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We present a research strategy to study the effects of various components in
an agent architecture (e.g., feedback circuits that can implement various control
states) on the dynamics of species interactions in a simulated environment. In
particular, we discuss the consequences of behaviors elicited by affective states
(like “hunger” or “fear”) for whole agent societies. Construing affective phenomena
as processes implemented in part by the agent, but partly also resulting from the
agent-environment interaction (including interactions with other agents), we report
simulation results that suggest that certain affective states are very likely to evolve
in competitive multi-species environments because they lead to behavior that is
bene£cial at the society level. From this we conclude that further studies along
the lines we suggest might reveal evolutionary trajectories from simple individual
re¤ex-like agents to much more complex multi-agent societies, possibly also hint-
ing at why relatively few species have developed a complex deliberative control
system.

Affective phenomena are wide-spread in nature. Especially in social interactions, we can ob-
serve many different kinds of affect at work, from expressive prosody in speech, to facial ex-
pressions of emotions, to bodily gestures expressing attitudes. Humans, and to a lesser degree
many other animals, seemed to be locked into an intricate network of affective control that in-
volves expressing one’s own affect as well as recognizing and reacting to the affect of others.
While it seems obvious from their mere presence that affective phenomena must play some role
in social situations–otherwise they would not have survived evolutionary pressures–their precise
function is not that clear. Even less clear is how affective phenomena should be categorized and
how the so-obtained categories could be mapped onto possible organizations of agent control
architectures that are able to bring about or contribute to bringing about these phenomena.

We believe that part of the problem with a satisfactory characterization of affect has to do
with the limiting view of affect as “state” (of an agent), which can only provide a “snap shot
picture” of what may be better understood as an enduring process of behavior coordination:
actions and reactions, adjustments and modi£cations, anticipation and compensation of behav-
ior in various social situations. Often it is not a single inner state of an agent that determines



whether an agent has, experiences or displays some form of affect, but rather a whole sequence
of such states in combination with environmental states (e.g., “fear” does not refer to the make-
up of an agent at a particular moment in time, but to the unfolding of a sequence of events,
starting from the perception of a potentially threatening environmental condition, to a reaction
of the agent’s control system, to a reaction of the agent’s body, to a change in perception, etc.).
Consequently, we construe affective phenomena–different from most research on affect–as be-
ing intrinsically process-like rather than state-like phenomena, and use the term “affective state”
only where common language usage favors it over other (better) ways of referring to affective
phenomena. We believe that the process-view of affect can help to elucidate the functional role
of affective phenomena as coordination mechanisms that allow many animals (and also humans)
to regulate group behavior.

Methods

In accordance with the above mentioned view of affect as means of behavior coordination, we
then construe affective processes as instances of “control processes”. As such they serve the
primary purpose of initiating, ending, interrupting, modulating, regulating, predicting, and ad-
justing agent behavior. From simple homeostatic control states like hunger, to primary emotions
like fear, to complex emotional states like guilt, affective control underlies most (if not all) in-
teractions of animals. Understanding what exactly the functional roles of the different kinds
of affect are in the context of a social group or species and how these functions can be im-
plemented in agent architectures may contribute to theories of (1) how individual behavior (as
guided by affective control) can in¤uence group behavior, (2) how changes in individual behav-
iors can impact groups and societies, and (3) why evolution seemed to have produced so many
“simple affective, social creatures” (e.g., such as colony-forming insects), but only relatively
few complex, deliberative, social species.

Answers to these questions are hard to £nd and will involve an understanding of the logical
space of possible affective phenomena. In particular, there seem to be three questions that are
relevant in the context of our understanding of affective states. The £rst class concerns affective
phenomena as they occur in nature, asking (1) what affect is and what different kinds of affect
there are, (2) how and why affective mechanisms came about, and (3) what the functions of
affective states are (assuming they have some function) in information processing architectures.

