
1

Computational versus Causal Complexity

Matthias Scheutz (mscheutz@cse.nd.edu)
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556

USA

Abstract

The main claim of this paper is that notions of implementation based on an isomorphic
correspondence between physical and computational states are not tenable.  Rather,
“ implementation”  has to be based on the notion of “bisimulation”  in order to be able to block
unwanted implementation results and incorporate intuitions from computational practice.  A
formal definition of implementation is suggested, which satisfies theoretical and practical
requirements and may also be used to make the functionalist notion of “physical realization”
precise.  The upshot of this new definition of implementation is that implementation cannot
distinguish isomorphic bisimilar from non-isomporphic bisimilar systems anymore, thus
driving a wedge between the notions of causal and computational complexity.  While
computationalism does not seem to be affected by this result, the consequences for
functionalism are not clear and need further investigations.

Keywords: computation, implementation, computational complexity, causal complexity,
realization, functionalism, functional architecture, computationalism, cognitive science

1. Introduction

A widespread idea of what it means for a physical system to implement a computation is
that there be a functional correspondence between physical states and computational
states.  The exact properties and restrictions of this correspondence differ from author to
author [Chalmers (1996), Melnyk (1996), Cummins (1989), Copeland (1996), McLennan
(1994), et al.], but the general idea is that “ the causal structure of the physical system
mirrors the formal structure of the computation”  [Chalmers (1994), p. 392].  This view of
implementation that computational formalisms capture the causal structure of their
implementing systems is what ultimately makes computation such an attractive candidate
for cognitive explanations.  To put it crudely, if the claim—central to the research
program called computationalism—that mental states are computational states is true,
then it suffices to study the computations that give rise to cognitive functions without
having to pay attention to the underlying “hardware” .  The idea that the mental can be
studied independently from the physical belongs without any doubt to the most influential
discoveries of the last century.  It is at the heart of two ambitious empirical research
programs, which set out to reveal the secrets of cognition (artificial intelligence and
cognitive science), and gave rise to functionalism, today’s most commonly held view in
the philosophy of mind.  Yet, a tacit assumption underwriting both computationalism and
functionalism is that the notion of implementation (or “ realization”  as it is often called by



2

functionalists) is unproblematic, i.e., that it is known how to implement computations.  A
viable definition of implementation is therefore of crucial importance for both, the
philosophy of mind and AI/cognitive science.

While the notion “ implementation”  is heavily used in computer science (and the same
is true of “ realization”  in philosophy), formal definitions of “ implementation”  are rare.
Chalmers (1994, 1996) is among the few who provide an explicit and (to some extend)
formally elaborated definition of implementation, which is intended to make our
intuitions about implementation precise while avoiding the pitfalls that others have
exploited to argue that these very intuitions are misguided [e.g., see Searle (1992), or
Putnam (1988)].  Hence, I will examine Chalmers’  notion of implementation as
representative of others to see if it, as it promises, provides “a basis for the theory of
implementation in general”  [Chalmers (1994), p. 396], and as a consequence for
computationalism and functionalism.

The structure of this paper is as follows: in section 2, I introduce Chalmers’  notion of
implementation and argue that it fails in two respects: 1) it does not give a clear account
of how computations mirror the causal structure of physical systems; and more
importantly, 2) it fails at giving a tenable account of the “simpler”  computations that
physical systems in Chalmers’  view can implement simultaneously with a given
computation.  I use a simple physical system consisting of two switches, a light bulb, and
a battery to demonstrate my objections to Chalmers’  definition under which the simple,
finite, deterministic switch-system can be seen to implement complex, infinite, and non-
deterministic computations.

In the subsequent sections 3 and 4, I analyze the shortcomings in detail and propose a
modification of Chalmers’  definition that can block unwanted implementation results by
restricting the class of computations that can be implemented by a given physical system.
I then argue that this restricted notion of implementation is still not sufficient.  I show
that to be in accordance with intuitions from computational practice (as well as
functionalist theories in philosophy) the notion of implementation needs to be based on
the notion of bisimilarity (instead of that of isomorphism).  This notion, however,
separates the notion of “computational complexity”  from the notion of “causal
complexity” , both of which are viewed as identical by isomorphism-based notions of
implementation.

Implementation based on bisimilarity, besides being able to block unwanted
implementations and account for implementations known from computational practice,
also suggests a way to define the functionalist notion of realization, which is then
discussed in section 5.

Finally, section 6 explores some of the implications of the shift from “computational
states”  to “computational sequences”  for computationalism and functionalism.  While the
prospects do not seem discouraging at all for the former, as computationalists have
always favored computational processes over computational states, the consequences for
functionalists are not clear and might force us to reconsider some of our intuitions about
the relation between functional and physical descriptions.



3

2. Chalmers’  Definition of Implementation

Chalmers’  basic conception of how a computation is connected to the physical is that “ the
relation between an implemented computation and an implementing system is one of
isomorphism between the formal structure of the former and the causal structure of the
latter”  (1994, p. 396)—i.e., f(

�
)=“reliably causes”  (where �  is the formal state

transition relation in the computation, an automaton, for example, and f the mapping that
establishes the correspondence between computational and physical states).

While this view seems to imply that physical systems must have a unique causal
structure, Chalmers at the same time holds that “ there is no canonical mapping from a
physical object to the computation it is performing.”  (1994, p. 397).  He believes that
physical systems can have multiple causal structures depending on the groupings of their
physical states (where groupings of physical states may correspond to different levels of
description of the system).  The apparent contradiction is easily resolved by requiring that
states of the implemented computation are to be in isomorphic correspondence to
grouped physical states instead of the physical states themselves (according to some
specified grouping).  That way Chalmers can make the further claim that “any system
implementing some complex computation will simultaneously be implementing many
simpler computations—not just 1-state and 2-state FSAs, but computations of some
complexity”  [Chalmers (1994), p. 397].

Chalmers (1994) provides two definitions of implementation, an informal and a
(more) formal one, which he holds equivalent.  Since a precise definition of the
mathematical concept of isomorphism (the mathematical term expressing structural
identity, i.e., “mirroring”) is needed later for the analysis of these definitions, I shall
review it already at this point:

Definition 1: [Isomorphism] Let M1=〈D1,R1〉 and M2=〈D2,R2〉 be two structures with
domains D1 and D2, respectively, where relation R1 is defined over D1×D1 and relation R2

is defined over D2×D2.  These structures are then said to be isomorphic if there exists a
bijective function f from D1 to D2 such that for all x,y∈D1 the following two conditions
hold:

[iso⇒]     R1(x,y) ⇒ R2(f(x),f(y))
[iso⇐]     R1(x,y) ⇐ R2(f(x),f(y))

Chalmers’  first (informal) definition, call it ‘Ch1’ , reads as follows:

“A physical system implements a given computation when there exists a grouping of
physical states of the system into state-types and a one-to-one mapping from formal
states of the computation to physical state-types, such that formal states related by
an abstract state-transition relation are mapped onto physical states-types related by
a corresponding causal state-transition relation.”  [Chalmers (1994), p. 392]

Having explicated the overall structure of “ implementation”  in Ch1, Chalmers spells out
the details in a second definition, call it ‘Ch2’ , in which he uses a finite state automaton
(FSA) representative for other computational formalisms:



4

“A physical system P implements an FSA M if there is a mapping f that maps
internal states of P to internal states of M, inputs to P to input states of M, and
outputs of P to output states of M, such that: for every state transition relation
(S,I) � (S’ ,O’ ) of M, the following conditional holds: if P is in internal state s and
receiving input i where f(s)=S and f(i)=I, this reliably causes it to enter internal state
s’  and produce output o’  such that f(s’ )=S’  and f(o’ )=O’ .”  [Chalmers (1994), p. 393]

Note that prima facie there are two differences between both definitions (together
referred to by ‘Ch’ ): for one, Ch2 does not require the existence of a grouping of physical
states into state types as does Ch1.  Instead, the grouping is (implicitly) established by the
correspondence mapping f: all those physical states are grouped together that are mapped
onto the same automaton state under f.

