrete, | will i ntroduce the notion of be-
havioral state, which roughly corresponds to what is indicated by a “circle” in figure 2. Putting it
crudely, a behaviora state is a state an individual isin if it performs a particular behavior (e.g., such
as “food handling” or “looking out for prey”).” “Behavior” is meant be understood in a wide sense

(s,i)=>,(t,,0), then (s,i)=>,(t,,0) and R(t,,t,). For a detailed elaboration o the role of bisimulation in a theory of im-
plementation and functional redization, see Scheutz (200Q).

A note of terminology: while it is common wsage to use “mental states” and “functional states’ to refer to states of
an individual’s mind, the nation d state is nat exclusively used to describe “static” entities, but often times srves the
role of a general term that subsumes states as well as events, i.e., processes. In a sense, the term “behavioral state”



to include behaviors that are not necessarily observable from the outside done (such as “memory
recdl” or “thinking”, in general). Hence behaviora states are not simply combined input-output
states, but rather they are some sort of “inner states’ of an organism, states in which the organism is
if it performs a particular kind of behavior. Note, however, that nothing is implied or claimed about
a particular physica correlate of a behaviora state—it might or might not exist (I will return to this
issue later).

Behavioral states are not restricted to “motor adions’, but include sensory adions as well as
more dstrad proprioceptive and refledive adions (such as monitoring inner physiologicd states,
generating images, producing plans, recdling poems, analyzing pictures, making logicd derivations,
etc.). The latter ones are more “abstrad behaviors’, which are mostly (if not completely) internal-
ized and often involve solely parts of the aognitive achitedure; in fad, they might not result in any
externally observable dhange & al (a mathematician contemplating abstrad objeds and manipulating
thelir representations in her mind, for example, might not need any stimulation from the outside world
in performing this task, nor might any motor adion result from it—this “brain in a vat”-idea with
sustained cognitive adivity whilst ladking external interadion seams to be & least concevable in
principle).

Memory and refledive processes, for example, are then viewed as edal kinds of behavioral
proceses that leal to adions performed dredly on the agnitive achitedure, as opposed to the d-
fedors of the individual which ad on the environment.

In general, an individual will be in many behavioral states at the same time refleding the fad
that (1) some behaviors are contained in or shared among others (for example, searching for food as
well as saching for a mate will both involve locomotion, despite the fad that the kind of seach
might be different), and (2) that many behaviors are performed in paralel (such as monitoring my
hand as | move it to pick up an objed).

3.2 Behavioral Architectures

In a sense, the dasgcd ethologicd picture outlined above is mainly concerned with the relation be-
tween various behaviors, it only depicts (some of the) causa relations between behaviors, and is,
therefore, redly a functiona spedfication of the behavioral architedure. Yet, partly implicit in and
partly external to this picture is information about the time cnstraints as well as the strength of in-
teradions and influences among behaviors (as gudied and gathered by animal behaviorists). In other
words, the picture isincomplete in so far asit leaves out eseential implementation detail s that cannot
be retrieved from a picture like figure 2 alone. Without these implementation detail s, however, some
behaviors would not be the kinds of behaviors they are, since what distinguishes them from other
behaviors might just be @nstraints on timing and strength of response (take, for example, a retrac-
tion reflex caused by touching a hot plate with your finger as opposed to the same movement being
performed very slowly). Furthermore, the strength and configuration of interadions between be-
haviors is an integral part of their defining charaderistics, which cannot be catured by a caisa
structure done: suppose behavior A causes behavior B. Then this can happen in many different be-
havioral arrangements, for example, by A enforcing B diredly or A suppressng C, which in turn in-
hibits B, or by A enforcing D, which enforces C, etc. Implicit in A (as defined by an animal behav-
lorist, say) is dready information, which of these posshle arangements are redized in the animal.
Hence, the causal structure might get restricted by the behavioral structure if (some of) the informa-
tion implicit in the definition of behaviors is made explicit. 1n the following, | will briefly sketch how

shoud have been avoided in favor of “behavioral processs’, as the latter emphasizes the dynamic charader of the
adivity taking dacein the individual. Following established termindogy, however, | will continue using the term
“behavioral state”, even if (systematic) dynamic changesin the individual are being referred to.



behavioral states can be defined to explicitly incorporate some of the otherwise implicit aspeds of
behaviors.

