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Abstract

In this paper, we discuss the role of emotions in AI and
possible ways to determine their utility for the design
of artificial agents. We propose a research methodol-
ogy for determining the utility of emotional control and
apply it to the study of autonomous agents that com-
pete for resources in an artificial life environment. The
results show that the emotional control can improve
performance in some circumstances.

Introduction

Over the last several years, emotions have received
increasing attention in several AI-related fields, most
prominently in human-robot/computer interaction,
where emotional receptiveness (i.e., being able to per-
ceive and interpret emotional expressions of others) and
expressivity (i.e., being able to express emotions in a
way that can be perceived and interpreted by others)
are crucial. Within AI, believable virtual and robotic
agents and human-like synthetic characters are of par-
ticular interest, with applications ranging from the en-
tertainment industry, to training and tutoring systems
(although there are also other areas of interest, e.g., af-
fective natural language processing). The main focus in
most of the employed agents is on the display of emo-
tions (e.g., via animated facial expressions) and/or on
their recognition (e.g., in speech signals).

While achieving believable emotion display and reli-
able emotion recognition are important goals in the con-
text of designing virtual and robotic agents for human-
computer/robot interaction, the more general ques-
tion about what possible roles emotions could have in
an agent architecture and in what circumstances they
might be useful for the control of agents and possibly
even better than other, non-emotional control mecha-
nisms, has received very little attention.

In this paper, we outline a methodological approach,
which in practice can provide at least a partial answer
to the above questions. After a brief overview of past
and present work on emotions in AI, we briefly describe
a our approach towards studying the utility of emotions
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and subsequently apply it to agents in an artificial life
environment. Specifically, we introduce an agent model
for virtual and robotic agents that is capable of im-
plementing emotional states, and compare the utility
of its emotional control mechanism in an evolutionary
survival task to other agents that do not use emotional
control. The results of these simulations demonstrate
the utility as well as the limits of the employed emo-
tional control mechanisms.

Emotions–Why Bother?

Emotions have been of interest to various researchers
throughout the history of AI. From very early on, ar-
chitectures with emotional components have been pro-
posed for simple and complex agents (e.g., (Toda 1962;
Simon 1967; Dyer 1987), and several others; see (Pfeifer
1988) for a discussion of the early models).

Over the recent past, researchers have been par-
ticularly interested in endowing artificial agents with
emotional expressivity to improve their “believability”
and to make them more “life-like” (e.g., (Bates 1994;
Hayes-Roth 1995; Rizzo et al. 1997)). Such believ-
able virtual agents do not only find applications in
the entertainment industry, but increasingly so in the
realm of instruction and tutoring (e.g., (Gratch 2000;
Shaw, Johnson, & Ganeshan 1999; Conati 2002)), as
well as in the design of user-interfaces (e.g., (Olveres et
al. 1998; Hudlicka & Billingsley 1999; Takeuchi, Kata-
giri, & Takahashi 2001)).

There is also an increasing number of examples of
robotic agents that are based on emotional control (e.g.,
(Michaud & Audet 2001; Breazeal 2002; Arkin et al.
2003)), most of which are intended for human-robot
interaction.

And finally, there are researchers interested in “com-
putational models of human emotion” (e.g., (Eliott
1992; Cãnamero 1997; Marsella & Gratch 2002)), which
typically are studied in simulations in artificial environ-
ments.

This list is by no means intended to give a com-
plete overview of the present activities concerned with
emotions in AI (for a more complete overview see (Pi-
card 1997; Trappl, Petta, & Payr 2001; Pfeifer 1988)),
but rather to show that an increasing number of re-



searchers are willing to investigate whether emotions
should have a role in AI in the first place, and if so
what that role might be. Before we proceed, we would
like to point out that the term “emotion” has differ-
ent connotations in the AI community: for some emo-
tions are merely facial expressions, while for others
emotions are intrinsically concerned with internal pro-
cesses. Moreover, the same emotional terms used for
human concepts (e.g., “embarrassment” or “shame”)
are often applied to states in artifacts without speci-
fying how the implemented states differ from the hu-
man case. For the emotional control processes dis-
cussed in this paper we only assume a general char-
acteristic of emotion processes (e.g., (Cãnamero 1997;
Marsella & Gratch 2002)) without making any claims
about the biological plausibility of the employed states
or mechanisms.