The second difference is a consequence of the first: whereas the mapping in Ch1 is
bijective (i.e., one-to-one and onto) and established from computational states to
(grouped) physical states, the mapping in Ch2 is only surjective (i.e., onto) to allow for
groupings of physical states and thus established from physical states to computational
states.

Chalmers, although never explicitly, seems to suggest that it is possible to obtain an
isomorphic mapping f*  (from grouped physical states to computational states) from f by
collecting all those states s to form a grouped state, or “state type”  si that are mapped to
the same automaton state Si according to f: “The state-types can be recovered, however:
each [si] corresponds to a set { s|f(s)=Si}  for each Si∈M.  From here we see that the
definitions are equivalent.  The causal relations between physical state-types will
precisely mirror the abstract relations between formal states.”  [Chalmers (1994), p. 393]

Indeed, f*  (defined as the mapping f* (si)=Si for each Si∈M) is one-to-one (because the
physical state types have just been so defined) and onto (ensured by the “ for every state
transition relation”-clause in the definition).  Therefore, the two definitions are equivalent
with respect to the mapping.  Yet, neither ensures that the mapping be isomorphic (since
[iso⇒] does not necessarily hold for either definition); in fact, f*  might not even be
homomorphic for the very same reason.1  A straightforward remedy would require
[iso⇒] in Ch, but this would be counterproductive to Chalmers’  goal of viewing all kinds
of “simpler computations”  as being implemented by the system simultaneously, since it
would limit all implemented computations to exactly one.

To illustrate the problems with Ch, I shall consider a simple physical system P, which
can be described in a physical theory (i.e., circuit theory), whose physical states can be
easily specified.  P consists of a battery, two switches, and a light bulb, which are
connected by copper wires (see Figure 1).

Fig. 1 The simple physical system P consisting of a battery, two
switches, and a light bulb.

 Lb Ba
Sw2Sw1



5

Input to P consists of pressing either switch (the states are named ‘1d’  for “Sw1
downwards” , and ‘2d’  for “Sw2 downwards”), where each switch can only be pressed
down (i.e., pressed once).2  The internal states of P are the states of Sw1 and Sw2 (‘uu’
for “both switches up” , ‘dd’  for “both switches down”, ‘du’  for “switch 1 down, switch 2
up” , ‘ud’  for “switch 1 up, switch 2 down”).  Finally, output produced by P are the states
of Lb which is either lit or not lit (‘+’  for “ light on” , “ -”  for “ light off” ).

Now consider the following automaton M1=〈Q,Σ,Γ,δ,q0,F〉, where Q={ A,B,C,D}  is
the set of inner states, Σ={ a,b}  the input alphabet, Γ={ 0,1}  the output alphabet,
δ={ 〈〈A,a〉,〈B,0〉〉,〈〈A,b〉,〈C,0〉〉,〈〈B,b〉,〈D,1〉〉,〈〈C,a〉,〈D,1〉〉}  the transition function from
inner and input states to inner and output states, q0=A the start state, and F={ D}  the set of
final states.3  The automaton is depicted (in the standard fashion) as a graph in Figure 2,
where nodes denote states and edges denote transitions between states, both labeled
accordingly (using the format “ input/output” ).  In the following I will use graphs to
represent automata instead of the more tedious mathematical notations.

Fig. 2 The automaton M1 with inputs from { a,b}  and outputs from
{ 0,1} .

It is easy to see that P implements M1 according to Ch2; just map “uu”  to ‘A’ , “du”  to
‘B’ , “ud”  to ‘C’ , “dd”  to ‘D’ , “1d”  to ‘a’ , “2d”  to ‘b’ , “+”  to ‘1’ , and finally “ -”  to ‘0’ .
The resulting mapping f obviously satisfies all conditions of the definition, because it
supports what Chalmers calls “strong conditionals” : “ If a system is in state A, then it will
transit into state B, however it finds itself in the first state”  [Chalmers (1996), p. 316].
Both of Chalmers’  requirements for counterfactual support, that the transition in the
physical system be lawful and reliable, are satisfied by P (according to circuit theory).

Note that f, being a bijection, establishes an isomorphism between the given physical
and the automata states (i.e., inner, input and output states) with respect to causal and
computational transitions.  Such “ isomorphic”  automata are unique (up to renaming of
their states) and have the same number of states and state transitions (because their sets of
states are finite).  I shall call such an isomorphic automaton “ the characteristic automaton
M of the physical system S”  (denoted by ‘MS’ ) as it truly captures and reflects the entire
causal structure of the physical system for the given set of physical states by retaining the
mere structural properties of the physical system while abstracting of the particular
physical qualities of the physical states.  Obviously, S implements MS for every physical
system S.4  The following is an easy corollary:

Corollary 2: S implements M iff S implements MS and MS implements M (where
“ implements”  between two automata M1 and M2 is to be understood in Chalmers’  sense
as “ there exists a mapping g from states of M1 onto states of M2 such that for every state

B

A
a/0

D
a/1

b/1

C
b/0



6

transition relation (S2,I2) � (S2’ ,O2’ ) of M2 such that g(S1)=S2 and g(I1)=I2, there exists a
state transition relation (S1,I1) � (S1’ ,O1’ ) of M1 such that g(S1’ )=S2’  and g(O1’ )=O2’  ” ).

Hence, the characteristic automaton of a physical system can be used to study the set of
automata that are implemented by the system (instead of the system itself).

To see now that [iso⇒] does not necessarily hold in Ch, consider the following
automaton M2 (which is “missing”  the transition from C to D in M1): it too is
implemented by P (as M1 obviously implements M2 according to Corollary 2).  Note,
however, that while M1 implements M2, the converse is not true (even though both
automata have the same number of states and a bijection can, therefore, be established
between them).  Hence, [iso⇒] does not hold between M1 and M2, and thus M2 can be
viewed as being less complex than M1.  The implied complexity measure is directly based
on Ch2: an automaton M is at least as complex as an automaton M’  if and only if M
implements M’ .  M is more complex (or M’  is less complex), if in addition M’  does not
implement M.  Note that the most complex computation a system can implement under
this notion of complexity is the one isomorphic to the causal structure of the system itself,
i.e., the characteristic automaton (under a grouping of the original states into singletons).

Fig. 3 A (non-characteristic) automaton implemented by P.

The next example illustrates how physical systems can implement “ less complex
automata”  according to Chalmers’  definition by using groupings of physical states:
instead of pressing each switch individually in P, one could view them as “ tied together”
(i.e., they can only be pressed together), resulting in a simpler “one-switch system” as
shown by its characteristic automaton M3:

Fig. 4 A one-switch system depicted by its characteristic automaton
M3.