3.3 The Structure of Behavioral States and Networks

First and foremost, ead behaviora state has an activation level and a behavior asciated with it.
This adivation may depend on any of the following fadors (and additional fadors could be consid-
ered):

(1) itsown adivation level

(2) the adivation level of other states

(3) inputsfrom extereoceptive and proprioceptive sensors
(4) energy constraints (of the organism)

(5) decy over time

The behavior associated with a behaviora states can be smple (such as reflexes and taxes), or a
more awmplex fixed behavior (such as fixed adion patterns), or an even more complex adaptive be-
havior (which results from the interplay of fixed adion patterns, reflexes, and taxes). The term
“adaptive” indicaes that the latter kinds of behaviors can change over time, i.e., they can be leaned,
altered, etc. (utilizing the dynamic interplay of behavioral states).

Behavioral states are conneded via inhibitory and excitatory links to other behaviora states
and possbly to sensors (via “information channels’, i.e., filtering medanisms that seled parts of one
or more sensory inputs and combine them in particular task-spedfic ways). Conredions between
behaviora states have adistance aciated with them (expressed in terms of a time-lag), refleding
the “distance in space” that a signal has to travel from one locus of adion to interad with another,
allowing temporal as well as Patial integration of incoming signals.

Groups of behaviora states that are conneded via mutualy inhibitory links form so-cdled
“competitive dusters’. They inhibit eat other to various degrees, while usually entertaining exci-
tatory connedions to lower and upper level states (and posshbly to some behaviora states of other
clusters at the same level as well). In such a duster the behavior associated with the highest adi-
vated state will become adivate and all behaviors of the other states are suppressed.® This way hier-
archica structures smilar to the onein figure 2 can be defined which refled the relationship between
behaviors and in part also the complexity of ead behavior associated with the various gates (the
lowest levels corresponding to smple reflex-like, reacive behaviors—this level has been explored in
gred detail in behavior-based robotics, e.g., seeArkin, 1992 or Brooks, 19869.

With resped to the spread of adivation, networks of behaviora states are very smilar to
I(interadive) A(ctivation) and C(ompetition) networks (e.g., see Rumelhart and McClelland, 1986.
Therefore, results from connedionist reseach about effeds uch as “blocking”, “settling”, “oscill a
tion”, “hysteresis’, and others (often) apply mutatis mutandis to behaviora networks as well. The
essential difference between |AC networks and behavioral networks is that the behavior associated
with a behaviora state wuld affed the adivation level of the very state itself as well as the adiva-
tions of other states via environmental feedback. For example, a behavioral node representing the
“seach for bladk objeds in visua field”-behavior might initiate ocular motor commands that lead to
the detedion of a small bladk objed by another node, which in turn inhibits the seach node, thus

® There is evidence that similar mechanisms are & work in animals that inhibit all behaviors with lower adivation
values, e.g. seelLorenz (1981).



deaeasing its adivation, which in amere IAC network (ladking environmental feedbad) would have
otherwise not decreased.’

As dready mentioned, not al behaviors will i nvolve physicd effedors; in fad, only low level
behaviors will diredly exert influence on them (these ae behaviors that would normally be locdized
in what roboticists refer to as “readive layer”). Higher level behavioral states will mostly operate on
structures internal to the agnitive system (these states would be situated in the “deliberative layer”).
For example, a “retrieve image of mother” node (assuming for a moment there is sich a node), might
initiate aseach in long-term memory (possbly involving other behavioral states) for a particular im-
age that is associated with the individual’s mother. Or a “projed-hand-move-forward” node might
initiate a“smulated” hand movement in an emulator circuit, which is used to plan motions, resulting
in a dhange in the drcuit and as a ansequence in other behaviora nodes (such as “colli sion detec-
tors’ in the emulator circuit, etc.).’® A behavioral network divided into alayered structure mnsisting
of areadive and adeliberative layer is £hematicdly depicted in figure 3 below.

There ae spedal cases of behaviora states that do not have any behavior diredly associated
with them. Instead of initiating an adion diredly, they contribute to behaviors indiredly by influ-
encing other behavioral states, and can, therefore, assume the role of affedive states. A state rre-
sponding to “hunger”, for example, might receve inputs from proprioceptive sensors (i.e., a sensor
monitoring the blood sugar or, more generaly, the energy level) and exert positive influence on other
states auch as “seach-for-food” (e.g., see Scheutz, 200(b). That way it is posshle to entertain
states that do not diredly and immediately “cause” the individual to ad in a particular way, but
might have indired, long-term effeds on the individual (e.g., depresson, memory loss etc.).™

Proprio- Deliberative layer

ceptive

Sensors
—»

Extero- P
ceptive A
Sensors Effedors
—»

Readive layer

Figure 3 A hierarchy of behavioral states viewed as a two-layered architedure mnsisting of a de-
liberative and areactive layer. Linkswith arrows indicate excitatory connedions; links with cir-
cles inhibitory ones. While the behavioral units in the reactive layer operate on effedors (per-
forming behaviors sich as navigating through the environment, avoiding obstacles, etc.), behav-
ioral nodes in the deliberative layer do not operate on effedors diredly, but rather perform inter-
nal operations (such as memory lodkups, symbdic combinations, etc.).

