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Abstract

We investigate the interactions between conflict resolution
and survival in multi-agent environments, where agents com-
pete for resources. We define strategies for the “conflict
game” and the “survival game,” analyze their properties, and
compare their performance in agent-based simulations. The
results demonstrate that inferior strategies in conflict games
can be turned into superior strategies in the survival game if
combined with the right parameters for foraging.

Introduction
Conflicts arise when two or more agents require a non-
sharable resource at the same time. In a biological context,
such conflicts (e.g., for food) occur as part of a larger com-
petition for survival and procreation, where agents need to
live long enough to procreate and pass on their genes.

In this paper, we investigate the interactions of strategies
to resolve “conflict games” in the context of larger “survival
games” in which conflicts occur. We start with a description
of the conflict game and discuss different strategies for play-
ing it. Then we discuss the setup of the larger survival game,
define an agent model for it, and perform extensive simula-
tion studies to examine the relationship between strategies
for the two games. We show how the performance of poor
strategies in the embedded conflict game can be completely
reversed by small parameter changes in strategies for the
larger game.

Conflict and Survival
Conflicts among agents can be viewed as games, where
the participating agents can perform two actions: they can
“continue” the game (i.e., fight for the resource) or they
can “leave” the game (e.g., give up the resource and leave
the scene). If two or more agents decide to continue, the
game itself continues. Various one-round games like the
Prisoner’s Dilemma (Axelrod and Hamilton, 1981) or the
Dove-Hawk Game (Maynard-Smith and Price, 1973), and
iterated games like the Iterated Prisoner’s Dilemma (Ax-
elrod, 1984), or the Sequential Assessment Game (Enquist
and Leimar, 1983) have been proposed to study conflicts as

they arise in nature. While game-theoretic models of con-
flicts and conflict resolution strategies are particularly stud-
ied in economics (e.g., (Hirshleifer, 1988; Hirshleifer, 2001;
Garfinkel and Skaperdas, 2000; Reuveny and Maxwell,
2001)), there is also a vested interest in conflict resolution
for multi-agent systems in distributed AI (e.g., (Klein, 1991;
Sycara, 1991; Adler et al., 1990; Lander and Lesser, 1990)),
where agents compete for shared resources.

We now describe the particular conflict and survival
games employed and investigated in this paper, which dif-
fer from the above models in several important ways.

Conflict Games and Conflict Resolution Strategies
Many real life incarnations of the above games occur as spe-
cial iterated games of what is called Dynkin games or stop-
ping games (Shmaya et al., 2003; Touzi and Vieille, 2002),
where players with finite budgets have to pay a cost CP (“the
cost for playing”) 1 in every round; they also have to pay a
cost CL (“the cost for leaving”) for quitting. The payoff is
only determined when at most one player is still in the game,
at which point the resource’s value (BP for “benefit of play-
ing”) is added to that player’s budget. Losers might still get
other resources (e.g., ones that are not contested) later with
a certain probability–we call this the “benefit of leaving” BL
and assume that the utility of winning outweighs the util-
ity of losing in a one-round game (i.e., BP +CP > BL +CL).
We will also take another important aspect of many real-
world conflicts into account (see below), that of signaling–
truthfully or not–(aspects of) behavioral propensities, which
we construe as the probabilities with which agents continue
a game.2

A strategy for the conflict game is defined as the probabil-
ity PA that agent A will continue a game. Each conflict can
then be described by a sequence of interactions (or “rounds”)
which continue as long as at least two players continue the

1This cost corresponds to the basic bet in poker games or the
energy spent for fighting for a period of time.

2Many animals that are about to fight for resources such as food,
mates, or territory typically show displays of aggression, e.g., see
(Adamo and Hanlon, 1996; Hofmann and Schildberger, 2001).



game.3 Intuitively, the expected utility of a conflict game
should be independent of its duration. To see this, first de-
fine an expected utility US,O(n) for player S in a two-player
game with players S and O after n rounds:

US,O(n) = PS ·PO · (CP +US,O(n+1))+

PS · (1−PO) · (BP +CP)+

(1−PS) ·PO · (BL +CL)+

(1−PS) · (1−PO) · (BL +CL)

Note that in case both players continue in round n, the utility
of both continuing for S is given in terms of the utility of
the n + 1 round game, otherwise the respective utilities can
be directly computed based on player’s strategies and the
benefits/costs alone.

