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Abstract

In this paper, we introduce a method-
ology for determining the utility of
agent architectures by comparing
them in an architecture framework
APOC, which allows for the definition
of a notion of “cost induced by an
agent architecture”. Using this frame-
work, it is in particular possible to
compare the performance of affective
agents to that non-affective agents in
a unified way taking the cost of archi-
tectural components into account.

1 Introduction
The class of affective states found in nature
is comprised of many different kinds of states
and processes: from mere sensations or feel-
ings (e.g., pains), to simple homeostatic con-
trol and drives (e.g., hunger), to various kinds
of motivations (e.g., to fight), to simple emo-
tions (e.g., some forms of fear) and moods (e.g.,
melancholy), to all kinds of complex emotions
(e.g., embarrassment), and many others.

In simple organisms with limited representa-
tional capacities, affect mainly controls behav-
ior by providing an internal measure of “what
is good and bad” for the organism [Humphrey,
1992]. The basic evaluation in terms of hedo-
nic values causing the organism to be attracted
to what it likes and to avoid what it does not
like seems to be at the root of various forms
of reinforcement learning. If a threat is per-
ceivably caused by another organism, a “fear-
anger” system [Berkowitz, 2003] may gener-
ate “fight-or-flight” behavior (e.g., depending
on an estimate of the likelihood that a fight
can be won). While emotional states such
as fear and anger control immediate actions
[LeDoux, 1996], other affective states oper-
ate on long-term behavioral dispositions (e.g.,

anxiety leads to increased alertness without
the presence of any immediate threat).

In humans, affect seems to be deeply in-
tertwined with cognitive processing. Negative
affect, for example, can bias problem solving
strategies in humans towards local, bottom-up
processing, whereas positive affect seems to
lead to global, top-down approaches in many
cases [Schwarz, ]). There is also evidence that
humans often rely on affective memory (e.g.,
[Blaney, 1986]) to evaluate a situation quickly
instead of performing a longer, more complex
cognitive evaluation [Kahneman et al., 1997]
as affective evaluations seem to encode implicit
knowledge about the likelihood of occurrence
of a positive or negative future event (e.g.,
[Damasio, 1994]). Finally, and most impor-
tantly, affect is crucially involved in social con-
trol [Cosmides and Tooby, 2000] ranging from
signaling emotional states (e.g., pain) through
facial expressions and gestures [Ekman, 1993]
to perceptions of affective states that cause ap-
proval or disapproval of one’s own or another
agents’ actions (relative to given norms), which
can trigger corrective responses (e.g., guilt).

However, there is no agreement among re-
searchers in the “affective sciences” on how
to define affect concepts, nor what the func-
tional roles of affect are in agent architectures.
It is, therefore, not surprising that there has
been no systematic, unified approach to affect
in artificial agents either [Ventura and Pinto-
Ferreira, 1999; Scheutz, 2002a]), although dif-
ferent forms of affect have been been investi-
gated to varying degrees ever since the begin-
ning of AI, especially in the recent past (see
[Pfeifer, 1988; Trappl et al., 2001]).

While the exploration of different architec-
tural approaches towards implementing af-
fective control is desirable as it allows re-
searchers to explore the space of possible de-
signs, divergent approaches always make it
difficult to compare the advantages and dis-



advanteges of the employed mechanisms, par-
ticularly, when the criteria for what it takes
to implement a given property are as under-
specified as in the case of affect. Worse yet,
most of the proposed “affective architectures”
in AI–architectures with components that can
instantiate affective states–do not come with
evaluation criteria that would allow for the as-
sessment of the utility of affect (e.g., compared
to other possible architectures that are appro-
priate for the task at hand). What is needed,
however, to be able to make a general, objec-
tive statement about the utility of affect is a
way to compare not only different kinds of af-
fective architectures, but also non-affective ar-
chitectures with respect to their performance
(at the given task), otherwise the potential of
the implemented states remains unclear.

In this paper, we introduce a methodology
based on experiments with agent architectures
in a unified architecture framework that allows
us to evaluate the utility of affective control in
an objective way (or any other property of an
architecture, for that matter).