To see that M1 implements M3, group M1’s inner and input states in the following
way: c:={ a,b}  and E:={ A,B,C}  (i.e., each element of c gets mapped onto ‘c’  and each
element of E gets mapped onto ‘E’ , the rest stays the same).  Note that M2 also
implements M3 under this mapping, but M3 implements neither M1 nor M2, since it has
fewer states, which makes it impossible to map states of M3 onto states of M1 or M2.  In
general it is true for Ch2 that no physical system with n physical states can implement a
machine with more that n states.  Note also that each of the machines M2 and M3 have

B

A
a/0

D
b/1

C
b/0

DE

c/1



7

some physical “ interpretation” , which relates them to P (as they should if they are
supposed to be implemented by P): M2 would correspond to a case in which, for whatever
reason, it is not possible to press switch 1 (corresponding to ‘a’ ) anymore after switch 2
(corresponding to ‘b’ ) has been pressed (e.g., because switch 2 blocks access to switch 1
once it has been pressed).  In case of M2, we could imagine that these two switches are
micro-switches (like the ones used on computers to pre-set certain parameters) which are
so close together that they cannot be pressed individually (unless you use a screwdriver
with a very fine tip, say).

Before moving on, I would like to point out that neither Ch1 nor Ch2 impose any
restriction on groupings; arbitrary groupings of states are permitted as is apparent from
the unrestricted existential quantification in Ch1 (i.e., the “ there exists a grouping of
physical states of the system into state types” -clause) and the unconstrained mapping
from physical states to computational states in Ch2 (again, only existentially quantified:
“ [..] there is a mapping f that [..]” ).  This comes indeed as a surprise, especially because
Chalmers (1996) introduces Ch2 against the backdrop of Putnam (1988), who exploits
“unnatural state type formations”  to argue that every system can be viewed as
implementing every computation.  While Chalmers’  definition of implementation can
block Putnam’s conclusion by requiring that the state transitions be reliable and
counterfactual supporting (a justified move pointing to a severe shortcoming in Putnam’s
argument), he purposefully seems to ignore the issue of state type formation, as he
literally writes: “Some object to [Putnam’s] argument on the grounds that it requires
‘unnatural’  physical states, involving arbitrary disjunctions.  It is difficult to make this
objection precise [..] I will not pursue this line, as I think the problems lie elsewhere”
[Chalmers (1996), p. 312].

While many objections advanced to counter Putnam’s argument on various different
grounds are in my view justified (Chalmers, Chrisley, et al.), I think that Putnam’s
argument can be repaired and patched up in such a way that the formation of physical
states remains its only weakness (although a demonstration of how this could be done
will have to be left for another occasion).  So, contrary to Chalmers, I am convinced
(with Putnam) that the problem is exactly the grouping of physical states and this can be
best illustrated using the following three examples, each of which points to a different
aspect of what can go wrong if unconstrained groupings of physical states are allowed.

Take, for example, automaton M4 (in figure 5): it does not reflect the causal structure
of P anymore, for it effectively suggests that either Sw1 or Sw2 could be pressed twice to
turn the light on, but this is not possible in P.  Yet, M1 implements M4 under the grouping
F:={ B,C}  (and thus P implements M4 as well, since M1 is P’s characteristic automaton).5

Note that state F could be interpreted as “one switch down”.  But as the example
demonstrates the physical system does not really support such a state, since it matters
which switch is in “down position” .  A state like F blurs an essential distinction expressed
by the state transitional structure of M1: there are different transitions going into and
coming out of B and C for the very reason that each switch can only be pressed down
once.  There are only two possible sequences of pressing the switches, either switch 1 is
pressed first and then switch 2, or switch 2 is pressed first followed by switch 1.  Because
the switch pressed first determines which switch is left to be pressed (to turn the light on),



8

a state like “one switch down” is an illegitimate abstraction in that it abstracts over
details that are an essential part of the causal structure of the system.  It is because of this
illegitimate grouping F of states C and B, that it appears possible, at a more abstract level,
to turn the light on by pressing any switch twice (in addition to the two sequences that
turn the light on according to M1).  Note that even if switches could be pushed up in
addition to be pressed down the problem would not vanish, as it would still not be
possible to turn the light on by pressing and pushing only one switch.

Fig. 5 A “simpler”  automaton that is wrongly implemented by P.

Another example exploiting unrestricted groupings is automaton M5, which is also
implemented by P under the grouping E:={ B,C,D}  (see figure 6).  While in the above
case automaton M4 wrongly suggested two additional possibilities to turn the light on,
M5’s implementation is truly an unwanted result, because the simpler machine M5 should
not be able to exhibit more complex behaviors than its implementing machine M1

(otherwise the notion of “simpler”  is rendered absurd).6  Yet, M5 suggests that after
having pressed switch 1 or 2 once, one can keep pressing both of them indefinitely.

Fig. 6 Another “simpler”  automaton wrongly implemented by P, which
exhibits more complex behavior than its implementing system.

Finally, a deterministic machine (like M1) can be even turned into a non-deterministic
machine (like M6 under the grouping G:={ A,C}  and H:={ B,D} —see Figure 7): pressing
switch 1 alone might or might not turn the light on.

Fig. 7 A “simpler”  non-deterministic automaton implemented by P—
the light might or might not come on if the switch represented by ‘a’  is
pressed.

The last three machines (M4, M5, and M6) showed that if no restrictions are imposed
on groupings of physical states, then simple, finite, deterministic physical systems (such

FA

a/0

D

a/1

b/1

b/0

E

a/0

D

a/1
b/1

b/0

G

a/0

H

a/1

b/1b/0



9

as the switch system P) can possibly be seen to implement complex, infinite, and non-
deterministic computations, none of which reflects the causal structure of the switch
system anymore.  The only way such unwelcome implementations could be prohibited
(while retaining the overall structure of Chalmers’  definition of implementation) is by
imposing restrictions on the grouping of physical states.  Yet, it is not clear how this
could be achieved in a definition like Ch2 (using the “ functional approach”).  Formally, it
is easier to incorporate a restriction into Ch1 (where groupings of physical states are
already separated from the mapping) by restricting the existential quantifier to “ there
exists a ϕ-grouping...”  where ϕ specifies the constraints.  In either case, the exact nature
of the constraints will have to be specified if the definitions are to be of any (practical)
use.

3. Cr itique

The above difficulties with Chalmers’  notion of implementation have, in my view, three
independent sources: 1) his conflating the conceptually distinct steps (or operations) of
grouping physical states into types and specifying (or establishing) the correspondence
mapping itself (in Ch2), 2) his conception of simpler computation, and 3) his view that
physical systems implement simpler computations simultaneously.  I will address these
issues in reversed order.

It is certainly true and in accordance with computational practice to view—as
Chalmers does—a standard desktop computer, say, as implementing many computations
at the same time.  However, by saying that “ the system on my desk is currently
implementing all kinds of computations, from EMACS to a clock program, and various
subcomputations of these.”  [Chalmers (1994), p. 397] one does not look at different
groupings of all physical states (of the system) that can be set in correspondence with the
clock or Emacs program; rather one considers on a subset of all physical states in the
computer, i.e., those states that exhibit the right kind of correspondence to the
computational ones (e.g., the memory locations in which the respective programs are
stored).  Take again the switch system P and consider the following “subsystem” P’  of P,
which consists of the battery, one switch, and the light bulb (see Figure 8).

Fig. 8 The subsystem P’  of system P consisting of a battery, one
switch, and a light bulb.