Roles of Emotions in Nature

Emotional control is wide-spread in nature and seems to
serve several crucial roles in animals and humans alike.

In simple organisms with limited representational ca-
pacities, for example, emotions provide a basic evalu-
ation in terms of hedonic values, often causing the or-
ganism to be attracted to what it likes and to avoid
what it does not like.1 If a threat is perceivably caused
by another organism, a “fear-anger” system (Berkowitz
2003) may generate “fight-or-flight” behavior (e.g., de-
pending on an estimate of the likelihood that a fight can
be won). While emotional states such as fear and anger
control immediate actions (LeDoux 1996), other affec-
tive states operate on long-term behavioral dispositions
(e.g., anxiety leads to increased alertness without the
presence of any immediate threat).

In humans, emotions, and more generally, affect,
seem to be deeply intertwined with cognition in that
they can influence, bias, and direct cognitive processes
and, more generally, processing strategies (e.g., nega-
tive affect, for example, can bias problem solving strate-
gies in humans towards local, bottom-up processing,
whereas positive affect can lead to global, top-down ap-
proaches (Bless, Schwarz, & Wieland 1996)). Emotions
also seem to play an important role in social contexts
(Cosmides & Tooby 2000), ranging from signaling emo-
tional states (e.g., pain) through facial expressions and
gestures (Ekman 1993) to perceptions of affective states
that cause approval or disapproval of one’s own or an-
other agents’ actions (relative to given norms), which
can trigger corrective responses (e.g., guilt).

Roles of Emotions in Artificial Agents

Based on the functional roles of emotions proposed by
emotion researchers for natural systems, it is worth ask-
ing whether emotions could server similar functional
roles in artificial systems. Specifically, we can isolate

1Hedonic values seem to be at the root of various forms
of reinforcement learning.

12 potential roles for emotions in artificial agents (be-
yond displaying and recognizing emotions in interac-
tions with humans):

• action selection (e.g., what to do next based on the
current emotional state)

• adaptation (e.g., short or long-term changes in be-
havior due to the emotional states)

• social regulation (e.g., communicating or exchanging
information with others via emotional expressions)

• sensory integration (e.g., emotional filtering of data
or blocking of integration)

• alarm mechanisms (e.g., fast reflex-like reactions in
critical situations that interrupt other processes)

• motivation (e.g., creating motives as part of an emo-
tional coping mechanism)

• goal management (e.g., creation of new goals or repri-
oritization of existing ones)

• learning (e.g., emotional evaluations as Q-values in
reinforcement learning)

• attentional focus (e.g., selection of data to be pro-
cessed based on emotional evaluation)

• memory control (e.g., emotional bias on memory ac-
cess and retrieval as well as decay rate of memory
items)

• strategic processing (e.g., selection of different search
strategies based on overall emotional state)

• self model (e.g., emotions as representations of “what
a situation is like for the agent”)

This list is certainly not exhaustive, but provides a
good starting point for systematic investigations of the
utility a particular emotional control mechanisms.

A Case Study of How to Evaluate the

Utility of Emotion from Artificial Life

To study the role of emotions in agent architectures and
to test their utility for the control of artificial agents,
we will focus on a small subset of the above list for the
rest of the paper, i.e., on action selection, adaptation,
and social regulation, the first three items.