2 How can the Utility of Affect be
Determined?

One difficulty with assessing the utility of af-
fect, as already mentioned, is the intrinsic in-
determinacy of affect concepts. There are sev-
eral strategies of how one can overcome these
problems (e.g., by restricting the concepts to
be studied to clear instances of affect, e.g.,
fear states, where the functional role is largely
well-understood). The strategy we find most
useful is based on an analysis of mental con-
cepts in terms of agent architectures, where
the minimal set of requirements for a concept
to be instantiable in an agent architecture are
worked out [Sloman, 2002]–for this analysis
an agent architecture framework is required
[Sloman and Scheutz, 2002].

A fear state, for example, is caused by the
presence of dangerous objects in the environ-
ment and changes the agent’s behavioral dis-
positions in such as way as to make it stay
away from fear elicitors. The fear state can be
instantiated by a controller C, which integrates
over time the frequency of occurrence of fear
triggering conditions: input to C comes from
an internal sensor S f that is activated (un-
der normal circumstances) by a fear trigger-
ing condition (e.g., the sensor outputs a unit
impulse [Özbay, 2000]). C integrates these in-
puts over time and outputs a signal that corre-
sponds to the intensity of “fear”, hence to the
degree with which the system should change
its behavioral dispositions to be more alert,

action-ready, etc. To be able to instantiate a
fear state, the above controller C needs to be
connected to the agent’s effectors in a way that
the positive output from C can influence and
bias the agent’s behavior towards avoiding or
attempting to avoid dangerous objects, where
the intensity with which the agent avoids or at-
tempts to avoid these objects depends on the
magnitude of the output of C (reflecting the
agent’s level of fear).

Once affect concepts are analyzed and de-
fined in terms of architectural capacities of
agent architectures in an architecture frame-
work, it is possible to define architectures that
implement affective states for a given task and
to compare agents implemeting them to agents
that implement non-affective architectures for
the same task [Scheutz and Logan, 2001].
Such a comparison can be used to establish
the utility of affective control relative to the
non-affective architecture for the given task
and investigated environmental conditions. In
particular, the absolute utility of affective con-
trol for the given task can be obtained if the
non-affective architecture is “minimal”, where
what “minimal” means is fleshed out in terms
of a notion of “cost induced by an architec-
ture”, which we will define below (alternatively,
it could be measured in terms of the smallest
number of states of Turing machine that im-
plements it along the lines of algorithmic in-
formation theory, e.g., [Chaitin, 1992]).

For the comparison of different architec-
tures, a performance measure is required,
which could be task-dependent. For example,
in evolutionary studies in an artificial life en-
vironment the performance measure might be
the average number of surviving agents after a
fixed number of simulation steps. For a robot
that needs to detect affect expression in hu-
man faces, on the other hand, it might be a
combination of the number of faces recognized
and the number of affective features detected
properly (e.g., an angry face).

It is important to note that the utility of an
architecture is essentially based on the em-
ployed performance measure. Hence it is pos-
sible that the same two architectures have dif-
ferent utilities for different performance mea-
sures. Especially, in the case of affect, it
is, therefore, crucial to settle on a notion of
utility that reflects our intuitions about why
affect should or could be advantegeous (e.g.,
when resources are scarce, fast decisions are
required, information is incomplete or unre-
liable, etc. [Scheutz, 2001b]). For exam-
ple, comparing a “rational agent” playing chess
based on minimax search in terms of number
of games won to an affective agent that selects



partly suboptimal moves based on emotional
states (such as “frustration”, “anger”, “disap-
pointment”, “pleasure”, etc.) is not a perfor-
mance measures that will be particularly use-
ful in determining the utility of affect. For
one, because emotional states might be ben-
eficial not because they give rise to better ab-
solute performance, but rather yield better rel-
ative performance. I.e., if it is true that (some
of) the roles of affect are to do with providing
quick and efficient means to reach decisions
of importance to an organism that are by and
large good decisions (as many psychologists
claim), then the performance of an affective
agent needs to be evaluated relative to the cost
involved in reaching the decision. Hence, it
seems that for affect the relative performance-
cost tradeoff is the critical measure to evalu-
ate its utility. In the case of the chess playing
agents, this means that the number of games
won by the rational agent has to be related to
the computational cost of carrying out mini-
max search to be able to compare it to the
number of games won by the affective agent
(also taken relative to the computational cost
of the affective decision processes).