Let Rest = US,O(n) − PS · PO ·US,O(n + 1), which is a
number independent of US,O(n) for any n. Then combin-
ing US,O(n) = Rest +PS ·PO ·US,O(n+1) and US,O(n+1) =
Rest +PS ·PO ·US,O(n+2), we get US,O(n) = Rest +Rest ·PS ·
PO + (PS ·PO)2 ·US,O(n + 2). In general, we get US,O(n) =
Rest ·

∑m
k=0(PS ·PO)k +(PS ·PO)m+1 ·US,O(n+m+1), hence

the utility of the overall game US,O = limm→∞ US,O(n) (for
any n). Since

∑n
k=0(PS ·PO)k can be written as (PS·PO)n+1−1

PS·PO−1
and limm→∞(PS ·PO)m+1 = 0, and assuming that PS 6= 1 or
PO 6= 1 (otherwise the game has no value), we get US,O =
( 1

1−PS·PO
) · Rest. Note that US,O has two maxima at PS =

0,PO = 1 and PO = 0,PS = 1 and that because long games
only incur costs (since for each round CP has to be paid) and
have no added benefits, the best game is a one-round game.

So what is a good strategy for the conflict game? Player
S can reason based on player O’s choice in the following
way: suppose PS is fixed, then player O should play PO = 1
if (1−PS) ·BP +CP > BL +CL.4 Conversely, if (1−PS) ·
BP +CP < BL +CL, then player O should play PO = 0. For
(1 −PS) · BP +CP = BL +CL player O will be indifferent
between PO = 0 and PO = 1 (any value in [0,1] will pay
BL +CL). Similarly, player S will be indifferent if player O
plays PO such that (1−PO) ·BP +CP = BL +CL. Therefore,
the pair (PO,PS) such that (1−PS) ·BP +CP = (1−PO) ·BP +
CP = BL +CL is a Nash equilibrium.

It may be tempting for player S to play PS = 1 as this
promises the highest payoff. However, in the absence of
information about PO this can lead to prolonged games, e.g.,
if both S and O decide to continue, where the “payoff” per
round is only the cost CP with no benefits to either player.

If information about the likely behavior of the other par-
ticipant is available, then better decisions can be made that

3While the sequence is finite for players with finite budgets, it
is not in general finite as new players can join the game any time.
For all practical purposes, however, it can be considered finite.

4In general, if an expression α (e.g., (1 − PS) · BP + CP) is
greater than an expression β (e.g., BL +CL), then x ·α +(1− x) ·β
has a maximum for x = 1 for all x ∈ [0,1].

ensure short and for some strategies one-round games. Con-
testants can, for example, indicate their disposition to con-
tinue the game. Based on these apriori probabilities, con-
testants can gauge their opponents’ willingness to continue
and figure it into their decisions. For example, an agent
could lower its probability of continuing if the other agent’s
probability is higher than its own, and otherwise increase
it. Such an adjustment pays off, because the likelihood of
long encounters is reduced and the more likely outcome–
that the agent with the higher aggression level will win–is
reinforced. One possible way to define such an adjustment
is given by the following equations, we will call the Social
Rule: S increases its probability PS to continue the game by
a factor of 1−PS

PS
· (PS −PO) if PS > PO and decreases it by a

factor of PS
PO

· (PO −PS) if PS < PO, otherwise it remains the
same. This rule will increase or decrease S’s probability to
continue in proportion to the probability of the other player.

The limit case of the social rule (i.e., of applying the so-
cial rule to itself repeatedly) is the following strategy, which
we will call the Rational Rule: S plays 0 if PS <= PO and 1
otherwise. This strategy is based on the assumption that con-
testants do not know the actual value of BP,BL,CP, and CL,
hence cannot compute whether (1−PO) ·BP +CP > BL +CL
(otherwise they could play pure strategies in the first place).
Note that this strategy if played by both players guarantees
one-round games, which are not guaranteed if any of the
Nash equilibria are played: suppose that both agents indi-
cate probabilities p such that (1− p) ·BP +CP > BL +CL,
then they both should continue, which will lock them into a
prolonged game with only costs. The rational strategy, on
the other hand, prevents this by forcing the contestant with
the lower probability to “give up” right away and still get at
least BL +CL (instead of the winner’s (1− p) ·BP +CP).