° While environmental feedbadk can obviously be simulated with neural networks, the neural architedures that incor-
porate such feedbadk will be different from behavioral architecures that perform the same function because of their
intrinsic embeddednessin the red world. Sinceit is one of the design pinciples of behavioral architecures that they
can rely onenvironmental feedbadk resulting from the behaviors of adivated behavioral states, this property has to be
taken into acourt in modeling cognitive achitedures.

| am currently investigating various posshiliti es of implementing simple emulator circuits using behavioral states.

' Compare this to standard plil osophicd talk abou “pain causing wincing and goaning, etc.”, where it is never clea
whether pain always causes al the behaviors, exadly when the dfeds surface whether showing the dfedsis neces-
sary and/or sufficient for the individual to have pain, etc.



4 The Casefor an Intermediate Level
4.1 The Relations between Physical, Functional and Behavioral States

So far, | have not explicaed how physica and functional states relate to behavioral states as defined
above. From an implementation perspedive, behavioral states can be redized in many ways in dif-
ferent physicd substrates. In krains, for example, they could correspond to a single neuron or to a
group of neurons. They could be redized solely neuronaly or maybe by involving other systems
(such as the hormonal system) as well. Another physicad medium, in which behaviora states can be
redized, is the silicone of computers: computers can implement behaviora states by virtue of com-
putational processs.

Some behavioral states might be (direaly) “implemented” in the system in the sense that there
exists a orresponding physicd state or a set/sequence of physicd states that are in type correspon-
dence with the behavioral state. Other behavioral states might “supervene” on physicd states in that
there does not exist such a type mrrespondence—note that programs running on modern operating
systems with virtual memory architecures exhibit such supervenience relations. when a program
does not entirely fit into physica memory, it isloaded in parts on an “as-neaded” basis, where differ-
ent virtual memory locaions get mapped onto the same physica memory location.

Another possbility for behavioral states to have no fixed correlate at al isto be only partially
implemented (see Sloman, 1998 or to depend on environmental conditions (e.g., in terms of other
behaviora states and/or environmental states—an example might be my performing the multiplica-
tion algorithm using paper and pencil: | am in a behavioral state which is implemented by a number
of other states sich as gates of the paper and pencil, several visual routines, rule-retrieving memory
processes and rule-following routines, etc.).

Behavioral states implemented in (sequences of) physicd states are tightly coupled to their
physicd redizers (still alowing for multiple redizaions), while behavioral states sipervening on
physicd states do not exhibit such a wupling at all. They are redized by some physicd states, but
they might not show any systematic correlation to their redizers. For example, consider two net-
works of behaviora states, which are functionally identica except for the fad that the first explicitly
implements a higher level behavioral state cdled “avoid-obstade”, which is adive if the agent is en-
gaged in obstade avoidance behavior. The second one does not have such as date, but can till
control the same obstade-avoidance behavior. In this case, the behavioral state “obstade-
avoidance” has a physicd correlate in the former and no fixed physicd correlate in the latter (what
corresponds physicdly to the “obstade-avoidance” state in the latter is a complex sequence of pat-
terns that might, under different circumstances, not correspond to this gate & all, e.g., if the agent
follows another agent, which is avoiding obstades, and thusis a “follow other agent” state, which by
pure dhance caises it to go through the same sequence of physicd states... see dso Pfeiffer and
Scheier, 1999 ch. 12 for another example).*?

This asped of behavioral states sams very smilar to the kinds of functional states about which
philosophers tend to worry, and maybe most of the “high-level” functional states such as “belief
states’, etc. are not diredly (i.e., physicaly) implemented in the system (often the term “emergent” is
used in this context). Even so, these kinds of rather abstrad behavioral states dgill retain one asped
lost in the mere “causation talk” of functional architedures, and that is time!

2 Note that it shoud be posshble to derive, beyond the caisal propertied, the temporal properties of the “obstade-
avoidance” state from the interacion d the (physicdly) implemented states.



4.2 Causation and Time

It has been pointed out by philosophers (e.g., see Chamers, 1997 that there is an essntial differ-
ence between functiona descriptions of physicd systems like docks, combustion engines, CD play-
ers, etc. and the functionalist descriptions of minds: in the former case some aspeds of the physicd
structure matter, they are essential to any system redizing the functional architedure. Thus, these
physicd aspeds are (if not explicitly, so then implicitly) retained in the functional architedure,
thereby constraining the set of posshle redizers. Inthe latter case, however, it is the very functional
structure itself—so it is clamed—that matters, that is, the patterns of causal organization regardless
of the underlying physicd structure. Therefore, only causal organizaion, or put differently, “the
flow of causation” isretained in functionalist abstradions from the physicd as the essential aspect of
minds. But isthisredly true?