Once the performance measure is defined,
experiments with two kinds of agents, one im-
plementing affective, the other implementing
non-affective architectures, can be carried out
to determine their actual performance. The
number of experiments and the variation over
initial conditions to ensure that the results are
not dependent on particular favorable condi-
tions will vary dependent on the given task
and kinds of agents (i.e., virtual or robotic).
In simulation experiments, it is usually pos-
sible to average over a large number of initial
conditions, whereas in robotic experiments the
number of variations will be confined to what
can be achieved in a reasonable amount of
time for practical reasons. In addition to ini-
tial conditions, a set of architectural param-
eters will typically be specified which are also
systematically varied. For example, in the case
of the “fear controller” the different control pa-
rameters of the control circuit are subject to
variation in order to determine which param-
eter settings maximize the performance of the
“fearful agents”.

The result of the experiments constitutes a
performance space, based on the set of param-
eters that were open to variations (i.e., the ar-
chitecture space). By comparing the perfor-
mance spaces of agents with different agent
architectures it is then possible to determine
the absolute or relative utility of affective con-
trol for the whole range of parameters. In the
case, where all parameters relevant to the task

have been varied in their whole ranges, the
outcome will be about the utility of affective
control for the task per se (without any re-
stricting conditions).

All resulting performance spaces are then
compared, in particular, with respect to the
agents’ (relative) performance-cost tradeoffs,
i.e., their performance taken relative to the
(computational) cost necessary to maintain
and run the instantiated architecture. As al-
ready mentioned, the relative comparison is
critical for affective agents as they might not do
better than non-affective agents on the given
task in absolute terms.

The following section provides more details
on the concepts involved in this methodology.

3 The Notion of “Cost Induced by
an Agent Architecture”

Over the last years, we have devel-
oped the agent architecture framework
APOC (“Activating-Processing-Observing-
Components”) [Andronache and Scheutz,
2002; 2003a; 2003b], which provides a unified
framework into which other architectures
can be translated. APOC consists of het-
erogeneous computational units (based on
[Scheutz, 2001a]) called components that can
be connected via four link types to form an
agent architecture. The four link types cover
important basic interaction types among com-
ponents in agent architectures: the activation
link (A-link) allows components to communi-
cate with other components; the observation
link (O-link) allows components to observe
the state of other components; the process
control link (P-link) enables components to
influence the computation taking place in
other components, and finally the component
link (C-link) allows a component to instantiate
other components and connect to them via the
other three links.

Components can vary with respect to their
complexity and the level of abstraction at
which they are defined. They could be as
simple as a connectionist unit or as com-
plex as a full-fledged condition-action rule in-
terpreter. APOC can be used as an anal-
ysis tool for the evaluation of architectures,
since it can express any agent architectures
in a unified way (e.g., cognitive architectures
such as SOAR, ACT-R, and others, as well
as behavior-based architectures such as sub-
sumption, motor schemas, situated automata,
etc.).

Most importantly, it introduces a novel idea
that is essential for the study of architec-
tural trade-offs: a notion of cost induced by



an architecture, which is defined in terms of
the cost associated with structures, processes,
and actions on the architecture. This notion
is different from other notions of cost that
have been defined for processes in terms of
process algebras or π-calculus [Milner, 1993;
Eberbach, 2001].1

Structural costs are those that are incurred
as a result of merely having a certain compo-
nent or link instantiated. They can be thought
of as maintenance costs that are associated
with any work that needs to be done to keep
the object up to date. Process costs are those
associated with running processes; they in-
clude computational costs, and possibly the
costs of I/O and other such operations. Typ-
ically process costs will be proportional to the
complexity of the computation performed by
the process. Finally, action costs are those as-
sociated with primitive operations on the ar-
chitecture (such as instantiating a new compo-
nent or link, or interrupting a process). Each
action has a fixed cost, making the computa-
tion of action costs a simple matter of assess-
ing the associated cost whenever the action is
executed. The notion of cost induced by an ar-
chitecture is then inductively defined in terms
of these three basic cost types.

