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Abstract

We propose a methodological framework for the study
of emotional control based on extensive computer sim-
ulations with arti�cial agents implementing emotional
control mechanisms and demonstrate the methodology
with simulations experiments in an arti�cial environ-
ment. Speci�cally, a biologically plausible schema-based
model of basic forms of fear and anger is proposed and
tested with respect to a variety of parameter ranges.

Introduction

Emotions are an integrative part of our mentality. At
the level of the functional architecture they serve sev-
eral crucial roles, from fast perceptions of threats, to
focusing and redirecting attention, to inuencing mem-
ory storage and retrieval, to social regulation through
expression and perception of emotions, and many more
(Derryberry & Tucker, 1994; Fredrickson, 1998; Bless,
Schwarz, & Wieland, 1996; Schwarz, 1990; Blaney, 1986;
Kahneman, Wakker, & Sarin, 1997; Clore, Gasper, &
Conway, 2001; Frijda, 2000; Cosmides & Tooby, 2000).
Several circuits have been hypothesized to be involved
in emotional processing in mammalian brains, yet only
a few computational models (mostly of fear mechanisms)
have been proposed and implemented in an effort to
test theoretical predictions about emotion processes and
mechanisms. Moreover, these models are limited to very
specific processes (e.g., Pavlovian fear conditioning) and
do not specify other parts of an architecture that are
required for a complete, functional control system (e.g.,
homeostatic control mechanisms, various forms of per-
ceptual processing, action selection mechanisms, etc.).
Hence, they leave out and cannot address many other
emotional states that essentially depend on additional
processing components (e.g., such as social emotional
states that depend on the expression and perception of
emotions).

One way to study the effects of emotional control cir-
cuits for individual agents as well as groups of agents
is to conduct simulations with artificial agents that are
controlled by architectures that define emotion models.
Such simulation studies have the advantage that the role
of emotions and the consequences of emotional distur-
bances can be analyzed at several different levels at the
same time: the mechanistic level of the implementation
of the model (e.g., a neuronal level), the individualis-
tic level (e.g., the control loops between emotion circuits

and the agent body), and the social level (e.g., the effects
of emotional signaling for the well-being or functioning
of a group).

In this paper we will (1) propose a methodological
framework for the study of emotional control based
on extensive computer simulations with artificial agents
implementing emotional control mechanisms and (2)
demonstrate the methodology with simulations experi-
ments in an artificial environment. Specifically, a bi-
ologically plausible schema-based model of basic forms
of fear and anger is proposed and tested with respect
to a variety of parameter ranges. The results show
where emotional control is successful and better than
non-emotional strategies, but also where it fails.

Background on Computational Models of

Emotions

While several suggestions about the neural and func-
tional organization of emotional circuits exist in the lit-
erature, there are currently only a few proposals for com-
putational models that implement and test them. The
existing computational models can be categorized into
two main classes, based on whether they are aimed at
explaining low-level neurological structures and mecha-
nisms, or whether they are intended to model higher-
level emotional processes. The low-level models can fur-
ther be divided into general processing models of brain
mechanisms and specific emotion models of particular
brain structures.

The most extensively developed low-level models
among the first kind are Grossberg’s CogEM models
(e.g., (Grossberg & Schmajuk, 1987)), which are models
of learning cognitive, emotional, and motor properties.
CogEM models can account for several effects in Pavlo-
vian fear conditioning (e.g., secondary conditioning or
attentional blocking), but have not been directly applied
to empirical data (e.g., data from fear conditioning stud-
ies with rats).

Another class of low-level neural models is targeted
specifically at modeling the amygdala, which performs
several functions in emotion processing (LeDoux, 1996;
Rolls, 1995). The lateral amygdala, for example, has
been shown to exhibit associative plasticity during fear
learning (Blair, Tinkelman, Moita, & LeDoux, 2003)
and a preliminary computational model of associative
learning in the amygdala has been developed and tested
in three associative learning tasks (Balkenius, 2000).
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Moreover, recent evidence from studies with rats sug-
gests that the amygdala, in particular, the frontotem-
poral amygdala, which is taken to integrate sensory in-
formation, encodes hedonic values of an unconditioned
stimulus as part of the fear memory (Fanselow & Gale,
2003). LeDoux and colleagues have hypothesized a dual
pathway model of emotional processing in the amygdala,
which they tested in auditory fear conditioning studies
(Armony, Servan-Schreiber, Cohen, & LeDoux, 1995).
These models have been also used in simulated lesion
studies and successfully compared to data from actual
lesion studies with rats.