We will use a general methodology for the comparison
of different agents with respect to their performance in
a given task and environment, which consists of four
parts: (1) (emotion) concepts are analyzed and de-
fined in terms of architectural capacities of agent archi-
tectures (Sloman 2002a), (2) agent architectures with
particular (emotional) states as defined in (1) are de-
fined for a given task together with a performance mea-
sure, (3) experiments with agents implementing these
architectures (e.g., in the style of (Pollack et al. 1994;
Hanks, Pollack, & Cohen 1993)) are carried out (either
in simulations or on actual robots), and (4) the per-
formance of the agents is measured for a predetermined
set of architectural and environmental parameters. The
results can then be used to relate agent performance



to architectural mechanisms. Moreover, by analyzing
the causes for possible performance differences, it may
be possible to generalize the results beyond the given
task and set of environments. In the best case, gen-
eral statements of the form “Mechanism X is better
than mechanism Y” can be derived for whole classes of
tasks and environments, where “better” is spelled out
in terms of the performance ordering obtained from the
experiments.

Agents and Architectures

For the experiments reported here, we used a “one-
resource foraging task” for all agents in an unlimited
two-dimensional environment, in which the resources
appear at random within a predetermined rectangular
1800 x 1800 area at a frequency of one resource per
simulation cycle (starting with 50 randomly distributed
resources in the beginning). Resources contain energy
(800 units), which agents need for movement and pro-
cessing (agents can consume resources when they are
on top of them).

All agents use a basic schema-based architecture
for locomotion, which can be used for simulated and
robotic agents alike (Arkin 1989). They have a per-
ceptual system that computes directional force vectors
v from their visual sensory input to resources (“re-
source schema”) and other agents (“agent schema”).
The vectors are subsequently scaled by the square of
the distance to the object within their sensory range (of
300 distance units) as well as a multiplicative constant
called schema gain depending on the type of object (gr

for resources, and ga for agents) and summed up. The
resultant vector D is sent to the motors, thus determin-
ing the direction and speed of the agent (the maximum
speed is 4). For any given agent A the mapping is given
by:

D =
∑

n

gr · resource(n) +
∑

m

ga · agent(m)

where resource(n) is the vector from the position of A
to the n-th resource and agent(m) is the vector from
the position of A to the m-th agent (not including A).

The energy expenditure for movement is the square
of an agent’s speed. In addition, each agent consumes
one unit of energy per cycle for processing. Agents have
an “energy alarm” for self-preservation that limits the
energy expenditure by setting their overall speed to 1
if their energy level drops below Energycrit = 400 (the
speed will remain at 1 until the energy level is raised
above the critical level again).

After α = 250 simulation cycles agents can procreate
asexually, if their energy levels are above the minimum
necessary for procreation (set to 2200). The energy
necessary for creating the offspring (2000) is subtracted
from the parent, and an identical copy of the parent will
be placed in the vicinity of the parent in the subsequent
simulation cycle.

All agents compete for resources in order to survive.
If two or more agents want to obtain the same resource,

they have the option to “fight” for it or to “flee” from
the scene. Fighting incurs a cost of 50 units per simu-
lation cycle, whereas fleeing incurs the cost of running
at a speed of 7 for about 5 to 10 cycles.

Each agent has a representation of its basic action
tendency, which it uses to decide what to do in conflict
situations. An agent’s action tendency is modelled as
the probability that it will fight (as opposed to flee).
Agents display their action tendency and can use the
action tendency displayed by their opponents to modify
their own decision. We distinguish two agent kinds, so-
cial and non-social agents, depending on whether they
take the opponents’ action tendencies into account in
a conflict. Social agents decide in the first round of a
competition based on the other agents’ displayed action
tendency whether they will fight or flee: they will only
fight if their action tendency is highest, otherwise they
will flee. Asocial agents, on the other hand, simply de-
cide their actions probabilistically based on their own
action tendencies. Consequently, it is possible for two
asocial agents to continue conflicts for several rounds
until one finally flees (or dies), which is not possible
for two social agents, as they will always determine the
winner after one round.

