
Session S1E

Experiences and Results from three Years of CSE
211 “Fundamentals of Computing I”

Matthias Scheutz
Department of Computer Science and Engineering, University of Notre Dame

Notre Dame, IN 46556 mscheutz@nd.edu

Abstract – In this paper we report results from three offerings
of CSE211, the first course in a new first-year CSE sequence
as part of the new CSE 2002 undergraduate curriculum at
Notre Dame (ND02), which was modeled after the suggestions
of the IEEE/ACM Computing Curricula 2001. After describing
the unique challenges of ND02, we give an overview of ND02
and the role of CSE211 in it. We then summarize the course
topics, organization, and infrastructure and present results from
formal teacher and course evaluations and student surveys.
These results are statistically analyzed to answer among others
questions about the utility of open-source tools and programming
environments, the utility of SCHEME as a programming language,
and the degree to which students’ should have prior programming
experience in order to perform well in the course.
Index Terms— first year computer science course, programming envi-
ronment, SCHEME

INTRODUCTION

During the 2000/01 and 2001/02 academic years, the cur-
riculum committee in the Department of Computer Science
and Engineering at Notre Dame re-evaluated its undergraduate
computer science and computer engineering curricula. It was
decided to adapt both curricula based on the analyses proposed
in the IEEE/ACM Computing Curricula 2001 (CC2001), for
one to better reflect the changes and demands in computing
inside and outside academia, but also to give students more
flexibility (in terms of electives) to pursue their particular
interests in the various subfields of computing earlier in the
curriculum.

The main challenge for formulating computer science and
computer engineering curricula at Notre Dame is posed by a
set of unique university course requirements, which students
have to satisfy at various times during their undergraduate
years. In particular, all students in the College of Engineering,
which is home to the Department of Computer Science and
Engineering, have to take the same courses during their fresh-
men year, effectively leaving only three years for courses in
their various majors. Consequently, none of the model curricula
proposed by CC2001 could not be adopted without adaptation.
In particular, it became necessary to develop a new First-Year
Computer Science and Engineering Sequence CSE211/212,
which is specifically targeted at a 3-year CS/CE curriculum and
thus focuses on providing a more comprehensive overview of
computer science together with more opportunities to acquire
problem solving and programming skills as would otherwise
have been necessary within one year.

In this paper, we describe our experiences with three of-
ferings of the first course in this sequence, Fundamentals of
Computing I (CSE211), and present results from statistical
analyses of student performance based on formal teaching eval-
uations, student surveys, and course grades. Specifically, we
look at (1) the relation between prior programming experience
and overall performance in the course, (2) the utility of using
different kinds of open-source tools (in this case SCHEME
compilers, editors, and integrated development environments),
and (3) the students’ perception of the utility of SCHEME as
a programming language for this course.

MEETING THE CHALLENGES OF A 3-YEAR CSE
CURRICULUM–THE DESIGN OF CSE211

Engineering undergraduates at Notre Dame have to learn the
subject material of their major in three, rather than four years.
The reason for this time restriction is that the first year
engineering students take general education courses required
by the university and a mandatory one-year general introduc-
tory engineering sequence EG111/112 that touches on aspects
in various subfields of engineering. As a consequence, core
CS/CE materials that are usually spread over two years at other
institutions have to be covered as quickly as possible (ideally in
two, but at most in three semesters). For the rest of the paper,
we concentrate on the first introductory course in computer
science CSE 211 Fundamentals of Computing I.

The design of CSE211 departed from that of a previously
offered course CSE233 Functional Programming, which was
essentially based on MIT’s 6.001 Structure and Interpreta-
tion of Computer Programs. It was decided to use Abelson
and Sussman’s equally named book (SICP) [2] for CSE211,
given it’s educational success and comprehensive, conceptual
approach to computing and problem solving. Particularly ap-
pealing was the book’s quick focus on procedural and data
abstraction and its methodological goal of keeping new syn-
tactic constructs to a minimum, which is facilitated by using
SCHEME as a programming language. Given that about half
of the incoming CS and CE students typically have only
very limited programming backgrounds, it was believed that
a syntactically simple language like SCHEME would be easy
and quick to learn, and more importantly, allow students to
focus on programming concepts right away (rather than having
to spend a significant time on learning syntactic constructs as