We believe that an answer to any of these question will likely not come forth from indepen-
dent inquiries, but from the interplay of conceptual analyses, empirical £ndings and concrete
experiments with agent architectures. The proposed research strategy then is to start with a no-
tion of affective state, which is applicable to natural systems, determine/de£ne its function in a
particular agent architecture and subsequently try to explore the properties of this state for con-
crete agents in different environments with the goal of extending the notion to more complex
cases. This includes investigating ways in which slight changes in environments can change
the trade-offs between design options for the architecture and hence for the functional role of
the affective state. Such explorations of “neighborhoods in design and niche space” (e.g., Slo-
man 2000b) will help us understand what the competitive advantage of a particular change in



architecture or mechanism might be in a particular environment, and how the bene£ts change
in slightly different environments.

To be able to study the origins of affective phenomena from an evolutionary perspective
and effectively experiment with different kinds of agent architectures, a genuine arti£cial life
simulation environment is required, within which different species of agents (with different ar-
chitectures and possibly different bodies) can coexist and procreate. Both requirements are
crucial; the £rst, because affective control mechanisms in natural systems did not evolve in iso-
lation, but rather in competing multi-species societies. Hence, to fully appreciate the bene£ts
of affective control, we need to study the trade-offs between different control architectures in
competition with one another. A model employing affective mechanisms in the control of a
particular isolated agent or a group of agents with identical architectures is necessarily silent
about the evolutionary advantage of affective control over other ways of controlling and regulat-
ing behavior (e.g., by virtue of various kinds of non-affective reactive or deliberative processes)
in a multi-species environment. The fact that agents of one kind perform better than agents
of another kind if tested independently does not shed any light on their performance in mixed
groups.

The second requirement is equally important, because classic genetic algorithms (GAs) as-
sess the £tness of agents based on a static, predetermined £tness function and can hardly (if at
all) do justice to the dynamics of the local interactions of agents with their (changing) environ-
ments, which in the end determines reproductive success (e.g., see Kauffman 1995). There are
several problems with specifying £tness explicitly besides evolutionary plausibility. For one, it
is not clear what architectural features to select for if the task at hand is to evaluate the role and
potential of affective states in different agent architectures from an evolutionary perspective.
Furthermore, as agents and their architectures change over time together with the environment,
adaptive £tness changes as well, which would have to be somehow re¤ected in the £tness func-
tion (for a more detailed description of the differences between exogenous and endogenous
£tness and some reasons why endogenous £tness is to be preferred in such a simulation setup,
see Menczer and Belew 1996).

Other desiderata include spatial continuity (to eliminate any potential in¤uence of grid struc-
tures), temporal sensitivity (to be able to study temporal trade-offs of actions and processing
mechanisms), at least two resources that agents need to obtain (to make the decision prob-
lem interesting, e.g., Tyrrell 1993, or Spier and McFarland 1998), and Lamarckian mutation
mechanisms (to be able to control modi£cations and extensions of certain components of an
architecture).1

We have developed the SimWorld Arti£cial Life Simulation Environment based on the
above requirements in order to be able to study the origins and roles of affective phenomena
in agent societies with possibly many different kinds of agents. SimWorld consists of a poten-
tially unlimited continuous surface populated with various spatially extended objects such as
various kinds of agents, static obstacles of varying size, and food and water sources, which pop

1Note that this is for methodological reasons only. As long as these mutation operations are feasible using Dar-
winian mutation, we can justify performing operations directly on the architecture instead of performing them on
genetic representations. As an aside, it is always possible to regard architectures as representations of themselves,
although it is doubtful that organisms would use such an uncompressed code.



up within a particular area (800 by 800 units for the experiments reported in this paper) and
disappear after a pre-determined period of time, if not consumed by agents earlier. Agents are
in constant need of food and water as moving consumes energy and water proportional to their
speed–even if they do not move, they will still consume a certain amount of both. When the
energy/water level of an agent drops below a certain threshold ω, agents “die” and are removed
from the simulation. They also die and are removed, if they run into other agents or obstacles.