While most research on emotional modeling in low-
level models is focused on Pavlovian conditioning and
targeted at neural structures and processing mecha-
nisms, higher-level models of emotions are intended to
capture the processing sequence involved in emotion pro-
cesses and are typically concerned with a wider range of
emotions. While all low-level models are neural network
models, higher-level models comprise both connectionist
and symbolic approaches.

An example of a high-level connectionist approach is
the ITERA model (Nerb & Sperba, 2001), which is in-
tended to study how media information about environ-
mental problems inuences cognition, emotion, and be-
havior. Facts, input types, emotions, and behavioral in-
tentions are all represented in terms of individual neural
units that are connected via excitatory and inhibitory
links and compete for activation.

Most attempts to model emotions at higher levels,
especially in artificial intelligence research, are how-
ever based on symbolic architectures (e.g., Soar (Newell,
1990) or ACT (Anderson, 1993)). They typically fo-
cus on the OCC model (Ortony, Clore, & Collins,
1988), which hypothesizes prototypical “update rules”
for changes in emotional state that can be directly imple-
mented in rule-based systems (e.g., (Marsella & Gratch,
2002).

What is common to all the above emotion models is
that they have been implemented and tested in isolation
from any body model. Consequently, it is difficult if not
impossible to investigate crucial aspects of emotion pro-
cessing that need a body for control and thus go beyond
functional properties (like the effects of Pavlovian condi-
tioning), which can be tested in stand-alone models (e.g.,
by applying a stimulus and measuring the output).

While some attempts have been made to implement
connectionist emotion models on robots, where different
emotions types are represented as connectionist units
that compete for activation, which in turn cause the
robot to exhibit a particular behavior (e.g., (Michaud
& Audet, 2001; Breazeal, 2002; Arkin, Fujita, Takagi, &
Hasegawa, 2003)), these architectures do not attempt to
model any specific psychological or neurobiological the-
ory of emotions (e.g., in an effort to verify or falsify its
predictions). Rather, they are mainly concerned with
the applicability of a particular control mechanism from
an engineering perspective. Moreover, these models typ-
ically lack a systematic evaluation of their performance
(an exception is (Breazeal, 2002)). Finally, no experi-

ments have been performed with these robotic architec-
tures to investigate the effects of “emotional malfunc-
tioning”.

Probably the most significant restriction of current ef-
forts to model emotions is that they have not been ex-
tended to multi-agent environments. Yet, social aspects
of emotions (such as signaling emotional states through
facial expressions, prosody, gestures, etc.) and the re-
sultant effects at the group level cannot be studied in
a single, isolated agent. Rather, multiple interacting
agents with emotional control systems are required, espe-
cially for arguments about the adaptive role of emotions
(e.g., (Cosmides & Tooby, 2000)). To our knowledge
only one project (Dulk, Heerebout, & Phaf, 2003) uses
an artificial life simulation to study some evolutionary
aspects related to emotional processing, specifically, the
evolutionary justification for LeDoux’s dual-route fear
processing proposal (LeDoux, 1996). However, the em-
ployed neural network does not and is not intended to
implement emotions or model emotional circuits. And
while the employed neural network suggests some inter-
esting conclusions about the circumstances under which
dual processing routes might be beneficial, it does not
capture emotional circuits, and is, therefore, silent about
emotional phenomena.

Simulations of Emotional Agents

Over the last few years we have developed an agent-based
simulation environment SWAGES to investigate differ-
ent agent architectures and architectural mechanisms. In
particular, two main roles of emotions in agent control
systems have been studied in extensive simulations in an
effort to evaluate the utility of emotional control (com-
pared to other non-emotional control strategies): the role
of emotions for individual agents (e.g., the selection of
actions) and the role of emotion for social groups (e.g.,
in conicts with conspecifics and individuals from other
species).

Results from simulation experiments with agents per-
forming foraging tasks, for example, show that action
selection based on emotional states can be very effective
in the competition for resources in hostile multi-agent en-
vironments (e.g., (Scheutz, 2001) and that motivational
“hunger” and “thirst” states as well as emotional “fear”
and “anger” states are likely to evolve in a variety of
competitive multi-agent environments (Scheutz & Slo-
man, 2001)).