0-7803-9077-6/05/$20.00 c© 2005 IEEE
35th ASEE/IEEE Frontiers in Education Conference

S1E-7

October 19 – 22, 2005, Indianapolis, IN

Session S1E

is the case with syntactically complex languages like C++).1

I. Lecture Topics in CSE211

The following lecture topics for CSE211 were determined as
part of an overall assignment process that mapped the core
coverage as specified by CC2001 onto core courses in ND02:

Procedural abstraction: : simple functions; parameters
and results; composition; conditional expressions

Recursion: : the concept of recursion; recursive specifica-
tion of mathematical functions (including inductive definitions);
simple recursive procedures, mathematical functions (such as
factorial and Fibonacci); simple recursive procedures (Towers
of Hanoi, permutations, fractal patterns); implementation of
recursions

Data abstraction:: list structures; hierarchical data; sym-
bolic data; the importance of data abstraction

Algorithms and problem-solving:: problem-solving strate-
gies; the role of algorithms in the problem-solving process;
implementation strategies for algorithms; debugging strategies;
the concept and properties of algorithms (brute-force algo-
rithms; greedy algorithms; divide-and-conquer; backtracking;
numerical approximation algorithms

Object-oriented paradigm:: object-oriented design; en-
capsulation and information-hiding; separation of behavior
and implementation; classes, subclasses, and inheritance; poly-
morphism; class hierarchies; collection classes and iteration
protocols; fundamental design patterns

Basic computability theory:: tractable and intractable
problems; the existence of noncomputable functions

Basic computational complexity:: asymptotic analysis of
upper and average complexity bounds; big-O notation; standard
complexity classes; empirical measurements of performance

Overview of programming languages:: history of pro-
gramming languages; brief survey of programming paradigms;
the role of language translation in the programming process

Fundamental programming constructs:: syntax and se-
mantics of a higher-level language; variables, types, expres-
sions, and assignment; simple I/O; conditional and iterative
control structures; functions and parameter passing; structured
decomposition

Evaluation strategies:: representing computation state;
streams; lazy evaluation; nondeterminism; the construction of
an interpreter

Software development methodology:: Fundamental design
concepts and principles; structured design; testing and debug-
ging strategies; test-case design; programming environments;
testing and debugging tools

1It should be noted that by taking the mandatory introductory engineering
sequence EG111/112, even students without any prior programming experience
will get some exposure to programming. The following excerpt is from the
EG111/112 course description: “The goal in EG 111/112 is to get first-year
students to ‘think like a programmer’, a goal that is not language-dependent.
In EG 111/112 you will learn the basic constructs that can be found in
any computer language ‘mechanisms such as primitive expressions, variables,
functions, and programs.’ You will use MATLAB and C and Not-Quite-C
to write software using a top-down-design/bottom-up-implementation strategy
that is applicable no matter what kind of computer you are using or what
language you are programming in.”

TABLE I
THE TOPICS COVERED IN CSE211 WITH LECTURE HOURS SPENT ON THE

TOPIC IN PARENTHESES.

Time spent on Topics in CSE211
Graphs and trees (3)
Fundamental programming constructs (3)
Algorithms and problem-solving (2)
Fundamental data structures (6)
Recursion (5)
Basic algorithmic analysis (2)
Algorithmic strategies (2)
Fundamental computing algorithms (4)
Basic computability (1)
Overview of programming languages (1)
Declarations and types (1)
Abstraction mechanisms (2)
Functional programming (4)
Concurrency (2)
Software design (1)
Software tools and environments (1)
History of computing (1)

Machine level representation of data:: bits, bytes, and
words; numeric data representation and number bases; signed
and twos-complement representations; representation of non-
numeric data

Table I gives a summary of the topics and the respective
numbers of lectures spent on them out of 41 lectures for a 3
credit hour course. These topics can roughly be mapped onto
SICP chapters 1 through 4: “Ch.1: Building Abstractions with
Procedures” (9 lect.), “Ch.2: Building Abstractions with Data”
(9 lect.), ‘Ch.3: Modularity, Objects, and State” (13 lect.),
and “Ch.4: Metalinguistic Abstraction” (10 lect.). Even though
SICP is very comprehensive (especially for a beginning course
text), it does not sufficiently cover all the required topics for
CSE211, in particular, object-oriented design and programming
as well as basic principles of parallel programming and process
synchronization for which additional lecture notes and handouts
were prepared. Also, topics in the history and theory of
computation, an overview of programming languages, software
design principles, machine representation, and other topics are
either not covered at all or not in enough detail in SICP. At the
same time, ch. 5 in SICP deals with topics of compilers, which
were found to be outside of the scope of the first programming
course.