All agents are equipped with exteroceptive “sonar”, “smell”, and “touch” sensors. Sonar is
used to detect obstacles and other agents, smell to detect food and water, and touch to detect
impending collisions with agents or obstacles as well as consumable food and water sources. In
addition, the touch sensor is connected to a global alarm system, which triggers a re¤ex beyond
the agent’s control to move the agent away from other agents and obstacles. These movements
are somewhat erratic and will slightly reorient the agent (thus helping it to get out of “local
minima”). Furthermore, agents have two proprioceptive sensors to measure their energy and
water levels, respectively, which are also connected to global alarm systems. These alarms will
be triggered if the energy/water level drops below a critical threshold and make the agent ignore
any other need (e.g., if the water level is critically low, food will be ignored).

On the effector side, they have motors for locomotion (forward and backward), motors for
turning (left and right in degrees) and a mechanism for consuming food and water (which can
only be active, when the agent is not moving). When agents come to a halt on top of a food
or water source, their ingestion mechanism suppresses the motors for locomotion until the item
is consumed, which will take a time proportional to the amount of energy/water stored in the
food/water source depending the maximum amount of food/water an agent can take in at any
given time.

After a certain age α (measured in terms of simulation cycles), agents reach maturity and
can procreate asexually. Since the energy for creating offspring is subtracted from the parent,
agents will have a variable number of offspring depending on their current energy level (from
0 to 4), which pop up in the vicinity of the agent one at a time. Since a mutation mechanism
modi£es with a certain probability µ some of the agent’s architectural parameters (e.g., such
as connection weights in a neural network), some offspring will start out with the modi£ed
parameters instead of being exact copies of the parent. Note that both parameters, α and ω, can
be used to specify, whether the simulation is used as an exogenous or as an endogenous £tness
model.

While different agents may have different (implicit) short-term goals at any given time (e.g.,
getting around obstacles, consuming food, reaching a water source faster than another agent, or
having offspring), common to all of them are two (implicit) long-term goals: (1) survival (to
get enough food/water and avoid running into obstacles or other agents), and (2) procreation (to
live long enough to have offspring).

In the following experiments, we study different kinds of related agents, which all possess
the same architectural components (but not all the same links among them). All agents process
sensory information and produce behavioral responses using a schema-based approach (Arkin
1989). Let Ent = {f, w, o, a} be an index set of the four types of objects food, water, obstacle,
and agent–all subscript variables will range over this set unless stated otherwise. For each object
type in Ent, a force vector Fi is computed, which is the sum, scaled by 1/|v|2, of all vectors



v from the agent to the objects of type i within the respective sensory range, where ‘|v|’ is the
length of vector v. These four perceptual schemas are then mapped into motor space by the
transformation function T (x) = gf · Ff + gw · Fw + go · Fo + ga · Fa for i ∈ Ent, where each
gi is the respective gain value. These gain values are provided by the output layer of a three-
layer interactive activation and competition (IAC) neural network with four input units in, four
hidden units hid, and four output units out (Rumelhart and McClelland, 1986) via individual
scaling functions fi(x) = x · ci+ bi (where bi is the base gain value and ci the scaling factor for
the activation of outi).

The input layer is connected (again via similar scaling functions) to the internal water (inw)
and energy level sensors (inf ) as well as the global alarm mechanism (which sends an impulse
to ino or ina units depending on whether the alarm was triggered by an impending collision with
an agent or an obstacle). Note that neural networks employed in other simulations to control the
behavior of agents (Menczer and Belew 1996, Seth 2000, et al.) usually compute the mapping
from sensors to effectors, while the neural network here is intended to implement the affective
system, thus adding another layer on top of the input-output mapping (which is accomplished
in a schema-based manner; of course, this mapping, in turn, could have been implemented as
neural network as well).

Figure 1: A simpli£ed sketch of the neural network architecture that is used to implement the
affective control (only hidden units and their incoming and outgoing connections are depicted).