P’  is a subsystem of P in the sense that it has the same causal structure as P if one of
the two switches in P has already been pressed.  In other words, the characteristic
automaton MP’ of P’  is a “subautomaton”  of the characteristic automaton MP of P.  To be
precise, MP’  is isomorphic to either the transition (B,b) � (D,1) or the transition
(C,a) � (D,1) of MP (i.e., M1) depending on which switch of P is being considered to
correspond to “Sw” of P’  (switch 2 in the former case, switch l in the latter).  Note that

 Lb Ba
Sw



10

the states of MP’ are a subset (or, more generally, are in 1-1 correspondence with a
subset) of the states of MP, and the transitions of MP’ are a subset (or, more generally, are
in 1-1 correspondence with a subset) of the transitions of MP.

In general, I would claim, it is this idea of focusing on a subset of the set of all
physical states of a system together with (some) transitions between them that usually
underwrites the notion of implementation in computational practice and also in cognitive
science: in computer science, this is apparent from the fact that programs have
“ locations”  in memory associated with them, which in turn correspond to a subset of
physical states of the computer; in cognitive science, it is underlined when people speak
of cognitive functions such as “motor control” , “object recognition” , “memory recall” ,
“speech production” , etc. and where in the brain these functions are implemented (i.e., in
which cortical areas).

Chalmers’  conception rather seems to correspond to cases, in which programs
implement virtual machines: in such a case, one would group states of the implementing
machine that implement states of the virtual machine together and view the group as
corresponding to a single state of the virtual machine.  For example, if a PC-simulator is
implemented on a MAC computer, then a computational state in the implemented
(virtual) CPU of the PC will correspond to a sequence of states in the implementing CPU
on the MAC.  Note, however, that even in such a scenario Ch2 is not satisfactory, as the
sets of states in the implementing machine that correspond to states of the virtual machine
might not be disjoint (as is required by f being a function in Ch2).

As a result, one has to distinguish (at least) two notions of complexity: one that
corresponds to “being a subautomaton”  (when one concentrates on subsets of states and
transitions of the original automaton), and another that is based on groupings of physical
states.  The former is quite unproblematic and seems to be in accordance with some
aspect of Chalmers’  implicit notion of complexity:

Definition 3: An FSA M’  is said to be at most as complex as an FSA M, if there exists a
one-to-one mapping from states of M’  to states of M such that [iso⇒] holds with respect
to their state transitions.7

Corollary 4: Every FSA M’  which is at most as complex as some FSA M (according to
definition 3) is implemented by every physical system P that implements M (in the sense
of Ch2).
Proof: Let M’  and M be FSAs such that M’  is at most as complex as M.  Since P
implements M, there exists a surjective mapping f from physical states of P to
computational states of M such that [iso⇐] holds between causal transitions and state
transitions.  To show that P implements M’  according to Ch2, it suffices to exhibit a
surjective mapping g from M to M’  such that [iso⇐] holds between the state transitions
of the two FSAs, since the composition of f and g will be a surjective function between
physical states and computational states of M’  such that [iso⇐] holds between causal
transitions in P and state transitions in M’ .  Since M’  is at most as complex as M, there
exists a mapping h from states of M’  to states of M such that [iso⇒] holds with respect to
their state transitions.  Hence, the inverse h-1 of h is a surjective, one-to-one mapping



11

from those states in M that are in the range of h to all states in M’  such that [iso⇐] holds.
To extend h-1 to get the required mapping g, one simply maps those states of M that are
not in the domain of h-1 to some states of M’ .  Note that they can be mapped to arbitrary
states in M’ , since [iso⇐] will not be affected by any such mapping.  This last step
essentially makes use of the fact that states can be arbitrarily grouped according to Ch2.

The second notion of complexity presupposes a notion of “ legitimate”  grouping of
physical states (one must not allow arbitrary groupings as demonstrated in the previous
section).  Even if one agrees with Chalmers that physical systems can have multiple
causal structures depending on the grouping of their physical states, it seems that the
notion of implementation should not be made accountable for which of these groupings
are legitimate.  If I understand Chalmers’  idea of grouping physical states right, that is, if
it is supposed to correspond to the intuition that the same physical system (i.e., the same
spatio-temporal region) can be described at different levels of abstraction (“at a different
causal grain”  as he puts it), then one would ultimately want the physical theory that
delivered the physical states in the first place to delimit the set of all possible groupings:
a grouping of states that is excluded for whatever physical reason should not enter the
picture again via implementation (as with Ch).  The notion of implementation should
rather be used to show that (and maybe how) a certain abstraction can be implemented,
i.e., related to something less abstract [see also ch. 4 of Agre (1997)].  Groupings of
states, therefore, have to be separated from the correspondence mapping.8

This is, however, not to say that general arguments to delimit the set of possible
groupings (as part of a “general theory of abstraction” , for example) are excluded apriori.
In fact, there are ways to restrict the set of all “ reliable and counterfactual supporting”
transitions between grouped states by looking only at the transitions between the given
states.

Recall automaton M4: grouping states B and C together to form the grouped state F
was problematic, because state F made is formally possible to reach state D from A using
input ‘a’  twice.  In M4 it is possible to enter F on transition (A,a) � (F,0) and leave F on
transition (F,a) � (D,1) (i.e., enter F via member state B and leave F via member state C,
where “member state”  refers to a state part of the grouping of a grouped state).  But that
is physically impossible in P (one switch cannot be pressed twice to turn the light on).
The prima facie problem with state F seems to be that not all of its member states share
the same transitions coming into and going out of F.  Obviously, if all member states of a
grouped states have the same transitions coming into and going out of them, then
grouping them together is not going to alter the causal structure.  Turning this implication
around, however, would be too restrictive: there are (formally) legitimate groupings
where not every member state shares every transition entering or leaving the grouped
state.  It seems sufficient for member states of a group to be connected in such a way as
to guarantee a path (i.e., sequence of transitions) from every member state, through which
the group state can be entered, to every member state, through which the group state can
be left.9

To see this, imagine an extension P*  to system P with an additional button Bu that
can be pushed any number of times.  Pushing the button will exchange the position of the



12

two switches: if one switch is up and the other one down, after pushing Bu the first one
will be down and the second one up.  If both switches are up or both are down, pushing
Bu will have no effect (Figure 9 depicts the characteristic automaton of this system,
where ‘c’  stands for “pushing button Bu” ).

Fig. 9 The characteristic automaton MP*  of an extension P*  of P (by an
additional button Bu, which—if puhsed—switches the position of both
if they are different); ‘c’  indicates “pushing Bu” .

Now, consider the relation between M4 and P* .  According to definition 3, M4 can be
seen to be less complex than M4* , which is obtained from P*  by grouping states B and C
to form state F.  Hence, if M4*  reflects (part of) the causal structure of P* , then M4 will.
It is easy to check that every member state of F through which F can be entered (i.e., B
and C) is connected to some member state through which F can be left (i.e., B and C) by
a sequence of transitions (i.e., (B,c) 	 (C,0) and (C,c) 
 (B,0)).10  Therefore, M4*  and M4

both reflect (part of) the causal structure of P* ; in both systems it is possible to enter F
via member state B and leave F via member state C.  The difference between M4*  and M4

is that M4 is ignorant of transitions caused by pressing Bu.  But this difference does not
matter if one is merely interested in a state like “one switch down” (i.e., F) from which it
is possible to turn the light on by pressing any switch (without having to know all the
details about what else needs or needed to be done, e.g., pushing the button if one entered
through B and left through C).