II. Course Organization

CSE211 consists of a three-credit hour lecture with a manda-
tory one-credit hour laboratory section, in which students can
practice and elaborate the concepts presented in the lecture.
Grades are given only for the lecture part and can be broken
down into 50% for assignments (25% for weekly individual
and 25% for five large group assignments), 5% for class par-
ticipation and attendance (which is mandatory in both sections),
15% for three short examinations after the first three chapters
in SICP (5% each), and 30% for the comprehensive final exam
(to ensure that students are capable of mastering the whole

0-7803-9077-6/05/$20.00 c© 2005 IEEE
35th ASEE/IEEE Frontiers in Education Conference

S1E-8

October 19 – 22, 2005, Indianapolis, IN

Session S1E

course content).2

Individual assignments are intended to rehearse concepts
presented in the lecture to ensure that students keep up with
the class material. Group assignments are intended to cover
a major course topic and enforce cooperative learning. They
not only further develop concepts from the lecture, but also
introduce new major topics in computer science and allow
students to develop the communicative skills necessary for
future collaborative work (e.g., in industry or academia) by
giving them the opportunity to discuss and develop ideas
together with their peers to utilize the “synergy effect” that
is not possible with individual assignments.

FIGURE 1.
THE TOOLS IN WEBCT COURSE HOME PAGE.

To reduce the bookkeeping efforts (for students and the
instructor alike), the online WebCT [3] teaching tool was used
to organize the various aspects of the course (see the snapshot
of the main WebCT page in Figure -II). In this environment,
students have easy access to basic course materials such as
the syllabus, lecture and lab notes together with supporting
code (which are provided in addition to the book), individual
assignments (which can and are partly be auto-graded to save
grading effort), and group assignments (including supporting
files). In addition, they can access various online resource (e.g.,
SICP and its supporting code, SCHEME manuals, etc.), view
their current standing in the course (i.e., their fraction of the
percentage possible at any given point), use the course calendar
with notification about reading assignments and upcoming
deadlines (e.g., for assignments or quizzes), post questions to
one of several bulletin boards (for the lecture, the lab, the
assignments, the programming environment, etc.) and ideally
answer question of their peers (which count towards class

2In the 2004 offering, the final exam was reduced to %25, while the
individual assignments were increased to 30% based on student feedback.

participation).
Finally, it is worth mentioning that part of the intent of

the ND02 was to require students to take CSE210 (Discrete
Mathematics) as early as possible in the curriculum to provide
them with a good formal, theoretical foundation. For this
reason, CSE210 has to be taken in the third semester, the
same as CSE211. Hence, it was only natural to synchronize
the two courses in the sense that overlapping topics (such as
recursion and inductive definitions, complexity of programs and
big-O, first-order logic and reasoning, search algorithms, theory
of computation, number representations, and several others)
be introduced the same time (to the extent possible), which
makes it possible to assign programming exercises in CSE211
to reinforce concepts from CSE210, which frees up exercise
space for more theoretical questions (rather than programming
assignments).

III. Group Projects

The group projects were intended to allow students to collab-
orate in teams in order to strengthen their understanding of
the lecture materials. They require students to read, understand
and solve a novel problem that they had not encountered in the
lecture before. Group project typically integrate several lecture
topics and are designed to be too comprehensive to be solved by
individual students in the given time. The topics of the projects
were:

Recursion and basic functions: Students had to compute
sequences of numbers using recursion, and fill in function
templates to complete computations.

Recursion and data structures, multiple representations of
data types: In the first part, students had to write various basic
functions for RSA encryption and decryption, in the second
they used coercion and methods for representing multiple
data types to perform operations on polynomials and function
spaces.