The activation value acti(t) of an IAC unit i at time t is de£ned by

acti(t) =



















(max− acti(t− 1)) · neti(t)− decay,
neti(t) ≥ 0

(acti(t− 1)−min) · neti(t)− decay,
neti(t) < 0

where min and max are the minimum and maximum activation level, respectively, decay is
a decay factor de£ned by d · (acti(t) − rest) (where d is a constant), rest the rest level, and
neti(t) the weighted sum of all inputs to unit i at time t.

Although fully connected IAC networks are possible, we will focus on a subset of networks
at this point to avoid complexity, where weights between ini and hidi are always non-zero and
weights among the hidden units hidi, call them “matrix weights” denoted by hwi,j , and between



hidi and outi, call them “gain weights” denoted by owi, may be non-zero. In basic affective
agents, then, each owi and hwi,j is zero and as a result the corresponding gain value gi = bi, i.e.,
constant. Consequently, the behavior of such agents is completely determined by their inputs:
inner states, as possibly implemented by the hidden units, do not contribute to their behavior,
which is entirely reactive. Basic agents are contrasted with extended agents, where some owi

(and possibly some hwi,j as well) are non-zero and gain values in T can consequently vary
depending on the state of the neural network.

As one might expect, the differences in behavior between the various kinds of agents can
be very subtle as the in¤uence of the hidden units on the gain values can be very gradual, and
hence very dif£cult to detect. It is therefore crucial to look at a time-frame larger than the
life-time of a single agent to be able to evaluate the advantages and disadvantages of different
weight values, in particular, in competitive multi-agent environments. In fact, most trade-offs
are only visible in simulations of many generations of agents in different combinations under
different environmental conditions. Nevertheless, it is possible to sketch a few general behavior
tendencies. The basic agents, for example, always behave in the same way given that their gain
values are constant: with positive gf = gw they behave like the “consume nearest” strategy
in environments without obstacles (Spier and McFarland 1998). Negative go = ga values will
make them avoid obstacles and other agents. In extended agents (with the same gain values) the
degree to which they engage in the respective behaviors will in addition to the sign and strength
of the weights depend on the activation of the respective hidden units and hence vary from time
to time (e.g., they tend to avoid food, if they are not “hungry”).

Results

Various previous experiments have shown that affective control mechanisms can and will evolve
in various different environmental settings. For example, in (Scheutz and Sloman 2001) we
show (although in a slightly different setup) that agents with primitive motivational states (i.e.,
“hunger” and “thirst” drives) are likely to evolve from basic agents if the owf and oww weights
are mutated. These motivational agents are likely to evolve from basic agents independent
of many environmental conditions such as the frequency of appearance of new food and water
sources, or the numbers and initial distributions of food and water sources, obstacles and agents.
Furthermore, we found that starting with motivational agents, different kinds of agents with
different combinations of primitive emotional state like “fear” or “anger” will evolve, if the
owo and owa weights are mutated (Scheutz 2001). In both cases, we argued in detail that
the evolved mechanisms (i.e., positive or negative gain weights) indeed implement affective
processes, based on (1) the functional characterizations of the involved affective processes, (2)
the observable behavior of the agents in the environment, and (3) the evolved architectural
components (i.e., connection weights).

What we did not answer, are the following two important questions: will emotional agents
evolve directly from basic agents (without £rst evolving motivational agents)? Are mutations of
the matrix weights hwi,j , which were kept at zero in the previous experiments (largely to reduce
complexity), going to result in more adapt, more complex agents? And £nally, will emotional



agents that can “perceive” emotions of other emotional agents and use these perceptions to
in¤uence their behavior have an evolutionary advantage over agents without such perceptual
mechanisms? This last question addresses in a new way the role of expressing emotional states
as a means of social regulation.

We will answer all three questions in the following for a variety of different environmental
and simulation parameters.