In general, we found that agents with emotional con-
trol mechanisms performed much better in a variety of
foraging and survival tasks in environments with little to
no structure than agents with much more sophisticated
cognitive control systems if the “cost of deliberation”
is taken into account (e.g., (Scheutz & Schermerhorn,
2002)).

On the social side, we found that expressing emotions
and being able to react to emotional expressions of others
can have a beneficial regulatory effect in social groups
and lead to superior conict resolution strategies (e.g.,
(Scheutz & Schermerhorn, 2004)).

In all these studies, we construed emotions as con-
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trol processes that initiate, interrupt, suppress, reprior-
itize, or in general modify behavior or behavioral dispo-
sitions. Emotions are implemented in terms of control
components (typically, in neural networks) that are con-
nected in appropriate ways to sensors and effectors of
agent body models. The underlying assumption is that
the level of control components is appropriate for ana-
lyzing and understanding the functional organization of
emotion mechanisms. In the following we briey outline
our architectural approach to the study of emotions and
present some experimental results.

Basic Motivations and Emotions as Control
Processes

Motivations may be considered desire-like states in that
they inuence and bias an agent’s behavioral dispositions
in such a way as to contribute to the realization of a
desired change in the environment and/or agent. We use
the term “basic motivations” to refer to motivations that
have little to no cognitive involvement and are primarily
linked to “basic needs” of an agent (e.g., to maintain
a certain energy level). For some of these, the familiar
term “drive” is appropriate, namely if the agent is driven
in a mostly reactive way to act so as to eliminate the
disparity between a desired and an actual state that was
the cause for the motivation. For example, a state of an
agent’s control system qualifies as a “hunger” state if it
is caused by lack of energy and results in food-seeking
behavior (McFarland, 1981).

It is possible to use control components, whose outputs
control gain values of motor controllers, to implement
the kind of control system that will be able to instan-
tiate basic motivations. For example, “hunger” could
be instantiated by a proportional controller P (Özbay,
2000) such that input to P comes from an internal sensor
S that measures the current energy level. P compares a
desired equilibrium energy level (i.e. set point), edes, to
the actual energy level eact and scales the difference by
a gain factor ge: P = ge · (edes � eact). The output then
is a measure of the urgency with which the system re-
quires energy. Hence, the intensity of basic motivations
is modeled by the magnitude of the control circuits’ out-
puts that can in turn modulate behavior.

Emotions may also be considered to be desire-like in
that they inuence and bias an agent’s behavior. Again,
we use “basic emotion” to refer to states with little or
no cognitive involvement. For our purposes, we distin-
guish basic emotions from basic motivations in that basic
emotions need not be related to a perceived difference
between an actual and a desired state. Furthermore,
basic emotions themselves can be states that the agent
does or does not desire whereas basic motivations are
directed towards or away from what the agent desires.
“Fear”, for example, in and of itself is an undesirable
state of an agent in that it is indicative of danger. As
such, it causes the agent to behave in such a way as to
be prepared for or avoid danger. Hence, while “fear” can
be also motivational in the sense that it may move the
agent away from the cause of fear it is also emotional
as it itself is not a desired state. A fear state with no

clearly discernible danger present, which causes an agent
to be more cautious and alert, may itself not instantiate
a motivational state that is connected to a particular
goal such as running away from a particular threat.

“Fear”, as discussed above, can be instantiated by a
controller C, which integrates over time the frequency
of occurrence of fear triggering conditions. Input to C
comes from an internal sensor S that is activated by
a fear triggering condition. C integrates these inputs
over time and outputs a signal that corresponds to the
intensity of “fear” and modulates behavior to be more
alert and ready for sudden activity. A neural control
circuit implementing an appropriate response character-
istic (similar to that given by g(t) = e−t to a unit im-
pulse, which is generated by the sensor or the perceptual
system detecting a dangerous stimulus), could use an in-
teractive activation and competition (IAC) unit (McClel-
land & Rumelhart, 1988), whose change in activation is
given by ∆act = S · gS · act + decay · act, where act is
the current activation level of the control system, gS is
the gain for the sensor input and decay is the discount
value for past activations.

MSw

PSw

PSf

MSf

Smell

Touch

PSa

MSa

Forw.