Pattern matching and tree search: Students had to imple-
ment a production system that uses pattern matching to match
right-hand sides of rules against facts in a knowledge base to
instantiate left-hand sides for rules as new goals for recursive
backward chaining until all goals are satisfied (i.e., matched by
facts).

Object-oriented programming: Students had to implement
new methods and new objects in an object-oriented version of
SCHEME (both with and without special syntax support for
objects).

Program interpretation and register machines: Students
had the option of either implementing code for simulated
register machines in a simplified assembly language or to write
a small interpreter for their favorite programming language
(those projects typically used a subset of BASIC).

IV. Computing Infrastructure

Two different open-source, cross-platform computing environ-
ments were employed. In 2002, the KAWA [4] SCHEME
interpreter for the JAVA virtual machine was used together
with XEmacs [5] as integrated development environment. The

0-7803-9077-6/05/$20.00 c© 2005 IEEE
35th ASEE/IEEE Frontiers in Education Conference

S1E-9

October 19 – 22, 2005, Indianapolis, IN

Session S1E

use of KAWA (and not any of the other available SCHEME
interpreters) was preferred to allow for the introduction of JAVA
in the second half of CSE211 in anticipation of JAVA being
the language for CSE212. In particular, the idea was to start
with JAVA syntax as part of the lectures on object-oriented
design and allow students in some assignments to use mixed
programming language use (e.g., direct access to the JAVA
graphics API within SCHEME as is possible in KAWA or
mixed code source files for which we created a pre-processor
to work with the SUN JAVA compiler). This plan, although
originally envisaged, was however abandoned during the Fall
2002 semester for practical reasons in favor of using C++ in
CSE212. The subsequent two course offerings in 2003 and
2004 then more mature and easier-to-use integrated DrScheme
environment [6] instead.

The labs as well as individual and group assignment required
students to turn in SCHEME code. Both computing environ-
ments thus had to be cross-platform, because the lab sessions
were held in a room with SOLARIS machines, while most
students used Windows clusters on campus or their own Win-
dows machines at home for assignments (in 2004, additional
Linux clusters with RedHat Linux were available and used by
students). In this respect, DrScheme was much easier to install,
maintain, and operate than the KAWA/XEmacs combination,
which requires more knowledge about the underlying operation
system to work properly.

RESULTS FROM 3 YEARS OF CSE211

Three main hypotheses underwrite the design of CSE211: (1)
it is feasible to include materials in the first introductory course
that are intended for the second according [1] without sacri-
ficing the students’ level of understanding of other materials,
(2) using SCHEME as a programming language eliminates
advantages and/or disadvantages some students might have
based on their high school programming background, and (3)
an appropriate programming environment in combination with
a syntactically simple programming language is critical to
students’ learning and perception of the course.

The three hypotheses were tested in three subsequent of-
ferings of the course. The data available for analysis are
the formal teacher and course evaluations administered and
analyzed by the Office of Institutional Research at Notre Dame,
student surveys conducted at the end of the first two course
offerings and at the beginning of the third course, and student
performance in the course as measured in terms of their grades
on the various components (assignments, quizzes, final, etc.).
The results in Table II show averages for the three offerings
for each category/questions as well as p-values of T-tests (t-
values are omitted for lack of space) comparing them in
consecutive years (i.e., 2002 vs. 2003, and 2003 vs. 2004–bold-
faced entries indicate significant differences for α = 0.05).
The ratings were 4=strongly agree, 3.2=agree, 2.4=indifferent,
1.6=disagree, 0.8=strongly disagree in the student survey and
4=excellent, 3.2=good, 2.4=satisfactory, 1.6=poor, 0.8=very
poor for the rest.

TABLE II
RESULTS FROM TCES (TOP) AND STUDENT SURVEYS (BOTTOM) IN THE

THREE CSE211 OFFERINGS (SEE TEXT FOR DETAIL).