Table 1: The result of placing at random 20 basic agents and 40 static obstacles in the
environment using a food rate of 0.25 and water rate of 0.16 averaged over 20 runs
of 100000 simulation cycles with mutation of either the gain weights or both gain and
matrix weights at a mutation factor τ = 0.05.

gain weights only matrix and gain weights
Cat. µ σ Con µ σ Con

alive 9.4 7.88 (7.96,10.84) 13.05 8.22 (11.55,14.55)
age 414.74 11.05 (412.72,416.75) 416.74 9.65 (414.97,418.5)

energy 1366.19 47.98 (1357.43,1374.95) 1389.79 10.74 (1387.83,1391.75)
water 829.96 83.07 (814.79,845.12) 872.34 65.93 (860.31,884.38)

distance 918.58 17.02 (915.47,921.68) 922.71 15.34 (919.91,925.51)
EEF 1.04 0.05 (1.03,1.05) 1.07 0.03 (1.06,1.07)
WEF 0.46 0.08 (0.44,0.47) 0.5 0.06 (0.49,0.51)

Table 2: The result of placing at random 20 basic agents and 40 static obstacles in the
environment using a food rate of 0.25 and water rate of 0.16 averaged over 20 runs
of 100000 simulation cycles with mutation of either the gain weights or both gain and
matrix weights at a mutation factor τ = 0.5.

gain weights only matrix and gain weights
Cat. µ σ Con µ σ Con
alive 10.95 7.86 (9.52,12.38) 6.2 8.9 (4.58,7.82)
age 375.41 21.76 (371.44,379.38) 400.61 12.83 (398.26,402.95)

energy 1381.15 15.65 (1378.29,1384.01) 1368.39 36.57 (1361.71,1375.06)
water 784.93 83.49 (769.69,800.17) 786.5 67.53 (774.17,798.82)

distance 831.97 43.12 (824.1,839.84) 878.7 30.33 (873.17,884.24)
EEF 1.22 0.09 (1.21,1.24) 1.11 0.07 (1.09,1.12)
WEF 0.5 0.07 (0.49,0.51) 0.44 0.06 (0.43,0.45)

We performed four major sets of experiments, where we populated various environments
(from 0 static obstacles to 70 static obstacles) with basic agents and allowed either for muta-
tion of the gain weights only (“g-mutation”), or for mutation of both matrix and gain weights



(“gm-mutation”) by a £xed mutation factor of either τ = 0.05 or τ = 0.5. Whenever an agent
has offspring, the probability µ for modi£cation of any of the two weights is 1/3 (i.e., 1/6 for
increase or decrease by τ , respectively). Results of these experiments for environments with 40
static obstacles and a “food frequency” (i.e., frequency of appearance of new food source) of
0.25 are shown in (Table 1) and (Table 2). All statistics are calculated for 20 parallel runs of
the simulation for 100000 update cycles each, where 20 basic agents were randomly placed in
an environment. For each set of experiments, these tables show mean, standard deviation and
con£dence intervals at α = 0.05 for the average number of agents alive after 100000 update
cycles, as well as additional parameters of agents (averaged over averages) intended to measure
the effectiveness of the evolved architectures: average age, average energy and water consump-
tion, average distance traveled, and the two ef£ciency parameters E(energy)EF(£cency) and
W(ater)EF(£cency). These two parameters capture the average energy and water consumption
per distance unit traveled: the lower the parameter, the better the agent’s ability to £nd and get
food or water.