Turn

Aeng

Awat

Energy

Water

Acol

IngestEdible Eat

Reflex

gf

gw

ga

gm

gt

Sensors Perceptual
Schemas

Motor
Schemas

Action
Selection

Effectors

Fear

Anger

Σ

Figure 1: The schema-based architecture for the simu-
lated emotional agents (see the text for details).

To be able to instantiate a fear state, the above con-
troller needs to control the agent’s effectors in a way that
the positive output from the controller can inuence and
bias the agent’s behavior towards avoiding or attempt-
ing to avoid dangerous objects. As such, the intensity
with which the agent avoids or attempts to avoid these
objects depends on the magnitude of the output of the
controller: the agent’s behavior is modulated by its level
of fear.

A Schema-Based Agent Architecture
Using the above control elements to implement basic
motivations and emotions, we have compared the per-
formance of agents with mechanisms to implement fear
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and anger to that of agents without these mechanisms
in a hostile multi-agent environment, where agents need
to forage for resources in order to survive and procre-
ate. The employed architecture is a biologically plau-
sible schema-based architecture (Arbib, 1992) for both
agent kinds, which allows the agents to forage for food
and water. In this architecture, the behavior of an agent
depends at any given time on the relative contributions
from a variety of motor schemas. While non-emotional
agents have fixed behavioral dispositions to deal with
competitors for resources, emotional agents use their
emotional control circuits to adapt their behaviors based
on past encounters.

Figure 1 shows the architecture for the emotional
agents (their emotional subsystem is an implementa-
tion of the higher-level functional organization of the ba-
sic mammalian “fear/anger system” in the terms of the
above suggested control units, e.g., (Berkowitz, 2003)).
Schemas are depicted by large circles where the names
indicated their function.1 Small crossed circles indicate
gains of schemas (i.e., behavioral dispositions) that are
taken as architectural parameters to be varied in the
experiments: the degree to which an agent is attracted
to food (gf ), to water (gw), and to other agents (ga).
The bold-face circles labeled “Fear” and “Anger” rep-
resent the “fear schema” and “anger schema”, respec-
tively. They are only present in the architecture of
emotional agents. Both emotion schemas are connected
to an “alarm schema” (Acol), which is triggered if an
agent touches other agents. This mechanism changes
the agent’s propensity to fight other agents or to ee:
the higher the output of a controller, the more stronger
the behavioral disposition (i.e., to fight for anger, or ee
for fear).

More formally, let Ent = {f, w, a} be an index set of
the three types of objects in the simulation environment:
food, water, and agents. For each object type in Ent, a
force vector Fi is computed, which is the sum, scaled
by 1/|v|2, of all vectors v from the agent to the objects
of type i within the respective sensory range, where |v|
is the length of vector v. These perceptual schemas are
mapped into motor space by the transformation function
T (x) =

∑

i∈Ent
gi · Fi(x), where the gi are the respec-

tive gain values of the perceptual schemes. The gain
values simply scale the effect of sensory input, provid-
ing a means by which to prioritize certain inputs (e.g.,
if food is especially important, its gain value could be
higher than the other gain values, so that sensing food
has a greater impact on the direction chosen than sensing
other entities).

All feedback controllers are implemented in a feed-
forward three-layer interactive activation and competi-
tion neural network (with three input units in, three hid-
den units hid, and three output units out). The input
units receive their activations (via appropriate scaling
functions) from the Water (inw) and Energy level sen-
sors (inf ) via the perceptual Awat and Aeng schemas
as well as from the Touch sensor via the Acol schema

1For space reasons we cannot describe all the details of
the architecture here.

(ina), respectively.
The output units are connected to the gain values

in the motor scheme via individual scaling functions
fi(x) = x · ci + bi (where bi is the base gain value and ci

the scaling factor for the activation of outi).
The activation value acti(t) of an IAC unit i at time

t is defined by

acti(t) =















(max � acti(t � 1)) · neti(t) � decay,
neti(t) ≥ 0

(acti(t � 1) � min) · neti(t) � decay,
neti(t) < 0

where min and max are the minimum and maximum
activation level, respectively, decay is a decay factor de-
fined by d · (acti(t) � rest) (where d is a constant), rest
the rest level, and neti(t) the weighted sum of all inputs
to unit i at time t.

The choice of IAC units over standard perceptrons is
based on their update rule, which is particularly suited
to implement important temporal features of some emo-
tional states in that it (1) takes into account the previ-
ous activation (hence, can be used to implement “inner
states”), and (2) incorporates a decay term to raise or
lower the activation to a predetermined base level.