Overall Student Perception ’02 p-val ’03 p-val ’04
N=28 N=30 N=38

Perception of Teaching 3.2 .148 3.5 .160 3.3
Course Content 2.5 .049 2.9 .497 2.9

Aspects of Skill Level.
Rationality/Problem Solving 3.0 .114 3.1 .427 3.2
Skill Development 3.1 .276 3.5 .081 3.3
Factual Knowledge – – 2.2 .828 2.4
Developing Creativity 3.2 – – – –

Student Survey ’03 ’02
SICP was appropriate for this course 3.1 3.1
Lecture notes helpful in addition to SICP 3.6 3.6
The course organization in WebCT was useful 3.3 3.2
Split into individual and group assignments was useful 3.1 2.8
Individual assignment helped understand lecture better 3.1 2.5
Group assignments helped to understand lecture better 3.0 3.1
The SCHEME implementation worked well for me 2.9 2.4
The programming environment worked well for me 3.2 2.5
Viewing my current standing in WebCT was useful 3.1 3.3
Getting feedback in WebCT was useful 3.3 3.3
Summary of instructional goals was useful 3.5 3.4
Exams tested exactly the instructional goals 3.0 2.8
Discussion of exam solutions was helpful 3.0 2.9
Exams tested my knowledge of course material thoroughly 2.9 2.8
I feel I have a good overview of different aspects of CS 3.1 2.9
Have good idea of CS topics coming up later in ND02 Curr. 3.1 2.7
I feel my programming skills improved significantly 3.2 2.9
I see the utility of SCHEME as an instructional language 2.8 2.3
I learned to decompose complex problems into simpler ones 3.1 2.9

The questions we are most interested in pertain to overall
quality of teaching, the student’s perception of appropriateness
of course content, the employed programming language and
environment, and the degree to which prior programming
experience has an effect on performance in the course.

Overall, there was no difference among the three offerings
with respect to students’ perception of overall teaching quality,
which they rated as very good on average (although there were
interesting significant differences in the various components
of teaching, which we cannot address here for space reasons).
This is important, for the quality of teaching and the interaction
of faculty with students is critical to learning [8], and also to
keep attrition rates in first-year courses low [7] (compared to
national trends in the US, the attrition rates in CSE211 are very
low: 5/36 in 2002, 3/40 in 2003, and 4/48 in 2004).

Moreover, there was no significant difference in students’
perception of what they learned in CSE211. Most students
thought that they learned how to solve problems well (16/28
in 2002, 20/30 in 2003, and 25/38 in 2004), followed by very
good skill development (11/28 in 2002, 5/30 in 2003, and 8/38
in 2004), both in line with the course objectives.

Most differences in student perceptions occurred between
the first and the second offering. The significant difference
in perception of the appropriateness of the course content
is particularly striking given that the whole organization and

0-7803-9077-6/05/$20.00 c© 2005 IEEE
35th ASEE/IEEE Frontiers in Education Conference

S1E-10

October 19 – 22, 2005, Indianapolis, IN

Session S1E

content of CSE211 was identical between both offerings (i.e.,
the course materials were identical including the schedule,
reading assignments, timetables, WebCT environment, etc.;
moreover individual and group assignments, quizzes, and ex-
ams were very similar). Given that the class size was also
about the same, these results suggest that the difference in
perception with respect to the course content might be due to
the difference in programming environments. This surprising
conclusion is supported by the highly significant differences
in student satisfaction with the particular implementation of
the programming language (KAWA vs. MzScheme, p=.005)
and the supporting programming environment (KAWA/XEmacs
vs. DrScheme, p=.004).3 Further evidence comes from the
significant difference in the perception of the utility of indi-
vidual assignments to understand the lecture material better
(p=.038), which benefit most from an “easy-to-use” program-
ming environment like DrScheme (which allows students to
check their answers quickly, while more complex environments
like KAWA/XEmacs act rather as a deterrent–this was also
confirmed by written comments on TCEs). This is also evident
from the students’ perceptions about how much time they spent
on average on the course (3.64/4 in 2002, 3.23/4 in 2003, and
3.45/4 in 2004, where 4=much more than average, 3=more than
average, 2=average, and 1=less than average, the difference
between 2002 and 2003 is significant, p=.02).