The answer to the £rst question, then, is “yes”: emotional agents will evolve from basic
agents, as evolution makes use of the architectural features (i.e., the connection weights) in
ways that give rise to affective states, including the primitive motivational and emotional states
we found previously. In the case of g-mutation, the most frequently evolved state is typically
“hunger” (realized by a positive weight owf ). Much less so we £nd positive oww weights,
indicating that a “thirst” state has evolved. This has partly to do with the fact that water is
typically readily available in any of the experiments and not a scarce source like food. Hence,
ignoring/going after water is not as critical for survival as ignoring/going after food. Even less
uniformity we £nd with the remaining two gain weights owo and owa. In about a third of the
cases, both weights will be negative and implement “fear-like” states (i.e., “fear of obstacles”
and “fear of other agents”, see Scheutz 2001 for a discussion about how to assess what affective
state is implemented). These are simulations with a typically high number of surviving agents,
since avoiding obstacles and other agents makes agents spead out better in the environment,
thus providing better support for coexisting agents (Seth 2000 calls the degree to which agents
are spread out “clumpiness of the environment).

In the remaining cases, we £nd a mixture of negative and positive weights (which, in turn,
implement “anger-like” states). While there are examples of surviving agents for any possible
combination of the above states, agents within each simulation are very homogeneous, i.e.,
have all very similar weights. This indicates that while there is a great variety of different
viable agent con£gurations with respect to affective control, the diversity among agents in each
group is limited, which is partly due to the fact that different affective states result in different
behaviors that are not mutually compatible (another factor, for example, is the spatial extension
of the simulated world). Hence, in the competition of different affective control sets, one set of
affective states will eventually prevail and agents that implement the other will become extinct.

The picture is more complex with gm-mutation, because the matrix weights allow for in-
tricate interactions of affective states. While the overall results are very similar, the kinds of
affective states implemented by gm-mutation agents are more varied and nuanced, and require
careful analysis of the ¤ow of activation in the whole IAC network. Various sorts of self-
excitatory and inhibitory connections augmented by complex temporal in¤uences usually com-



plicate the picture, and sometimes it is simply not possible to label the kinds of interactions
that can take place (not the least for lack of appropriate terms to describe the particular kind of
affect). Space limitations do not allow us to include a detailed analysis here.

Answering the second question, we do not £nd large differences in performance as measured
in term of EEF and WEF between agents with g-mutation and agents with gm-mutation (for
either value for τ ). However, it is more likely in simulations with higher rates of τ that no
gm-mutation agent will be alive after 100000 update cycles than that no g-mutation agent will
be alive, as higher rates of τ can lead to greater variations, which increases the search space for
appropriate weights that needs to be explored by evolution. For g-mutation this is bene£cial as
it increase the otherwise low search space. For gm-mutation, however, this is of disadvantage
as it already has to deal with a large search space, which is only increased further. In the
experiment shown in (Table 1) with low τ , for example, agents with g-mutation were alive in 13
runs, whereas agents with gm-mutation were alive in 17 out of 20; in the experiment reported
in (Table 2) with high τ , agents with g-mutation were alive in 15 runs, agents with gm-mutation
only in 8.

We ran the above four sets of experiment for different food frequencies (from 0.25 to 0.125)
keeping the water frequency constant at 0.16. It turns out that while at at food frequency of 0.2
the picture is still similar, at food frequencies of 0.16 and below, agents typically only survive
in low obstacle environments (less than 20 obstacles). This is true for both the g-mutation and
the gm-mutation agents. In none of the above simulations did agents survive in environments
with 70 obstacle (or more).

Finally, to answer the third question, we £rst allowed emotional agents to express their
emotional states in a way that can be perceived by other agents, and then de£ned a new kind
of emotional agent, called “s-emotional agent” (‘s’ for “social”), which can use this perception
to in¤uence its behavior. Speci£cally, an s-emotional agent A compares its own fear level to
the fear level of another emotional agent B, which A can perceive when B’s proximity triggers
A’s alarm, and either initiates its re¤ex (as before) if fear(A) − fear(B) ≥ ∆, or otherwise
suppresses the re¤ex and remains in its current position. This additional mechanisms can be
bene£cial if two agents compete for a close-by food source, for example, as knowing whether
the other agent will stick around or move away can be an important factor in deciding what to
do next (when the agent alarm is triggered).