Depending on whether an agent’s action tendency
can change over time or is fixed, we distinguish adap-
tive and non-adaptive agents. Adaptive agents change
their action tendencies depending on whether they win
or lose in conflicts: if they win, they lower their action
tendency, thus increasing the probability that they will
lose the next time; if they lose, they will raise their
action tendency, thus increasing the probability that
they will win the next time. This way adaptive agents
implement an approximate sharing mechanism, which
gives rise to altruistic behavior that we have shown to
be beneficial elsewhere (Scheutz & Schermerhorn 2004):
an agent that has not received a resource in several com-
petitions in the past is very likely to receive one in the
future, while agents that have received several resources
in a row will very likely flee in the next conflict, thus
giving up the resource.

There are many ways to implement such a mecha-
nism. We use the following way to change an agent’s
action tendency based on its basic action tendency (i.e.,
its action tendency in the absence of any adaptation):

Definition [Adaptation Rule (AR)] Let r be the basic
action tendency of agent A and let m be the current
action tendency (r = m if AR has never been applied).
Then the AR(m)+ is defined (for losses) as follows: if
m ≥ r, then AR+(m) = m+(1−m)/2; if m ≤ r/2, then
AR+(m) = 2m; else AR+(m) = r+(2m−r)(1−r)/2r.2

Similarly, AR(m)− is defined (for wins) as follows: if
m ≥ r + (1 − r)/2, then AR−(m) = m − (1 − m); if
m ≤ r, then AR−(m) = m/2; else AR−(m) = r/2 +
r(m − r)/(1 − r).3

2This maps values in the interval (r/2, r) into (r, (1 −
r)/2)).

3This maps (r, (1 − r)/2) into (r/2, r)).



This rule effectively keeps track of how often an in-
dividual was able to win a conflict by increasing or de-
creasing the action tendency relative to the basic action
tendency and the current action tendency.

Finally, we introduce a third distinction between
agents that have fixed schema gains, i.e., a fixed con-
flict tendency for their agent schema, and those that
can adjust their agent schema gain ga, i.e., that have a
variable variable conflict tendency. By adjusting their
conflict tendency, an agent can modify its behavioral
disposition towards other agents, i.e., whether it seeks
conflicts or whether it avoids them.

Emotional Agents

We can now define emotional agents as adaptive agents
with variable conflict tendencies that adjust their agent
schema gain based on their action tendency according
to the following equations: ga = action tendency ·100−
50. Hence, the emotional state of emotional agents (as
defined by the current value of ga) is directly coupled
to their action tendency. If an agent’s conflict ten-
dency is positive and consequently the action tendency
is above 0.5, the agent is said to be “angry”, if its con-
flict tendency is less than zero and consequently the
action tendency is below 0.5, it is said to be “fearful”.
Effectively, emotional agents seek conflicts with other
agents when they have lost several conflicts in a row in
the past (they get “angrier”), while they avoid conflicts
with others if they have won conflicts (they get more
“fearful”). It is this reaction to events in the environ-
ment that causes rapid, yet temporary adjustments of
internal states that alter action tendencies, which war-
rant the attribute emotional. Specifically, the varying
influence of the value of ga on an agent’s behavior can
be seen as an amplifying or diminishing modification of
the behavior as determined by gf (i.e., the fixed “drive”
to find and consume resources) the drives, which is typ-
ical of (some construals of) emotional states (e.g., see
(Cãnamero 1997) for a similar view). The implemented
states correspond to what some call “primary emotions”
(e.g., (Sloman 2002b)) in that they (1) play a regula-
tory role, (2) are engaged automatically (by virtue of
the global alarm system), and (3) alter the internal state
of the agent and consequently its behavior.

It is worth mentioning that the mechanisms imple-
mented here resemble what is presumed to be the func-
tional organization of the emotional “fear/anger sys-
tem” in many animals, given that animals are typi-
cally taken to exhibit either a “fight” or a “flee” be-
havior (e.g., (Berkowitz 2003)). The above model de-
parts from biology, however, by linking the successful
outcome of a conflict to an increase in fear based on the
adpative sharing mechanisms–in biological systems the
opposite is often true, i.e., winners will become more
daring, while losers will become more cautious. How-
ever, the intent here is not to reproduce a particular
biological model, but rather to investigate the utility
of directly coupling the altruistic strategy implemented
by adaptive agents to their conflict tendency (which, in

turn, determines when and how an agent changes its
emotional state). It is certainly possible to decouple
the two functional components and update emotional
states based on a different rule as we have done else-
where (Scheutz 2001).