While the above requirement about the relation between member states of a group has
to be satisfied regardless of the physical nature of the involved states, additional
constraints on groupings coming from the respective physical theory itself will have to be
taken into account.  Certain groupings that would seem legitimate from a formal point of
view, might still violate physical principles and laws.  The groupings of physical states in
M3, for example, in which both switches are viewed as being pressed together as if they
were only one switch, might not be permissible if the switches are so far apart that
“pressing them together”  is impossible or does not make sense according to the physical
theory (e.g., the theory of relativity).  Obviously such restrictions cannot be determined at
a mere formal level, but will depend on physical properties of the physical system, i.e., on
implementation details that are abstracted over by mere structural descriptions.

There is yet another problem with Chalmers’  view of “simpler”  that has not been
addressed so far: only computations with (at most) the same number of states and fewer
transitions as a given computation C can count as simpler than C.  Such a complexity
measure is problematic, however, because there are (complex) automata with a large
number of states that compute very simple functions while other (simple) automata with
only few states compute very complex functions (here the terms “simple”  and “complex

B

A

a/0

D

a/1

b/1

C
b/0

c/0

c/0 c/1

c/0



13

function”  are to be understood in the sense of standard complexity theory).  For example,
every fully connected n-state FSA implements every FSA with up to n states according to
Ch2 (yet it cannot be implemented by any other FSA of n states).11  This automaton is
therefore more complex (according to Ch2) than all the other n-state FSAs, yet intuitively
it does not seem right to say that such the FSA has a more complex causal structure (as
every state can be reached from every other state with every input).

There are many examples from computational practice showing that even
computations with more computational states than physical states of a given physical
system can be implemented by such a system.  The most obvious examples are probably
redundant computations or redundant data structures, where “ redundant”  means that these
“sub”-computations or data structures could be somehow eliminated without affecting the
overall computation.  If an optimizing compiler, for example, detects that two variables
have the same value at all times in a given computation C, it will map both onto the same
machine register on a given machine M.  Or, in another scenario, the compiler determines
that the respective values of two variables are only needed once during some non-
overlapping parts of the overall computation, and thus maps both variables to the same
memory location.  In both cases two different computational states are set in
correspondence with one physical state (by virtue of the compiler).  According to Ch2,
however, M does not implement C, while C compiled by a non-optimizing compiler
(which does not result in fewer states) would count as being implemented.  Or to turn it
around, suppose a machine M’  only has a certain number of registers such that only the
optimized version C’  of C can be run on M’ , in which the redundant operations have been
eliminated.  Then M’  implements C’ , but does not implement C according to Ch2.  At the
same time, M’  is running a program that behaves as specified by C in every
computational aspect.12

Additional examples are data structures of various types such as “bit set” , “bit
vector” , “character” , “byte” , etc. which are all conceptually distinct, but can be (and are
on some machines) implemented in the same physical region using the same physical
states.  Just consider a particular location in main memory, in which a bit vector of 8 bits
is stored at a given time.  At some later time, a “character” , which happens to have “ the
same physical representation” , is stored in the same location...

The above implementation results according to Ch are clearly in conflict with the uses
the notion of implementation is put to in practice.  In fact, computer scientists speak of
“ implementation”  even in cases where computations are defined over infinite data
structures (such as infinite streams), which because of their infinite nature have infinitely
many computational states.13 Other examples demonstrating implementations of
architectures with much larger state spaces than those of physical computers are various
forms of sparse matrices (where a matrix with more elements than states in the
computer’s memory can be fit into memory using subtle “ implementation techniques”) or
virtual memory systems (that manage to maintain only those portions of the virtual
memory in “physical memory” , which are accessed by the current computational
process).  While I do not want to endorse the view that scientific terms have to be in
agreement with their practical usage, in the case of implementation it is practice that



14

determines the range of application a formal definition of implementation has to account
for.  After all, the above examples of computations can indeed be implemented!

4. A Revised Notion of Implementation

Chalmers intended his notion of implementation to block “unwanted”  implementation
results (such as Putnam’s) and at the same time to account for the fact that “within every
physical system there are numerous computational systems” (1994, p. 397) of some
complexity, where the complexity of a computation is defined in terms of
“ implementation” .  Furthermore, he wanted to provide a very general notion of
implementation, which suits the needs of cognitive science to describe the causal
structure of physical systems computationally.  Unfortunately, his notion does not respect
intuitions about implementation from computational practice (as apparent from the
examples of “unwanted”  and “unaccounted”  implementations in sections 2 and 3) and
furthermore results in an unsatisfactory notion of “computational complexity” .

The former difficulties can be remedied easily: 1) groupings of physical states have to
be separated from the correspondence mapping, and 2) the notion of “subautomaton”  has
to be used as a complexity measure instead of the groupings of physical states (note that
“ implementation”  is now defined relative to groupings of physical states):

Definition 5: Let S be a physical system and GS be a ϕ-grouping of its physical states into
types.  Then S implements an FSA M iff M is at most as complex (in the sense of
Definition 3) as MGS (the characteristic automaton with respect to GS).

If we take FSA descriptions to be the most abstract characterizations of physical
organizations with respect to causality, then this definition of implementation implies a
natural way to compare physical systems with respect to their causal complexity: a
physical system P is at most as complex as a physical system P’  if every FSA M
implemented by P is at most as complex (in the sense of Definition 3) as some FSA M’
implemented by P’  (in symbols: P <=c P’ ).

Definition 5 is more restrictive than Chalmers’  as can be seen from the following
theorem:

Theorem 6: Let S be a physical system and M an FSA.  S implements M according to
Ch2, if S implements M according to definition 5.  On the other hand, there exists a
physical system and an FSA M implemented by S according to Ch2, which is not
implemented by S according to definition 5.
Proof: For the first part observe that Ch2 does not impose any restrictions on groupings,
hence S implements MGS for every ϕ-grouping GS according to Ch2.  Using corollary 4 it
follows that S also implements every FSA M’  which is at most as complex as MGS, i.e., S
implements every FSA M according to Ch2, which is implemented by S according to
definition 5.  For the second part, consider the switch system P, which implements M4

according to Ch2, yet there is no ϕ-grouping GS (according to circuit theory) such that P



15

implements M4 according to definition 5 (the argument that there is no legitimate
grouping of states corresponding to M4 was given in section 2).

While definition 5 eliminated unwanted implementations by being more restrictive
than Ch2, both definitions are too restrictive in that they require a physical system to
implement only computations with at most the same number of computational states as
there are physical states in the system.  Yet, as mentioned before, there are situations
where it makes perfect sense to view certain computations as being implemented by a
system even though the system has fewer physical states than there are computational
states.  Accounting for such implementations means to relax the constraints on the
correspondence mapping and allow single physical states to be related to (possibly) many
computational states.  In other words, implementation will have to be viewed as a
relation!  The upshot of this move is that one has to abandon isomorphism, since it is only
defined for functions... .  Fortunately, there is a substitute that expresses exactly the idea
of “mirroring”  under these relaxed conditions, the notion of “bisimilarity” :14

Definition 7: [Bisimilarity] Let I and O be two finite sets (e.g., the sets of input and
output states, respectively) and let MS = 〈S, � S〉 and MT = 〈T, � T〉 be two structures with
domains S and T, respectively, where the relation  S is defined over S×I×S×O and
relation the � T is defined over T×I×T×O.  These structures are then said to be bisimilar
(symbolically MS =bisim MT) if there exists a non-empty relation R (called “bisimulation”)
between S and T such that the following four conditions hold:

1. If R(s,t) and (s,i) � S(s’ ,o), then there exists t’∈T such that R(s’ ,t’ ) and (t,i) � T(t’ ,o)
2. If R(s,t) and (t,i) � T(t’ ,o), then there exists s’∈S such that R(s’ ,t’ ) and

(s,i) � S(s’ ,o)
3. For every s∈S there exists a t∈T such that R(s,t)
4. For every t∈T there exists a s∈S such that R(s,t)

Definition 7 can be easily applied to the above implementation problem: one structure
will be the description of the physical system with its physical states and the relation
“reliably transits”  (a causal notion), while the other structure will be the FSA with its
transition relation.  It is ensured that for any physical state s and any causal transition
from s there will be a computational state c related to s and a computational transition
from c related to the causal transition in the physical system such that the physical state s’
resulting from the causal transitions is again related to a computational state c’  resulting
from the computational transition, and vice versa.  Thus, systems that are related
according to definition 7 will not only have the same input-output behavior, but should
intuitively also have all “computational sequences”  (or computational processes, if you
will) for all possible inputs in common, where “computational sequence” is defined as
follows:

Definition 8: [Computational sequence] A computational sequence (in a system, physical
or abstract) is a finite sequence <x1, x2,..., xn> of pairs xi=<ui,vi>∈(Σ∪{ ε} )×(Γ∪{ ε} ),



16

where Σ is the input alphabet, Γ the output alphabet, ε the “empty string” , and xi the label
of a transition in the system.15  The input of and the output produced by a computational
sequence <x1, x2,..., xn> are the strings u1u2...un and v1v2...vn, respectively.

Definition 8 formalizes the intuition that a computational sequence, i.e., how an
output is obtained from a given input, is defined and completely determined by state
transitions (i.e., the inputs and outputs that occur at each transition).  The following
corollary is an immediate consequence of definition 8:

Corollary 9: Any two bisimilar systems (and as a consequence, any two isomorphic
systems) have identical computational sequences.
Proof: Let MS = 〈S, � S〉 and MT = 〈T, � T〉 be two bisimilar structures, let R be a
bisimulation for MS and MT, and <x1, x2,..., xn> be an arbitrary computational sequence.
Then there are two cases: either there exist s1, s2,..., sn+1∈S such that <si,ui> � S <si+1,vi>
where xi=<ui,vi> for all i <= n or such si do not exist.  In the first case, by clause (3) of
definition 7 there exists a t1∈T such that R(s1,t1), and consequently by clause (1) a t2 such
that <t1,u1> � T <t2,v2>.  By repeatedly applying clauses (3) and (1) using an induction
argument one can furthermore show that <ti,ui> � T<ti+1,vi> for all i <= n (where R(si,ti)
for all i <= n+1).  The same argument works in the reverse direction using clauses (2)
and (4) of definition 8.  In the second case, in which appropriate si (or ti) do not exist,
there cannot be appropriate ti (si) either, otherwise the argument for the first case above
could be used to show that si (ti) must exist, yielding a contradiction.  Hence, MS and MT

have the same computational sequences.

Corollary 9 shows that as far as computational sequences are concerned it does not
matter what the computational states are or how many different computational states are
involved in a particular computation for two systems to have all possible computational
sequences in common (i.e., to be equally complex from a computational point of view!).
All that matters about computational states is their role in the whole network of
transitions, what transitions come into a state and what transitions leave the state, where
transitions are determined by their labels, i.e., their inputs and outputs (this description is
reminiscent of functionalist views on functional states—see the next section).  Hence,
two systems with a different number of “ inner”  states that are bisimilar will be
indistinguishable from a computational point of view (i.e., with respect to their possible
computational sequences).

On the other hand, computational sequences can distinguish physical systems that do
not have the same computational sequences in common despite the fact that both systems
might show the same input-output behavior.  There are basically two possibilities of how
any two computational sequences on the same input producing the same output can
differ: either 1) they are of different length, or 2) if they have the same length, they differ
on at least one particular pair.  Systems that differ with respect to at least one
computational sequence cannot have the same “computational structure”  (as determined
by their computational sequences), they compute some input-output pairs differently.
Such systems then do not even have to differ with respect to what they compute.  What



17

matters is that they differ in how they compute it for them to be separable by
computational descriptions (together with an appropriate notion of implementation).

The following notion of implementation, then, incorporates the notion of bisimilarity
into definition 5 and can, therefore, answer the question what a system computes and how
it computes it without having to require that physical states and computational states are
in a particular functional correspondence:

Definition 10: [Implementation revised] Let S be a physical system and GS be a ϕ-
grouping of its physical states into types.  Then S implements an FSA M iff M is bisimilar
to some automaton at most as complex (in the sense of Definition 3) as the smallest
automaton bisimilar to MGS (the characteristic automaton with respect to GS).

Definition 10 effectively states that in order to be “ implementable on a physical
system” computations must share one crucial aspect with the physical system: the state
transitional structure of the computation must be at most as complex as the causal
transitional structure of the implementing physical system with respect to computational
sequences.  While (infinitely) more automata are viewed as implemented by a given
physical system according to definition 10 than according to definition 5, unwanted
implementations are still excluded.  For example, the switch system P does not
implement any of M4, M5, or M6 according to definition 10 while implementing them
according to Ch2.  This shows that definition 10 and Ch2 are essentially different.  They
agree on some implementations (e.g., on all implementations with respect to definition 5),
but differ on others.  Yet, definition 10 captures some of the intuitions that Chalmers
might have had about groupings of physical states.  For example, it is now possible to
establish formally that a virtual machine VM (i.e., an abstract description of a
computational architecture) is implemented on a given physical system S (where different
sequences of transitions in S correspond to only one transition in VM or more than one
transition in the VM corresponds to only one transition in S).

More interestingly, a bisimulation implicitly defines a minimal set of possible
groupings, namely those that result in bisimilar automata: just consider for a given FSA
M the class of all bisimilar FSAs that have fewer states than the given automaton.  Every
FSA in this class will define a particular legitimate grouping of states of M while
preserving all computational sequences of M.16  Note that the set of groupings obtained
by looking at bisimilar automata is a subset of the set of physically allowable groupings
(which in turn is a subset of all possible groupings): additional possible groupings (i.e.,
groupings that do not result in bisimilar automata) will have to be defined by the
underlying physical theory.

While definition 10 could correct the shortcomings of definition 5, there is a price to
be paid for relaxing implementation constraints: consider two non-isomorphic systems
that have identical computational sequences for all possible inputs (as in figure 10), call
the left one ‘Mp’  and the right one ‘Mp” ’ .  Recall that such systems, being bisimilar, are
identical not only with respect to what they compute, but also with respect to how they
compute it.  In other words, they are indistinguishable (or equally complex) from a
computational point of view.  While computational descriptions according to definition 5



18

were able to tell non-isomorphic bisimilar systems apart, computational descriptions
according to definition 10 cannot distinguish between isomorphic and non-isomorphic
bisimilar systems anymore!

Fig. 10 Two bisimilar, but non-isomorphic automata.  The bisimilarity
R is the relation { <A,C>,<A,D>,<B,E>} .