Of course, this rule is not fair in that repeated encounters
between the same two individuals will lead to the same out-
come, i.e., the same individual will win over and over again.
In a group that means that the agent A with highest PA will
have n · ((1− p) ·BP +CP) payoff after n encounters and the
bottom PA will have n · (BL +CL).

A fair way to distribute resources given that the util-
ity function has a maximum for both PS = 1,PO = 0 and
PS = 0,PO = 1, is to alternate between getting BP +CP and
BL +CL, which allows each player to get the average payoff
(BP +CP +BL +CL)/2 every turn. We will call this the Turn-
Taking Rule (cp. to (Neill, 2003)). Of course, for games with
more agents, turn-taking is not as straight-forward, for it is
possible that both agents in a conflict took their turn at los-
ing in the previous encounter, so both will expect to win in
the current encounter. One way to address this problem is to
let each agent keep track of the number of games it won out
of all the games it participated in and adapt its strategy de-
pending on this fraction: every time an agent loses a game,
the probability to continue games in the future is increased,
every time an agent wins a game, the probability to continue



is decreased. Formally, this idea can defined as follows:

Definition [The Turn-Taking Rule] Let m be the mixed
strategy (i.e., probability of “continue”) played by agent
A (in the absence of turn-taking) and let c be the current
strategy (m = c if the turn-taking rule has never been
applied). Then the turn-taking rule TT +(c) (mapping
values in the interval (m/2,m) into (m,(1−m)/2)) can be
defined for losses:
T T+(c) := c+(1− c)/2 for c ≥ m
T T+(c) := 2c for c ≤ m/2
T T+(c) := m+(2c−m)(1−m)/2m otherwise

Similarly, T T (c)− (mapping (m,(1 − m)/2) into
(m/2,m)) can be defined for wins:
T T−(c) := c− (1− c) for c ≥ m+(1−m)/2
T T−(c) := c/2 for c ≤ m
T T−(c) := m/2+m(c−m)/(1−m) otherwise

This turn-taking rule has several nice properties, in partic-
ular, that the n-fold application in one direction followed by
an n-fold application in the other direction yields the original
probability:
Corollary 1. Let T T +,n(c) (TT−,n(c)) denote the n-
fold (recursive) application of T T + (T T−) to c. Then
T T−,n(T T +,n(c)) = c and T T +,n(TT−,n(c)) = c (where
T T+,1 := TT + and T T−,1 := T T−).

More importantly, the turn-taking rule combined with the
rational rule is fair in a clearly specified sense: the difference
between wins and losses in a group of competing agents is
bounded by int(n/2)+ 1 (where |P| = n is the population
size of the competing agents):
Proposition 2. For an agent population P of size n playing
both the rational rule and the turn-taking rule, there exists
a constant d such that the difference between the number of
wins and the number of losses taken from the whole popula-
tion is bounded by d for an arbitrarily long tournament (i.e.,
|wins− losses| < d for all agents in P).

Hence we expect agents playing the combined turn-taking
and rational rule to do well in the survival game, which we
describe next.

Survival Games and Foraging Strategies
Conflict games are played as part of survival games (Barash,
2003; Maynard-Smith, 1982) in a spatially continuous two-
dimensional plane, in which agents are situated. At any
time, they can choose among four actions depending on
their current context: to collect a resource that is present in
their vicinity, to duplicate and produce an identical copy of
themselves if their budgets exceeds CD (the “cost of duplica-
tion”)5, to play the conflict game if at least one other agent

5The exact copy of an agent with budget Binit will be added to
the survival game in the vicinity of the agent and can be at the ear-
liest produced after Dmin cycles from the point the agent has joined

is present, or to forage for resources (which is the default
action).