Red minds are intrinsicdly tied to their environments and thus affeded by the temporal struc-
tures imposed on them. Timing plays a aucia role in every asped of a mgnitive achitedure per-
taining to the proper functioning and survival of the organism. Many recent studies in cognitive sci-
ence emphasize the importance of time a opposed to “mere temporal order” (see for example, Port
and van Gelder, 1995.

What distinguishes time from mere (temporal) order (as implicitly provided by the notion of
causdlity) is that in addition to order a metric is defined (on the set of time points), that is, a notion
of distance intime. This notion of distancein time dows one to differentiate functions acrding to
their temporal behavior that would otherwise be indistinguishable. Take, for example, two micro-
procesrs that work at different clock speeds—functionally they are identicd, yet there is an esen-
tia difference between them, which is usually also refleded by any pricetag pu on them: their speed
(another example of a function, where time is the distinctive fador, would be vowel production and
recognition).

Isit problematic that causation alone does not suffice to cgpture the temporal structure of cog-
nitive achitedures? | would clam: Yes. Imagine two different physicd systems that share the same
functional spedficaion of a human mind, one aregular human, another the People’s Republic of
China “implementing the human brain” at a much, much slower pace(to use Block’s example). A
human body controlled by the People's Republic of China would fail terribly in the red world, be-
cause it could not read to its environment in due time.™®> Well, one might say, it would do just fine if
everything surrounding it, that is, its environment had been “slowed down” appropriately. This ob-
jedion, however, strikes me & sverely flawed, sinceit would entall a completely new physics (as in
our physicd universe cetain processs have to happen at a cetain speal otherwise they would not
be the kinds of processes they are). Whether a“slowed down version” of a human mind could con-
trol a “dowed down version” in such a “sowed down universe” (with possbly completely different
physicd properties) seans too speaulative aquestion to be taken serioudy. What seems to be apro-
ductive gpproad, however, is to ask whether it is possble to understand a cetain architedure (that
evolved or was designed to med the temporal constraints of its environment) at a mere causal level?
| susped that the answer would be no for systems that are sufficiently complex (like brains of verte-
brates or VLS| microchips, for that matter).™*

* Many parts of our cogritive system have espedally developed to mee time constraints of the ewvironment. There
is evidence for neural as well as chemicd internal clocks (that work at certain clock rates), oscill ator circuits that
adapt to external cycles, etc. None of this would work if the system ran at 1/1000Qh of its regular speed. The same
istrue for digital circuitsthat have been designed to work at certain clock rates.

“ It is easy to imagine that nature cane up with all kinds of “hads’ to solve timing roblems which could and would
have otherwise be implementated very differently. To gve an example from computing, imagine a video
conferencing system used to transmit video information acaossthe internet. Because of current traffic on the net and



If, on the other hand, causal structure were augmented by temporal constraints (i.e., informa-
tion about distance in time between causally conneded states), then this would in theory suffice to
cepture an esential asped of possble physicd implementations of the functional architedure. It
would, for example, allow usto model the functional architedure mmputationally, i.e., to implement
a virtual madine that abides to the temporal constraints (as many computational descriptions can
handle temporal metrics, just take programming languages for red-time systems).

Behavioral states, therefore, sean to be an abstradion, which can be implemented computa-
tionally, and thus redized physicdly on computational systems. At the same time, behavioral states
are dstrad enough to capture agpeds of minds that seam to be intrinsicdly conneded to their causal
structure and not to their physicd redizaion (“organizaiona invariants’ as Chalmers, 1997, putsit),
thereby conneding them to functional descriptions of cognitive achitectures.

5 Conclusion

The level of description of behaviora states is intermediate and intermediary, because it spedfies
states that could be redized in many different physicd ways (in reural architedures, but possbly also
in digital ones, and others), yet retains at least one qucial physicd and causal asped not retained in
mere functional descriptions: (distance in) time! By explicitly incorporating time, behavioral states
make it possble to model the temporally extended interadions among dfferent parts of a cognitive
system as well as interadions of the amgnitive system with its environment. The level of description
of behavioral states might, therefore, not only prove useful for constructing systems that exhibit
complex causal interadions (such as minds), but also for explaining how functional states are related
to physicd states by viewing them as (not necessarily digoint) colledions of behaviora states.
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