Note that physical systems P of which Mp is the characteristic automaton are causally less
complex than physical systems P”  of which Mp” ”  is the characteristic automaton, yet both
systems have the same computational complexity.  To see that the relationship between
causal complexity and computational complexity is quite complex, consider the
automaton Mp’ ’  (and its corresponding physical systems P’ ) obtained from M”  by
removing the transition from C to E: P< c P’< c P” , yet Mp=bisim Mp” ” , but neither
Mp=bisim Mp’ ’  nor Mp’ ’=bisim Mp” ” .  If the number of states of the smallest
automaton/automata in each equivalence class of bisimular automata is taken to be the
measure of their computational complexity (e.g., compare this to Chaitin’s notion of
computatational complexity), then we get that Mp’ is computationally more complex than
Mp”  (while its implementing systems are causally less complex than the implementing
systems of the computationally simpler automaton).  In short: the computational
complexity and the causal complexity of a physical system can be different.

5. Implementation and Functionalism

Definition 10 opens an interesting perspective on functionalist theories of mind that will
allow us to view the relation between functionalist descriptions and physical systems in a
new light.  First, however, note that definition 10 seems to be some sort of intermediary
between a behaviorist and a functionalist view on implementation: while the behaviorist
only requires of a system that it get the input-output function (i.e., the behavior) right to
be able to say that it “ implements”  this function/behavior, the functionalist imposes
(among others) constraints on inner states, namely that inputs cause the system to assume
certain inner states (which in turn cause it to produce certain outputs).  Thus, to say that a
system implements a functionalist description is to require that it get the mapping of the
inner states right in addition to the input and output mapping.  Usually, these “ inner
states”  are assumed to be multiply realizable, therefore the mapping has to be a many-to-
one mapping from physical states to functional states.  Yet, inner states are viewed by
functionalists as intrinsically relational states, being mutually defined by all states in the
functional architecture.  It seems to me that this conception of states solely defined in
terms of their relations to each other is what contradicts isomorphism-based definitions of
implementation and thus prevents the functionalist from having an homo/iso-morphism-
based notion of implementation.

a/0

A C

a/0

D

a/0
b/1

B

b/1

E

b/1



19

To see this, consider, for example, the following automaton, which has two inner
states ‘E’  and ‘O’  standing for “even”  and “odd” .  Depending on whether the number of
‘1’s that the automaton has seen so far is even or odd, it outputs either ‘a’  or ‘b’ ,
respectively.

Fig. 11 The even-odd transducer with two inner states.

A functionalist account of what it means to be in state E would look like this [e.g., see
Block (1995)]:

Being in E =def Being an x such that ∃P ∃Q [x is in P ∧ (if x is in P and gets input
‘1’ , then it goes into Q and outputs ‘b’ ) ∧ (if x is in Q and gets input ‘1’ , then it
goes into P and outputs ‘a’ )].17

Since it is only claimed that there has to be an arrangement of physical states that
corresponds to the functional states in a way that preserves inputs and outputs as well as
transitions between states, it is possible for one physical state to serve as the instantiation
of more than one functional state.  In the previous example this would amount to P=Q,
i.e., E and O having the same (physical) realizer while being distinct functional states.
Therefore, the correspondence between physical systems and functional architectures
cannot be based on a mapping between physical states and functional states to preserve
causal transitions.  Rather, causal transitions will have to be preserved in a less restrictive
way allowing functional states to have possibly multiple realizers and physical states to
be the realizers of possibly multiple functional states.  But this means that
implementation, from a functionalist point of view, has to be viewed as some sort of
“bisimilarity”  between functional and physical architectures.

Obviously, this conclusion can be prevented by simply requiring that ∃P ∃Q(P≠Q ∧
[...]).  The question then is on what grounds this move could be justified as it seems to
make a particular physical claim, namely that P and Q have to be distinct.  Furthermore, a
particular kind of “supervenience claim” seems to be implied (e.g., that there can be no
mental difference without a physical difference), a claim that in my view should not be
introduced into the functionalist notion of realization [Papineau (1995), p. 240 uses a
different argument to make the same point “ there is nothing puzzling about the idea of a
state that fails to supervene on the physics of the brain, but is nevertheless realized by
some physical feature of the brain” ].

 One philosophical consequence is that the notion of implementation of a computation
(in the sense of definition 10) and that of a functional architecture coincide at least with
respect to the way physical states are related to computational or functional states,
respectively.18  Of course, the functionalist notion of implementation (or “ realization” , as
it is often called) would need to be made more precise to allow for a formal
comparison.19  But even without a formal notion of realization it is possible to see that

E O

1/b

1/a



20

functionalist accounts will fail at capturing the causal complexity of physical systems if
computationalist accounts fail in this respect.

The question then remains whether computational descriptions do actually fail to
capture the causal structure of physical systems.  In the light of the above, there seem to
be two possible answers depending on one’s metaphysical stance on “ the causal structure
of a physical system”: if the causal structure of a physical system (i.e., its causal
complexity) is determined by its various physical states and their causal relations among
each other, then computational, and as a consequence functionalist descriptions will not
be able to cover and capture all aspects of the causal structure.  If, on the other hand, the
causal structure of a physical system is solely determined by its various causal transitions,
where physical states only play a subordinate role (i.e., in defining and fixing causal
relations), then computational descriptions will be able to capture the causal structure of
those physical systems that implement them.20  And mutatis mutandis, functionalist
descriptions will capture the causal structure of physical systems realizing them (modulo
an appropriate notion of “ functional realization”).

6. Discussion and Conclusion

The notion of implementation suggested in definition 10 sheds new light on the relation
between computations and physical systems by relaxing conditions about the
correspondence of physical and computational states.  Rather than establishing a rigid
mapping between physical and computational states, definition 10 requires only a rigid
correspondence between computational and causal paths.  In other words, every
computational sequence corresponds to a causal sequence, and every causal to a
computational sequence—computations and (subsystems of) physical systems have to
agree on their transitions.

This shift from states to transitions has various philosophical implications: for one,
computational states are rendered inappropriate as a measure of the causal complexity of
a physical system if the causal complexity of a physical system is defined by its physical
states and all possible causal transitions between them.  As shown at the end of section 4,
such a complexity measure drives a wedge between the causal and the computational
complexity (as induced by the notion of “smallest bisimilar automaton”) of physical
systems.  Consequently, this raises questions about the adequacy of its underlying notion
of causal complexity as well as the appropriateness of intuitions about computations
mirroring the causal structure of their implementing physical systems.  Furthermore,
possible implications of the conceptual separation of causal and computational
complexity for functionalism and in particular computationalism need to be investigated.

It seems to me that computationalism is unaffected by the notion of implementation
suggested in definition 10.  While it is true that computations cannot single out the
particular causal structure of a physical system (the brain, say) according to the suggested
notion of implementation, they are still appropriate to describe all possible
computational, i.e., causal sequences of their implementing system.  This should be
sufficient if the cognitively relevant aspects of physical systems are the ones preserved
under bisimilarity (and, hence, open to computational descriptions).21  In fact, I suspect



21

that computationalists, while usually speaking of computational states, have always
tacitly taken the notion of computational process (instead of computational state) to
underwrite their paradigm.  If my suspicion is correct, then the above notion of
implementation should not come as a surprise to computationalists nor should it disturb
their endeavor, as computationalism really is the claim that cognitive processes are
computational processes.