Resources with a fixed benefit BP = 8006 are randomly
distributed within a given 1800 by 1800 square unit area
in the environment. New resources appear at a frequency
R = 1/cycle at a random location within this area and re-
main there until collected by an agent (agents can empty re-
sources and add their value to their budget by moving over
them; empty resources will be removed). Agents move in
any direction at a speed SA = 4/cycle, for which they pay a
quadratic “foraging cost” CF = S2

A/cycle. They also pay a
base cost CB = 1/cycle.

Agents can perceive resources and other agents within
their sensory range SR = 300 units. They decide the direc-
tion to move in based on the sum of all “force vectors”, i.e.,
each agent A computes the sum of all vectors from its current
position to the position of another agent or resource scaled
by the square of the distance and multiplied by a gain factor:

∑

n
r ·R(n)+

∑

m
s ·S(m)+

∑

k
o ·O(K)

where R(n) is scaled vector to the n-th resource, S(m) the
scaled vector to the m-th agent of the same kind as A, O(k)
the scaled vector to the k-th agent of a kind different from
that of A, and r, s, and o are multiplicative constants called
“resource gain,” “same gain,” and “other gain,” respectively
(all vectors are scaled by the square of the distance between
A and the respective item). This way of determining where
to go has been studied extensively in autonomous agent
research, in particular, in behavior-based robotics (Arkin,
1989) (but also in biology): agents will follow gradients that
lead them towards areas with close-by or high densities of
resources.

Agents can engage in conflicts when they are within con-
flict distance CD = 35 units, at which point both agents sig-
nal their apriori probability PA to continue and then, depend-
ing on their conflict strategy, make a decision based on all
the inputs they received from other agents (we use CP = 50
and CL = 350, which is the average cost of running away
from the site of conflict for a random number of cycles be-
tween 5 and 10 at a speed of 7 in order to leave the conflict
range and end the game). Typically, this will allow losers to
pick up other gradients, and thus to avoid having to compete
with the same agents again (e.g., by rejoining an ongoing
game or by restarting the previous game), which they other-
wise would given their previous attraction.

While different strategies can be defined for the survival
game, we will focus on a fixed strategy for all agents that
depends on only two foraging parameters to be defined in

the survival game (the “reproduction delay”). Note that agents will
not be able to identify other agents as their offspring beyond rec-
ognizing them as one of their kind.

6Note that for space reasons we already add the particular val-
ues used in our simulations to the description of the parameters.



Section (i.e., agents use different forage actions or strate-
gies), to reduce the number of free parameters: agents will
always collect collectible resources, always procreate when-
ever possible, and always enter a conflict game if another
agents are present in their vicinity.

Assuming that the resource gain (r) is fixed for all agents,
we can then define an infinite set of foraging strategies based
on the pair of gains (s,o). Suppose n agents A1,A2, ..,An
participate in the survival game. Let C be the n× n ma-
trix given by the probability ci, j that agents Ai and A j will
enter a conflict in the survival game, where the foraging pa-
rameters oi = si = 0 for all agents. We can then define an
n×n expected utility matrix E by ei, j :=UPi,Pj , where UPi,Pj
is the expected utility for agent Ai in a conflict game with
agent A j and Pi and Pj are the probabilities of continuing
in the conflict game for Ai and A j, respectively. Then the
overall expected utility UC of conflict games for agent Ai is
given by UCi =

∑n
j=1 ci, j · ei, j. Moreover, let Ri(si,oi) be

the apriori probability of agent Ai getting a resource with
net utility BF through foraging depending on parameters oi
and si without any intervening conflicts (here BF is obtained
from the resource utility BP minus the average foraging cost
to get it, i.e., k · (CF +CB) for some k > 0). The overall ex-
pected utility Ui for Ai in the survival game is then given by
Ri ·BF +UCi. Note that performance in the survival game
depends on the three parameters si,oi, and Pi and that agents
can influence their overall expected utility Ui both by chang-
ing Pi (which will affect only UCi) and/or their foraging pa-
rameters oi and si (which will affect Ri and can affect UCi,
because UCi depends on (C))7. The fascinating aspect of
this mutual dependence is that good performance in the con-
flict game does not automatically translate into good per-
formance in the survival game as it is possible for agents
to compensate for poor strategies Pi in the conflict game by
virtue of changing the oi and si parameters.