Finally, for the sake of comparison, we will also con-
sider agents that are non-adaptive, but have a conflict
tendency that is based on their fixed action tendency–
they will be called dispositional. By default, all non-
emotional, non-dispositional agents have ga = 0, while
gf = 20 for all agents (including emotional and dispo-
sitional agents).

Experiments and Results

We examined the utility of the above strategies by
comparing social and asocial emotional and disposi-
tional agents to four types of agents with fixed con-
flict tendencies (i.e., non-adaptive and adaptive social
and non-social agents). Specifically, we ran 16 sets of
experiments, each consisting of 40 different runs for
10000 cycles each with different random initial condi-
tions (the same 40 different initial conditions were used
in all 16 sets to guarantee a fair comparison). In all
runs, 25 emotional or dispositional agents of one kind
and 25 non-emotional, non-dispositional agents of one
kind were placed at random locations within the 1800
x 1800 resource area in the environment together with
50 randomly placed resources. The initial energy of all
agents was set to 2000 and their initial action tenden-
cies were distributed following a Gaussian distribution
with spread 0.125 around 0.5. As performance measure
the average numbers of survivors after 10000 cycles was
used. Figures 1 and 2 show the results for emotional
agents, Figures 3 and 4 for dispositional agents (the
error bars indicate the 95% confidence intervals).
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Figure 1: The average number of survivors in the exper-
iment sets comparing asocial-emotional agents to non-
emotional agents.

The results demonstrate that emotional and dispo-
sitional agents perform better than both adaptive and
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Figure 2: The average number of survivors in the exper-
iment sets comparing social-emotional agents to non-
emotional agents.

non-adaptive asocial agents with ga = 0. Social emo-
tional agents show a better overall performance than
non-social emotional agents, whereas social disposi-
tional agents perform overall worse than non-social dis-
positional agents. Furthermore, dispositional agents
perform worse than both social agent kinds with ga = 0,
while emotional agents only perform worse than adap-
tive social agents. This last result indicates that adding
conflict tendencies that depend on action tendencies
to social adaptive mechanisms reduces performance:
loosely speaking, “fear” and “anger” do not improve
performance beyond what changing one’s action ten-
dency based on the past outcomes in conflicts can
achieve, but rather reduce it. It is worth noting, how-
ever, that this is only true for social agents. In the
asocial case, emotional agents do fare much better,
which demonstrates that changing one’s conflict ten-
dency based on one’s past encounters with others is
more beneficial than ignoring signals from others.

Conclusion

In this paper, we proposed a methodology for study-
ing possible roles of emotions in agent architectures
that applies to biological organisms and artificial agents
alike. We defined an emotional agent model, in which
emotional processes influence the selection of actions in
conflicts, the change in conflict tendencies, and con-
sequently the distribution of resources among group
members (in social emotional agents based on display-
ing action tendencies). All emotional agents showed
high levels of performance and performed only worse
than adaptive social agents. The results show that
emotional control is beneficial in most circumstances
in the considered environments, but that social adap-
tive control without influencing conflict tendencies (and
thus attractive and aversive behavior)–which basically
ignores other agents except in conflict–can do even bet-
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Figure 3: The average number of survivors in the ex-
periment sets comparing asocial-dispositional agents to
non-emotional agents.
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Figure 4: The average number of survivors in the ex-
periment sets comparing social-dispositional agents to
non-emotional agents.

ter. We believe that systematic comparisons of emo-
tional and non-emotional agents in the way suggested
in this paper, will allow us, at least in part, to make
objectively verifiable claims about the utility of emo-
tional control for both biological and artificial agents in
a great variety of tasks.
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Cãnamero, D. 1997. Modeling motivations and emo-
tions as a basis for intelligent behavior. In Johnson,
L., ed., Proceedings of the First International Sym-
posium on Autonomous Agents (Agents’97), 148–155.
New York, NY: ACM.