The same is not quite as clear in the case of functionalism.  Mental states cannot
always be viewed as processes (what does it mean to have a belief in terms of
processes?).  Furthermore, some views of how functional descriptions are related to
physical systems might turn out to be problematic, in particular those views that base
functional realization on some notion of “supervenience” , for it might no longer be true
that the physical realization of mental properties (necessarily) implies their supervenience
[as Kim (1998), p. 23 suggests].  Or it might even turn out that the notion of bisimilarity
used in definition 10 is still too strong to account for how functional states relate to the
physical (in that it requires all transitions of two systems to match up perfectly) and
would have to be further weakened.  A satisfactory answer to these questions, however,
will require precise notions of “ functional architecture”  and “ realization of a functional
architecture” , none of which are available to my knowledge as of today.

Notes

1 The usage of the term “mirror”  is indeed quite confusing in Chalmers’  paper: whereas one would expect
“mirror”  to mean something like “ is isomorphic to”  (as “mirrors”  usually indicates sameness in structure),
neither Ch1 nor Ch2 imply structural sameness, since both only require [iso⇐] (i.e., that “ formal states
related by an abstract state-transition relation are mapped onto physical states-types related by a
corresponding causal state-transition relation” ), but not the other direction [iso⇒] (i.e., that “physical
states-types related by the corresponding causal state-transition relation have to be mapped onto formal
states related by an abstract state-transition relation” ).  This would suggest that “mirrors”  means [iso⇐].
Yet, there are other places in the text, where “mirror”  seems to suggest only [iso⇒], as in the quote
preceding this footnote.
2 That switches can only be pressed once is not essential to the argument, but it allows for a simpler
presentation of the material.
3 Note that δ is not defined for all transitions, thus making the automaton formally non-deterministic.
While this is a mere formality (as the automaton is still deterministic) it can be accounted for by requiring
that in cases  where the transitions is not defined for some input (e.g., 〈B,a〉 and 〈C,b〉) the automaton stay
in its current state and output nothing (i.e., 〈B,ε〉 and 〈C,ε〉 respectively) or go into a “dead states”  from
which no other state can be reached.  See, for example, Hopcroft and Ullman (1979).
4 If not stated otherwise, “ implement”  will always be understood in the sense of Ch2 in sections 2 and 3.
Furthermore, the term “states”  will always refer to input, inner, and output states collectively.
5 To see that P implements M4 according to Ch2, consider, for example, the transition (F,a) � (D,1).  Then
there exists a state S in P such that f(S)=F.  Obviously, S=ud as with S=du there are no transitions with a to
D.  The only possible input is “1d” , upon which P reliably transits into state “dd”  and outputs “+” , i.e.,
(f(ud),f(1d)) causes (f(dd),f(+))=(F,a) � (D,1).  Similar arguments work for the other three transitions.
6 By “more complex behaviors”  I intend to point to the fact that M5 computes an infinite input-output
function, namely (a∪b)n(a∪b} →0n1 for all natural numbers n (using the standard notation for regular
expressions), while the input-output function computed by M1 consists only of the two pairs <ab,01> and
<ba,10>.
7 This notion respects intuitive ideas about the complexity of a system (such as considering only part of all
computational states of a system, which is possible in Ch2 only if f is allowed to be a partial mapping) as
well as those about the complexity of behaviors: according to this complexity measure, M can emulate



22

every behavior of M’  (i.e., there exists a surjective mapping h between the output of M and M’  such that
every behavior of M will correspond to at least one behavior of M under h).  The last section showed that
this is not true of Ch2.
8 In this respect Ch1 was already on the right track: the existential quantifier ranges over mappings and
over groupings of physical states, yet this conceptual separation was (formally) abandoned in Ch2.
9 Note that this requirement of having member states connected in certain ways is still a rough cut.  In
general there will be additional restrictions on the kinds of permissible transitions within a group, since
transitions within groups that affect inputs and outputs of the overall system in a way that “matters”  to the
overall behavior of the system must not be allowed.
10 Reflexive transitions, i.e., transitions of the form (X,y) � (X,z) for  states X, are not required, since X can
be reached from X without any transition.
11 This is quite informal.  To make this claim precise, one has to take the number of different input and
output states into consideration.
12 Note that compilers do not change the computational description, rather they attempt to map it to the
given machine architecture.
13 Obviously, at any given time only a finite number of the infinitely many computational states can be
implemented in a physical system.  This raises the question whether “ implemented”  is the right term to
describe the relationship between a program using infinite streams, for example, and what actually runs on
the computer.  Without going into details here, I would claim that it is by virtue of how these computations
are implemented (in an intuitive sense), e.g., using delay mechanisms, etc. that we are justified in saying
that they are implemented (in a strict sense).
14 See, e.g., Barwise and Moss (1996), p. 37, who regard bisimilar automata as “almost isomorphic” , i.e.,
“ the same from the outside” .
15 The empty string (or empty character) is included to model transitions that do not depend on (relevant)
input or that do not produce (relevant) output (i.e., so-called ε-transitions).
16 While there might not be a unique smallest automaton, one can still take the number of states of some
smallest automata as a measure of the complexity of the input-output behavior of M and conclude that in
order to show such and such behavior it is necessary to have at least that many states.  As a consequence
using definition 10, the same applies to the number of physical states of physical systems implementing M.
17 Note that the existential quantifiers could be viewed as ranging over properties or as picking out
particular physical states of the system.
18 In fact, it is hard to see how both notions could differ at all if the set of functional states is taken to be
finite (as functional descriptions would then be reduced to FSA descriptions, thus making definition 10
applicable).
19 There are a few promising attempts to formalize the functionalist notion of realization [e.g., Kim (1998),
or David (1997)].
20 It seems to me, however, that this move would first and foremost require a reconsideration of the notion
of physical state and the role it plays in physical descriptions and explanations.
21 Put differently, if all that matters is “how a function is computed”  (as it is common in computational
practice), then a computational description of the causal transitional structure of the implementing system
will capture the relevant aspects.

References

Agre, P. (1997), Computation and Human Experience. Cambridge, Cambridge University Press.

Barwise, J., and Moss, L. (1996), Vicious Circles, CSLI Lecture Notes, Cambridge University Press.

Block, N. (1996) ‘What is Functionalism?’  In The Encyclopedia of Philosophy Supplement, Macmillan.

Chalmers, D. J. (1994), ‘On Implementing a Computation’ , Minds and Machines 4, 391—402.

Chalmers, D. J. (1996), ‘Does a Rock Implement Every Finite-State Automaton?’ , Synthese 108, 310—
333.

Chrisley, R. L. (1994), ‘Why Everything Doesn’ t Realize Every Computations’ , Minds and Machines 4,
391—402.



23

Copeland, B. J. (1996), ‘What is Computation?’ , Synthese 108, 403—420.

Cummins, R. (1989), Meaning and Mental Representation, Cambridge, MA, MIT Press.

David, M. (1997), ‘Kim’s Functionalism’, In Philosophical Perspectives, 11, Mind, Causation, and World.

Hopcroft and, J. E. and Ullman, J. D. (1979), Introduction to Automata Theory, Languages, and
Computation. Massachusetts, Addison-Wesley Publishing Company.

Kim, J. (1998), Mind in a Physical World, Cambridge, MA, MIT Press.

MacLennan, B. J. (1994), ‘Words Lie in Our Way’ , Minds and Machines 4, 421—437.

Melnyk, A. (1996), ‘Searle’s Abstract Argument Against Strong AI’ , Synthese 108, 391—419.

Papineau, D. (1995), ‘Arguments for Supervenience and Physical Realization’ .  In Supervenience,.
Savellos, E. and  Yalçin, Ü. (eds.), Cambridge University Press.

Putnam, H. (1988), Representation and Reality, Cambridge, MIT Press.