Note that while it is true that because all agents play a
fixed strategy (only parameterized by oi and si) in the sur-
vival game, agents with higher U are more likely to have
offspring, this does not automatically translates into higher
average numbers of survivors in the long run. Whether an
agent kind (as determined by the three parameters) is go-
ing to be successful will depend on how adding offspring
to (or removing agents who ran out of their budgets from)
the survival game changes Ui for all involved agents. Con-
sider, for example, a survival game that starts with two dif-
ferent, equally sized population of agents A and B, where
A has oA = sA = 0 while B has sB > 0 and oB = 0 (i.e.,
B agents seek out conflicts with each other). Furthermore,
suppose that B agents always play PB = 1, while A agents
play PA = 0.5. Then ei, j < e j,i for agents i of type A and
agents j of type B. Hence, B agents gain from having con-
flicts with A agents, but will be locked into long conflicts

7Note that it is possible to change Ri without affecting any ci, j .

among their own, which will only end when one agent has
no budget left. Everything else being equal, UB > UA in
the beginning, hence B agents will have more offspring than
A agents, which changes the agents distribution in favor of
type A agents. However, this increases the chances that B
will enter conflicts with B agents, which are detrimental
and subsequently decreases UB, possibly to a point where
UB < UA. Performance in the survival game, therefore, de-
pends not only on U , but also on how U changes over time.

We will in the following experimentally investigate the
specific relationships between the conflict and survival
games with respect to tradeoffs between adaptive changes
in strategies in the conflict game with no foraging bias (i.e.,
s = o = 0) compared to fixed strategies in the conflict game
with foraging bias (i.e., s 6= 0 and/or s 6= 0).

Simulation Experiments and Results
We defined 8 basic agent types, which are divided into four
asocial and four social agents, depending on whether or
not they take signals of other agents into account in their
decision making. We also distinguish adaptive from non-
adaptive agents depending on whether or not they use the
turn-taking rule.

Asocial agents consist of three non-adaptive agents called
timid (playing “always leave”), Aggressive (playing “always
continue”), and (prototypically) Asocial (playing a mixed
strategy), as well as Asocial adaptive (playing a mixed strat-
egy with the turn-taking rule.8 Social agents are either adap-
tive or non-adaptive (prototypically) Social (playing the so-
cial rule) or Rational (playing the rational rule).

All experimental runs use 50 agents (25 each of two
kinds) initially placed in random locations within the 1800 x
1800 resource area together with 50 randomly distributed re-
sources. Their initial energy was set to 2000 and PA (for con-
tinuing a game) for agents with mixed strategies was Gaus-
sian distributed with spread 0.125 around 0.5. Each experi-
ment consists of 40 experimental runs of 10000 cycles each
after which the number of survivors is determined. The aver-
age number of survivors across all 40 runs (together with its
95% confidence interval) is used as performance measure.

Previously, we had determined the performance of all 8
agent kinds based on their strategies for the conflict game,
i.e., by putting each kind in direct competition with each
other kind with s = o = 0 (reference suppressed). The rel-
evant outcome for the following experiments is that pure
strategies are, as expected, bad choices: Aggressive agents
perform worst (there are no survivors against any other
agents) and Timid agents are second worst outperforming
only Aggressive agents. Rational Adaptive agents, on the
other hand, perform best with no surivors of any compet-
ing agent kind. In general, social agents outperform asocial

8We use capital letters for names of agent kinds to be able to
distinguish them from attributes, e.g., “Asocial” refers to a kind,
whereas “asocial” refers to an attribute.



agents, except for the Asocial adaptive agents, which only
perform worse than the Social and Rational adaptive agents.