Non-emotional agents have a constant ga gain (i.e.,
their ci = 0), hence their behavioral dispositions to-
wards other agents are fixed. Emotional agents, on the
other hand, can adapt their behavior dispositions, i.e.,
their ga gain, by virtue of the feedback controllers imple-
mented in the neural net (their ci 6= 0). Depending on
whether ga is positive or negative, they can implement
basic “anger” or “fear” states (as argued in (Scheutz,
2001)).

The Utility of Anger and the Limits of Fear

We report results from two classes of experiments study-
ing the role of emotions in foraging and survival tasks.2

In the first class, the gain ga is set to a negative value for
both agent kinds, thus making them disposed to avoid
other agents. For the second class, ga is positive for both
agent kinds, thus making them disposed to be aggres-
sive towards other agents. Performance was measured
in terms of the number of surviving agents after 10000
simulation cycles averaged over 40 runs with random ini-
tial conditions. The upper and lower parts of Figure 2
show the results from both classes of experiments for
both agent kinds for two architectural variations: agent
gain and water gain (i.e., 25 sets of 40 experimental runs
each). All runs started with 10 agents of each of the two
kinds placed at random location in the environment to-
gether with 20 randomly placed food and 20 randomly
placed water items; new food and water items are gen-
erated on every 4 and 6 cycles in random locations, re-
spectively.

While emotional agents in the first set have a perfor-
mance peak (of 23.625) that is slightly higher than that
of non-emotional agents (of 23.35), the difference is not

2For more details about simulation setup and simulation
parameters see (Scheutz, 2001).
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Fearful vs. non-fearful agents (gf = 20)
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Angry versus non-angry agents (gf = 50)
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Figure 2: The performance space of the emotional vs.
and non-emotional agents (fearful top, angry bottom)
based on variations along two architectural dimensions.

significant (t-test, p > 0.1). Consequently, being fear-
ful in addition to having the behavioral disposition of
avoiding other agents does not increase the overall per-
formance, it may in fact reduce it for some settings of the
gain values (e.g., ga = �20 and gw = 30). For emotional
agents in the second class of experiments, however, we
find a marginally significant global maximum at ga = 10
and gw = 30. Consequently, in the kinds of environ-
ments studied, “anger” does sometimes prove useful for
survival.

Discussion

The results reported here are only a very small part of a
large set of experiments, in which up to five architectural
dimensions were varied in an effort to determine the cir-
cumstances in which emotional control is beneficial and
where it might be detrimental. The methodology on
which they are based consists of a four step process: (1)
emotion concepts are analyzed and defined in terms of
architectural capacities of agent architectures (Sloman,
2002). (2) Agent architectures with particular emotional
control mechanisms (as defined in (1)) are constructed
for a given task, for which also a performance measure

is defined. (3) Simulations experiments are carried out
with the so-defined emotional agents and their perfor-
mance is determined for a predetermined set of architec-
tural and environmental variations. The outcome then
is a performance space that corresponds to the varied
parameters. The last two steps are repeated with agents
implementing non-emotional (or, in general, other) ar-
chitectures. (4) All resulting performance spaces are
then compared with respect to the agents’ performance-
cost tradeoffs, i.e., their performance taken relative to the
(computational) cost necessary to maintain and run the
instantiated architecture (in the reported experiments
the cost for both architectures was taken to be the same).
The last point is crucial as it may well be that emo-
tional agents do not perform better than non-emotional
ones on a given task in absolute terms, but that they do
much better in relative terms, i.e., with fewer resources
(which is usually believed to be the case by emotion re-
searchers). Especially from an evolutionary perspective
relative performance is the relevant measure.

We believe that the proposed methodology to experi-
ment with agent architectures in an artificial life environ-
ment cannot only form the basis for a thorough compar-
ison of the different emotion models that can otherwise
not be studied easily (e.g., social emotions and their role
in the control of agents), but can also inform emotion
researchers interested in clinical aspects of emotions by
performing simulated lesion studies, where parameters
of functional agents are modified or components of the
architecture are removed. This, in turn, might help us
isolate not only the functional roles of emotions in the
control of creatures, but also the ways in which emo-
tional control can fail and how it might be possible to
reestablish normal functioning in dysfunctional systems.
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