Using the notion of cost induced by an archi-
tecture, the notion of performance-cost-trade-
off PCT

�
P� A � T � E � for an agent architecture A

and a task T in an environment E can be
defined as P � C, where P is the given perfor-
mance measure for T and C is the cost of
A for T in E.2 Mathematically, performance-
cost trade-offs are orders, and can thus form
the basis of the comparison of agent architec-
tures: given an order � P defined on P, an ar-
chitecture A is said to be better than an ar-
chitecture B with respect to T , E, and P, if
PCT

�
P� A � T � E ��� P PCT

�
P� B � T � E � .

Furthermore, given an architectural param-
eter λ of an architecture A that can be varied
and its set of possible values Λ, PCT can be
used to define an order on the space of archi-
tectures Aλ � Λ. An architecture space Aλ � Λ is
said to be relatively better than an architec-
ture space Bλ � Λ (with respect to T , E, and P),

1It is not trivial to define a notion of cost for agent
architectures because cost is typically (i.e., in com-
plexity theory) not assessed with respect to ongoing
processes, where inputs are not known apriori, but
are changing based on the interaction of the agent
with its environment, which are impossible to pre-
dict [Wegner, 1997].

2Note that performance measures can be nu-
meric, but may also consist of non-numeric entities
so long as an order � P and a quotient P � C (for the
involved notion of cost) can be defined.

if there exists an architecture A 	 Aλ � Λ which
is better than every architecture B 	 Bλ � Λ. Aλ � Λ
is said to be absolutely better than an archi-
tecture space Bλ � Λ (with respect to T , E, and
P), if Aλ 
 c 	 Aλ � Λ is better than Bλ 
 c 	 Bλ � Λ for
every c 	 Λ. The former measure is particu-
larly important for evolutionary settings as a
relatively better architecture space will prob-
ably be favored by evolutionary methods (i.e.,
evolutionary search is likely to find the best ar-
chitectures in the relatively better space). The
latter measure is particularly important for ar-
chitecture design, since architectures from ab-
solutely better architecture spaces are always
to be preferred (for the given task, environment
and performance measure). It should be noted
that all of the above order notions can be di-
rectly extended to sets of tasks, environments,
and performances measures.

4 Discussion
We have applied the above methodology of
studying affect in artificial agents in several
preliminary investigations with mostly simple
agents. Our results show, for example, that
affective action selection can be very effec-
tive in the competition for resources in hos-
tile multiagent environments [Scheutz, 2000;
Scheutz et al., 2000; Scheutz, under review].
Affective control mechanisms performed much
better in a variety of foraging, survival, and
object collection tasks in environments with
little to no structure than agents with much
more sophisticated deliberative control sys-
tems (including A �ε planning [Pearl, 1982], plan
executing methods with error feedback, and
goal management mechanisms) if the “cost of
deliberation” is taken into account [Scheutz
and Logan, 2001; Scheutz and Schermerhorn,
2002; 2003]. Furthermore, we found that
simple affective states (such as motivational
“hunger” and “thirst” states [Scheutz and Slo-
man, 2001], or emotional states like “fear”
and “aggression” [Scheutz, 2001b]) are likely
to evolve in a variety of competitive multiagent
environments. Finally, in studies of the po-
tential of affect expression and recognition for
social control we found that affect can have
a beneficial regulatory effect in social groups
[Scheutz, 2002b] and lead to superior conflict
resolution strategies [Scheutz and Schermer-
horn, forthcoming].