Asocial Agents with Non-zero S-Gains
To investigate the influence of non-zero s-gains and o-gains
of agents with low overall performance in the conflict game,
we compare Asocial agents to Asocial adaptive agents and
to all social agent kinds (with zero gains). For each of the
5 pairings, we ran experiments varying the s-gain from -10
to -50 and the o-gain from 10 to 50, both in steps of 10,
thus yielding a total of 25 experiments (of 40 experimen-
tal runs each).9 Figure 1 depicts the resulting performance
spaces for all 5 pairings (i.e., the average number of sur-
vivors of each kind for each of the 25 experiments). As
can be seen, non-zero gains have a tremendous influence
on the performance of an agent: Asocial agents outperform
all other agent kinds (except for Rational adaptive agents)
in most points in the gain parameter space except for least
negative s-gains and high o-gains. Parameters in these areas
cause Asocial agents to exhibit a slight avoidance of their
own kind while strongly seeking conflicts with agents of
other kinds.

To test the extent to which non-zero s-gains and o-gains
could compensate for poor performance in the conflict game,
we tested timid and aggressive agents, which have the poor-
est performance in the conflict games, with non-zero s-gains
(while keeping the o-gains at 0). For each pairing, we con-
ducted two experiments where the initial positions of the
first agent kind in the first experiment became the initial
conditions of the second in the second and vice versa to en-
sure that the results are balanced and that initial positions do
not contribute to the results. Figure 2 shows the results of
this comparison for s = −10 and s = −20. While the Timid
agents only show improvement of their performance against
the Asocial adaptive (for s =−10 they can coexist with Aso-
cial adaptive agents, for s =−20 they outperform them), Ag-
gressive agents show already a major improvement against
all other kinds for s =−10: they have survivors (contrary to
their performance for s = 0). Yet, for s = −20 they manage
to outperform all other agents only leaving an insignificant
number of surviving Rational adaptive agents in some runs.

At first glance, this enormous performance boost is quite
surprising. After reflection, however, it is clear why the ag-
gressive strategy combined with negative s-gains works so
well: it ensures that Aggressive agents will mostly compete
with other agents, where their chances of winning and get-
ting a benefit are very high (effectively they only loose when
they run out of their budget), while avoiding getting locked
into long games with their own (compare this to the discus-
sion in the Section “Survival Games and Foraging Strate-
gies”). Note that other agents will still on average compete

9The ranges were chosen as positivie s-gains and negative o-
gains lead to poor strategies (e.g., competitions with one’s own
kind and to avoidance of other kinds).

Asocial with s<0 and o>0 versus Social

Asocial agents
Social agents

-50 -45 -40 -35 -30 -25 -20 -15 -10

s gain

 10
 15

 20
 25

 30
 35

 40
 45

 50

o gain

 0
 20
 40
 60
 80

 100
 120
 140
 160

av. survivors

Asocial with s<0 and o>0 versus Rational

Asocial agents
Rational agents

-50 -45 -40 -35 -30 -25 -20 -15 -10

s gain

 10
 15

 20
 25

 30
 35

 40
 45

 50

o gain

 0
 20
 40
 60
 80

 100
 120
 140

av. survivors

Asocial with s<0 and o>0 versus Asocial Adaptive Agents

Asocial agents
Asocial adaptive agents

-50 -45 -40 -35 -30 -25 -20 -15 -10

s gain

 10
 15

 20
 25

 30
 35

 40
 45

 50

o gain

 0
 20
 40
 60
 80

 100
 120
 140

av. survivors

Asocial with s<0 and o>0 versus Social Adaptive Agents

Asocial agents
Social adaptive agents

-50 -45 -40 -35 -30 -25 -20 -15 -10

s gain

 10
 15

 20
 25

 30
 35

 40
 45

 50

o gain

 0
 20
 40
 60
 80

 100
 120
 140

av. survivors

Asocial with s<0 and o>0 versus Rational Adaptive Agents

Asocial agents
Rational adaptive agents

-50 -45 -40 -35 -30 -25 -20 -15 -10

s gain

 10
 15

 20
 25

 30
 35

 40
 45

 50

o gain

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

av. survivors

Figure 1: The average number of asocial survivors compared
to other agent kinds varying the asocial agents’ s-gains (from
-10 to -50) and o-gains (from 10 to 50), both in steps of 10.
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Figure 2: The average number of timid agents and aggres-
sive survivors compared to non-asocial agent kinds and the
Asocial adaptive agent (shown for “dual experiments” with
initial positions swapped–see the text for an explanation).

the same time with each other as they would have normally.
This example demonstrates a case where a strategy that by
itself is not beneficial at all can be turned around into a pow-
erful strategy when applied selectively.