We ran several experiments with different values for∆, and typically the s-emotional agents
performed as well as emotional agents if placed in homogeneous groups in the same kinds of
environments for∆ values up to 0.2.2 Then, we start to see a degradation in performance (again
as measured in terms of the average number of surviving agents), which becomes signi£cantly
worse for values of 0.5 and greater. A large ∆ value effectively means that the decision of the
agent to suppress the alarm is largely independent of the difference in fear levels, hence it is
very probable that this decision is not bene£cial. For sticking around only pays off in the long
run, if the other agent eventually retreats, which it will not do if its fear level is smaller that the
one of the agent. Hence, in most encounters, both agents will sit in a tie situation, while their
fear levels are increasing, and keep losing valuable energy and water without getting any closer

2The detailed results of these experiments are not reported here for lack of space.



to food or water. The tie is only broken when either (1) the difference in fear levels exceeds
∆, (2) the source of attraction (i.e., food or water) that attracted the agents in the £rst place
disappears, or (3) at least one of the agents dies.

In sum, perceiving another agent’s emotions (as speci£ed above) does not lead to worse
performance among s-emotional agents. But is it bene£cial in mixed groups? To answer this
question, we placed emotional and s-emotional agents in various environments and ran simu-
lations for 10000 update cycles. It turns out that with ∆ values up to 0.2 s-emotional agents
outperform emotional agents signi£cantly. This advantages vanishes as∆ increases and for val-
ues of 0.5 and 0.6 s-emotional and emotional agents show the same performance. The superior
performance of s-emotional agents for low∆, say∆ = 0, is not surprising: whenever they pre-
dict that the other agent will not stick around, they are right. For emotional agents will always
back up, and s-emotional agents will also back up if their fear level is greater than that of their
opponent. This does not mean that s-emotional agents get all of their predictions right. In fact,
they will wrongly predict that another emotional agent is going to stick around if its fear level
is lower than theirs, as they do not have any means to distinguish emotional from s-emotional
agents. This error in prediction, however, is not problematic as emotional agents will also back
up (and, hence, not be able to reap the bene£ts of the s-emotional agent’s wrong prediction).
Hence, being right 3 out of 4 times on average and being able to stick around as opposed to
being forced to back up all the time (as in the case of emotional agents), is bene£cial enough
to make s-emotional agent superior to emotional agents. Hence, there is an evolutionary ad-
vantage to expressing one’s emotions, which can then be perceived by others and used to make
better decisions. The emotions in the above setting, therefore, have a social, regulatory role that
increases £tness of the whole species.

Discussion

The above experiments demonstrate the research strategy suggested earlier, which we believe
will help us understand the role and origins of affective states as well as the potential uses af-
fective states can be put to in the control of agents, especially with respect to their potential
as social regulators of behavior. Furthermore, the experiments con£rm that if there are archi-
tectural components that can implement them, affective states like “hunger”, “thirst”, “fear”,
and “anger” are likely to evolve in different combinations, even in very competitive multi-agent
environments, as they are not only bene£cial to the individual agent, but also lead to behavior,
which bene£ts the whole species (for more a more detailed description of the evolved behav-
iors, see Scheutz 2001). Furthermore, they show that expressing emotional states can serve a
regulatory role in decision making, which can bene£t not only individual agents, but aforteriori
the whole group.

These results are not obvious, for a reason that makes the question why higher species with
more complex and sophisticated control architectures evolved in the £rst place so fascinating:
every species along an evolutionary trajectory has to have a viable control architecture, which
allows its individuals to survive and procreate, otherwise it will die out. This is a very se-
vere constraint imposed on trajectories in design and niche space, which we are only slowly



beginning to understand.
The investigations reported in this paper are part of an ongoing, long-term project, in which

we investigate the logical space of affective states, their potential as coordination mechanisms
for individual agents and groups of agents, and their requirements for and possible implementa-
tions in agent architectures. Many more experiments using different kinds of agent architectures
with different capacities to implement affective control mechanisms are needed to explore the
space of possible uses of affective control and the space of affect itself.
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