One of the consequences might have been the trend towards
a statistically significant difference in students’ perceptions of
the utility of SCHEME as an instructional language (p=.099).
While students in both years perceive SCHEME as somewhat
useful, the 2002 students are leaning on average more towards
being indifferent on the question while students in 2003 tend
to agree with it. Interestingly, despite all the above differences,
there is no significant difference between students’ performance
on the finals (64.6/100 in 2002 and 64.8/100 in 2003). More-
over, there is no significant difference among the final grades
and grade distributions in all three course offerings.

Other difference between course offerings are related to prior
programming experience. While in 2002 and 2003 about 50%
(15 out of 31 and 19 out of 37) had prior exposure to C++,
only 40% (18 out of 45) in 2004 had C++ experience (and
25/48 had no programming experience whatsoever). None of
the students in all three offerings had prior experience with
SCHEME. Correlating prior programming experience and final
grade (here we have data only for 2004), however, gives r =
.11, while correlating C++ and final grade yields r = .18,
showing that in both cases programming experience is not a
factor in overall course performance–this is in line with the
findings by Brockman (oral communication) in the context of
a design project [9].

3We believe that KAWA lacks the level of maturity of DrScheme; throughout
the semester, we witnessed various problems with KAWA and a few times
we even discovered bugs in the implementation that required us to find
workarounds. Moreover, some understanding of the underlying operating
system is needed for effective work with the KAWA/XEmacs combination,
while DrScheme is largely self-contained and can be used without such
expertise.

CONCLUSION

The results from three offerings of CSE211 show that intro-
ductory topics in CS can be feasibly covered in the first course
without sacrificing the students’ level of understanding and
that a programming language like SCHEME, in which none
of the students had prior experience, eliminates advantages
and/or disadvantages of prior programming experience (or lack
thereof). We found no indication that prior programming expe-
rience (in C++ or other languages) has any impact on student
performance in the course. Moreover, students on average
tended to see some utility of SCHEME as an instructional
language. This is particularly important in the light of pressure
from industry to move into C++ quickly.

Finally, our analyses suggest that the right programming
environment is a critical component in a first-year CS course.
Specifically, as in the case of CSE211, the choice can contribute
to students’ perception of the overall course content and lead to
significantly higher time requirements. However, in CSE211 it
did not have an impact of overall student performance. Hence,
open-source tools are appropriate programming environments
as long as they have reached a high level of maturity and are
easy to use (like DrScheme).

Overall, we believe that CSE211, while clearly being difficult
and time-consuming for students, is a viable first course in CS
that achieves its instructional objectives and requirements in
the context of the ND02 curriculum. Naturally, there is still
much for improvement. Of particular concern are currently the
high time requirements for students.

Future versions of the course will address this problem by ex-
perimenting with different distributions of individual and group
assignments, possibly reducing the number of assignments and
quizzes in favor of more interactive practice in the lab and the
lecture.

ACKNOWLEDGMENT

The author would like to thank the members of the CSE under-
graduate curriculum development committee 2000-02 (headed
by Jay Brockman) in the department of computer science at
Notre Dame for their hard work in defining ND02 and the
department for having been given the opportunity to develop
CSE211 and teach it in three consecutive years.

REFERENCES

[1] The IEEE/ACM Computing Curricula 2001 (CC2001).
http://www.computer.org/education/cc2001/

[2] H. Abelson and G.J. Sussman, Structure and Interpretation of Computer
Programs, 2nd ed., McGraw-Hill, 1996.

[3] WebCT. http://www.webct.com/
[4] KAWA. http://www.gnu.org/software/kawa/
[5] XEmacs. http://www.xemacs.org/
[6] DrScheme. http://www.drscheme.org/
[7] J.M. Cohoon and L.Y. Chen, “Migrating Out of Computer Science”,

Computing Research News, Vol. 15/No. 2, pp. 2-3, 2003.
[8] A. Linse, W. Jacobson, L. Reddick, “Toward the Best in the Academy”,

Essays on Teaching Excellence Vol. 16, No. 7, 2004-2005.
[9] J.B. Brockman, “Evaluation of student design processes”, Frontiers in

Education Conference, 1, 6-9, pp. 189 - 193 vol.1, 1996

0-7803-9077-6/05/$20.00 c© 2005 IEEE
35th ASEE/IEEE Frontiers in Education Conference

S1E-11

October 19 – 22, 2005, Indianapolis, IN