Analysis
Negative s-gains of agents i and j reduce ci, j and can thus
improve UCi and UC j when ei, j < 0 (as is the case with
Aggressive agents). A large enough improvement can then
change an agent kind’s A relative overall UA compared to
another agent kinds’ B overall UB for a given population of
A and B agents in the survival game such that UAs<k > UB,
while UAs≥k < UB for some k < 0 as demonstrated by the
above simulation results. Note, however, that a higher ex-
pected utility for a given distribution of agents from two
kinds by itself does not guarantee that it will be preserved
over time as the composition of the population in a sur-
vival game changes as a result of duplication and removal of
agents. This is where another property of negative s-gains is
critical: everything else being equal, they guarantee the rel-
ative utility ordering as long as the number of agents of kind
A does not get so large that agents are “forced” (based on
their summed “force vectors”) into conflicts (because there
is not enough space in the environment for them to avoid
each other–for space reasons we will not be able to develop
the details here). Note, however, that as with Aggressive
agents the utility will decrease as a result of the smaller num-
bers of B agents, from which A agents have to gain most.
Eventually, a population of only A agents will be left with
UAs<k = Ri ·BF , where negative s-gains prevent all conflicts.

Discussion
Without modifications of the parameters in the survival
game, social strategies are better than asocial strategies,
and adaptive strategies that attempt to distribute resources
equally among agents are better than non-adaptive ones.
The best strategies are combinations of adaptive and social
strategies. If, however, parameters in the survival game can
be changed that affect the foraging strategy of agents, then
the poorest performer in the conflict game can be utilized
to beat many social strategies. These results point in an in-
teresting direction: what are the exact relationships between
parameters in embedded games and those in larger games
and how can these interdependent parameters be utilized to
improve performance? Or more generally, what are the in-
teractions between different spatio-temporal levels of orga-
nization? E.g., in the present study, we compare individual
conflicts and strategies for resolving them to competition of
species and strategies for procreation and survival, but other
kinds of decision-making or control processes that operate at
different spatio-temporal levels could be considered as well
(e.g., interactions between the control processes at the level
of immune system and the organismal level).

We believe that one particular lesson to be learned from
this study is that the best strategy in an embedded game does
not always lead to the best performance in a larger game, for
it is possible that the best strategy implicitly fixes parame-
ters in the larger games that poorer strategies nevertheless
can adjust to their advantage. In the context of a survival



game in nature this could mean that there might be situations
in which animals never play the optimal strategy in an em-
bedded game, simply because it leads to lower overall per-
formance in the larger game of survival. Consequently, em-
bedded games with such interdependencies on their larger
games cannot and should not be considered in isolation.

These kinds of interactions are particularly important in
the context of artificial life, where theories of dynamically
forming hierarchies of different levels of organizations and
of emergence of properties at higher levels of complexities
are still in the early stages. A better understanding of the
dependencies and influences between parameters of strate-
gies at different levels (e.g., between the embedded and the
larger game) can help in the formulation of a viable theory
of dependency and possibly causation – exactly how upper
levels “cause” lower levels to behave in particular ways (e.g.,
by virtue of constraining their parameter space, state space
trajectories, etc.) and how lower-levels, in turn, bring about
behaviors and properties at higher levels. The dynamics of
such interactions are critical for a thorough analysis of the
behavioral repertoire of a complex multi-level system and
are critical for determining good if not optimal control prin-
ciples (e.g., strategies in conflict games).

Conclusion
We have developed a game-theoretic framework for investi-
gating the relationship of strategies for survival games with
embedded conflict games. Specifically, we studied the inter-
action between parameters for foraging strategies and adap-
tive vs. social strategies in the conflict game, and showed
that and why poor strategies in the conflict game can be
turned in successful strategies in the survival game if com-
bined with the right set of foraging parameters. We intend to
extend this work to isolate general conditions under which
suboptimal strategies in embedded games can be improved
based on parameters in larger games, which we believe will
have important implications for understanding and design-
ing efficient ways of resolving conflicts in embedded con-
flict games played by artificial agents.
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