Conati, C. 2002. Probabilistic assessment of user’s
emotions in educational games. Journal of Applied
Artificial Intelligence, special issue on ”Merging Cog-
nition and Affect in HCI”.

Cosmides, L., and Tooby, J. 2000. Evolutionary psy-
chology and the emotions. In Lewis, M., and Haviland-
Jones, J. M., eds., Handbook of Emotions. NY: Guil-
ford, 2nd edition. 91–115.

Davidson, R. J.; Scherer, K. R.; and Goldsmith, H. H.,
eds. 2003. Handbook of Affective Sciences. New York:
Oxford University Press.

Dyer, M. G. 1987. Emotions and their computa-
tions: Three computer models. Cognition and Emo-
tion 1(3):323–347.

Ekman, P. 1993. Facial expression and emotion.
American Psychologist 48(4):384–392.

Eliott, C. 1992. The Affective Reasoner: A pro-
cess model of emotions in a multi-agent system.
Ph.D. Dissertation, Institute for the Learning Sci-
ences,Northwestern University.

Gratch, J. 2000. Emile: Marshalling passions in train-
ing and education. In 4th International Conference on
Autonomous Agents, 325–332.

Hanks, S.; Pollack, M. E.; and Cohen, P. 1993.
Benchmarks, testbeds, controlled experimentation,
and the design of agent architectures. AI Mag-
azine 14(4):17–42. http://www.cs.pitt.edu/ pol-
lack/distrib/testbeds.ps.

Hayes-Roth, B. 1995. Agents on stage: Advancing
the state of the art of AI. In Proc 14th Int. Joint
Conference on AI, 967–971.

Hudlicka, E., and Billingsley, J. 1999. Affect-adaptive
user interface. Human Computer Interaction 1:681–
685.

LeDoux, J. 1996. The Emotional Brain. New York:
Simon & Schuster.

Marsella, S., and Gratch, J. 2002. Modeling the in-
fluence of emotion on belief for virtual training sim-
ulations. In Proceedings of the 11th Conference on
Computer-Generated Forces and Behavior Represen-
tation.

Michaud, F., and Audet, J. 2001. Using motives
and artificial emotion for long-term activity of an au-
tonomous robot. In 5th Autonomous Agents Confer-
ence, 188–189. Montreal, Quebec: ACM Press.

Olveres, J.; Billingurst, M.; Savage, J.; and Holden, A.
1998. Intelligent expressive avatars. In First Workshop
on Embodied Conversational Characters.

Pfeifer, R. 1988. Artificial intelligence models of emo-
tion. In Hamilton, V.; Bower, G. H.; and Frijda, N. H.,
eds., Cognitive Perspectives on Emotion and Motiva-
tion, volume 44 of Series D: Behavioural and Social
Sciences. Netherlands: Kluwer Academic Publishers.
287–320.

Picard, R. 1997. Affective Computing. Cambridge,
Mass, London, England: MIT Press.

Pollack, M. E.; Joslin, D.; Nunes, A.; Ur,
S.; and Ephrati, E. 1994. Experimental
investigation of an agent commitment strategy.
Technical Report 94-31, University of Pittsburgh.
http://www.cs.pitt.edu/ pollack/distrib/tw.ps.

Rizzo, P.; Veloso, M.; Miceli, M.; and Cesta, A.
1997. Personality-driven social behaviors in believable
agents. In Proceedings of the AAAI Fall Symposium
on Socially Intelligent Agents, 109–114.

Scheutz, M., and Schermerhorn, P. 2004. The role of
signaling action tendencies in conflict resolution. Jour-
nal of Artificial Societies and Social Simulation 7(1).

Scheutz, M. 2001. The evolution of simple affective
states in multi-agent environments. In Cañamero, D.,
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