Most of these previous results, however, did
not attempt a detailed break-down of the costs
induced by the architectures, but rather as-
sumed an overall global cost. We are plan-
ning on repeating several of these experiments
with a much more detailed analysis in terms



of structural, process, and action costs. This
should give us a better picture of what the
overheads of affective processing are as well
as what kinds of mechanisms minimize the
processing cost while still being able to imple-
ment affective control processes. Moreover, it
should be possible to determine a “cost trade-
off” between structural and processing costs
(e.g., the difference between an emotional con-
trol mechanism that is based on a perceptual
component that suppresses active behaviors
and carries out emergency responses when
emotion elicitors are perceived, compared to
a modulating component that is active all the
time and simply rearranges overall behavioral
dispositions). Eventually, we would like to
map out the whole space of the proposed
schema-based architecture for a large num-
ber of different environments for the given for-
aging task to be able to generalize our previ-
ous results to cover all environmental situa-
tions, in which agents can successfully sur-
vive in the long run. Such a generalized result
would provide a yard-stick against which other
( especially non-affective) approaches to solv-
ing the foraging/survial task could be com-
pared and would eventually allow us to justify
claims such as “affect is beneficial for tasks of
kind X” that make general statements about
the utility of affective control.
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[Özbay, 2000] Hitay Özbay. Introduction to
feedback control theory. CRC Press, London,
2000.

[Pearl, 1982] J. Pearl. A �ε—an algorithm using
search effort estimates. In IEEE Transac-
tions on Pattern Analysis and Machine Intel-
ligence, volume 4, pages 392–399, 1982.

[Pfeifer, 1988] R. Pfeifer. Artificial intelligence
models of emotion. In V. Hamilton, G. H.
Bower, and N. H. Frijda, editors, Cognitive
Perspectives on Emotion and Motivation, vol-
ume 44 of Series D: Behavioural and Social
Sciences, pages 287–320. Kluwer Academic
Publishers, Netherlands, 1988.



[Scheutz and Logan, 2001] Matthias Scheutz
and Brian Logan. Affective versus deliber-
ative agent control. In Simmon Colton, ed-
itor, Proceedings of the AISB’01 Symposium
on Emotion, Cognition and Affective Comput-
ing, pages 1–10, York, 2001. Society for the
Study of Artificial Intelligence and the Sim-
ulation of Behaviour.

[Scheutz and Schermerhorn, 2002] Matthias
Scheutz and Paul Schermerhorn. Steps to-
wards a theory of possible trajectories from
reactive to deliberative control systems. In
Russell Standish, editor, Proceedings of the
8th Conference of Artificial Life. MIT Press,
2002.

[Scheutz and Schermerhorn, 2003] Matthias
Scheutz and Paul Schermerhorn. Many
is more but not too many: Dimensions
of cooperation of agents with and with-
out predictive capabilities. In Proceedings
of IEEE/WIC IAT-2003. IEEE Computer
Society Press, 2003.

[Scheutz and Schermerhorn, forthcoming]
Matthias Scheutz and Paul Schermerhorn.
The role of signaling action tendencies
in conflict resolution. Journal of Artificial
Societies and Social Simulation, forthcoming.

[Scheutz and Sloman, 2001] Matthias
Scheutz and Aaron Sloman. Affect and
agent control: Experiments with simple
affective states. In Ning Zhong, Jiming Liu,
Setsuo Ohsuga, and Jeffrey Bradshaw, edi-
tors, Intelligent Agent Technology: Research
and Development, pages 200–209. World
Scientific Publisher, New Jersey, 2001.

[Scheutz et al., 2000] Matthias Scheutz,
Aaron Sloman, and Brian Logan. Emo-
tional states and realistic agent behaviour.
In Philippe Geril, editor, Proceedings of
GameOn 2000, Imperial College London,
pages 81–88, Delft, 2000. Society for
Computer Simulation.

[Scheutz, 2000] Matthias Scheutz. Surviving
in a hostile multiagent environment: How
simple affective states can aid in the com-
petition for resources. In Howard J. Hamil-
ton, editor, Advances in Artificial Intelligence,
13th Biennial Conference of the Canadian
Society for Computational Studies of Intelli-
gence, AI 2000, Montréal, Quebec, Canada,
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