
A Multi-Agent System Infrastructure for Large-Scale Autonomous
Distributed Real-Time Intelligence Gathering Systems

Matthias Scheutz
Human-Robot Interaction Laboratory

Indiana University
Bloomington, IN, 47406

Abstract
Complex national security applications require

support for component distribution, secure communi-
cation, fault-tolerance, and dynamic system reconfig-
uration that generally fall under the purview of multi-
agent systems (MAS). Current MAS, however, do not
provide the support and flexibility for the design and
long-term operation of large-scale sophisticated intel-
ligence applications. We argue that such systems re-
quire features that result from the synergy of both
MAS and SAS (single agent systems) and introduce
our ADE system, showing how it supports three such
synergistic features that we believe are critical to long-
term, large-scale homeland security systems.

1 Introduction

Future national security applications for auto-
matically monitoring, analyzing and reasoning with
data from real-time multi-modal data streams will
have to use complex, large-scale, distributed reason-
ing architectures that can combine evidence from dif-
ferent sources. This, in turn, will require an intel-
ligent, highly fault-tolerant, secure, distributed, real-
time computational infrastructure. Consider, for ex-
ample, an automated multi-modal threat detection
system that analyzes data originating from multiple
heterogeneous data sources. These heterogeneous data
sources may include both “soft data” (e.g., information
stemming from text or verbal reports) and “hard data”
(i.e., information stemming from physical sensors that
monitor critical areas). The system corroborates all
provided information (both from current and previous
data) to determine its credibility in order to detect
potential threats. To be able to accomplish this func-
tionality, such a system needs to be highly parallel to
deal with a large amount of streaming data, perform-
ing fast, multi-lingual language parsing and semantic
analyses to determine the meaning of soft data, then
storing the semantic representations in a language neu-
tral (logical) form in distributed databases indexed by

various keys. It is expected that data mining tools will
be able to access the information stored in databases
in order to determine patterns, which will then in-
voke reasoning tools that operate in parallel on se-
mantic representations to determine potential threats
and their likelihood, while partial or inconclusive re-
sults from analyses will be stored for future reference
(e.g., [5]). The system will also be able to produce
written reports summarizing its findings. Interactive
access to the system will allow investigators to query
the database and formulate testable hypotheses whose
certainty the system can determine based on the stored
data. While all this activity is taking place, the system
monitors its “health”, dynamically reconfiguring itself
to relocate components from hosts that crashed or are
not reachable via network connections – all while the
system stays fully operational.

In general, these national security applications
will require the computational infrastructure to sup-
port highly controlled access to different kinds of clas-
sified information stored within the system, in addition
to sophisticated analysis and reasoning tools that will
integrate a great variety of current and future AI tech-
nology (from natural language processing and under-
standing, to machine translation, hypothetical reason-
ing with uncertainty, various forms of machine learn-
ing, etc.). Moreover, refined internal monitoring and
supervision tools are needed to detect failures of com-
ponents, initiate recovery from failure, and ensure the
long-term autonomous operation of the system. What
kinds of system can provide the necessary infrastruc-
ture for the implementation of such an autonomous
intelligent distributed application?

The natural place to look for an answer are multi-
agent systems (MAS), which provide an agent-based
infrastructure for distributed computing. Agents in
the context of MAS, call them “MAS-agents”, are com-
putational processes that implement the autonomous,
communicating functionality of a distributed applica-
tion [2]. While many MAS provide the necessary tools
to implement secure, fault-tolerant distributed sys-
tems as determined by the “MAS-architecture” (i.e.,



the overall blueprint of the multi-agent system), they
do not provide support for the implementation of func-
tional components of the architectures of their con-
stituent MAS-agents. Yet, support for components
like memories, reasoning, planning, or learning en-
gines, etc. is likely going to be necessary for the imple-
mentation of the many different kinds of sophisticated
analyses and reasoning tasks described above.

This kind of support is typically found in sin-
gle agent systems (SAS), which focus developing
control architectures for intelligent agents (“SAS-
architectures”). “SAS-agents” are typically situated
in some environment and are capable of flexible au-
tonomous action in order to meet their design objec-
tives [4]. However, SAS are not concerned with highly
parallel processing environments with hard real-time
requirements, having been largely developed for single
CPU architectures. Hence, they do not provide the
kinds of distribution mechanisms to preserve the par-
allelism that their architectures might allow for, nor do
they provide mechanisms for secure, controlled access
to parts of their architecture.

We believe that a synthesis of both kinds of sys-
tems is necessary, which can provide the support for
SAS agent architecture development together with the
infrastructure necessary for the interaction of MAS
components. Specifically, we propose a MAS system
infrastructure that allows for “MAS-agents” to be de-
signed with “SAS-architectures” (e.g., the cognitive
architecture SOAR), where the components of these
“SAS architectures” (e.g., rule-base, working memory,
etc.) are themselves “MAS-agents”. The main utility
of such an infrastructure for intelligent national secu-
rity systems is that it allows (1) for a secure, large-scale
distribution of the system at the level of architectural
components of SAS-agents, (2) for the implementa-
tion of sophisticated, yet efficient reasoning tools in
existing cognitive framework, and (3) for synergistic
features resulting from integrating SAS and MAS that
will significantly improve the long-term operation and
maintenance of such systems.

2 SAS and MAS Features

Single agent systems are concerned with the de-
sign and implementation of individual agents. We
identify a non-exhaustive list of ten typical SAS fea-
tures to be able to see their potential contribution for
national security applications.

The first five features – the functional features –
support the design of agent architectures. Architecture
support (S1) provides support for a specific architec-
ture type (e.g., behavior-based, BDI, 3-layer hybrid,
etc.). Architecture support may be provided at a com-

ponent or a program language level. Additionally (or
alternatively), systems may provide pre-defined rou-
tines, enabling rapid agent development. These in-
clude architectural components (S2; i.e., schedulers,
rule-interpreters, learning mechanisms, etc.) and data
processing routines (S3; i.e., voice recognizers, nat-
ural language parsers, graphical analysis tools, etc.).
Another major concern of an agent system is to pro-
vide facilities and standards for the interaction of an
agent and its environment, which we refer to as the sys-
tem’s device specification (S4) and interface abstrac-
tion (S5). The first concerns particular types of inter-
face devices to gather data (sensors) and to transmit
information (effectors); different examples of a single
type may be available and should be easy to specify
and change as needed. The second refers to the ab-
stractions that many devices have in common, sepa-
rating the form of a device from its function.

The remaining five features can be character-
ized as implementation features. Integrated simula-
tion (S6) and data logging (S7) tools ease the burden
of testing and debugging. The availability and use of
simulated versus real concurrency (S8) in agent com-
puting is often a requirement for good agent perfor-
mance, also supported by the ability to use a variable
update frequency (S9), so that sensor information is
made available as soon as it is acquired. These fea-
tures are typically enabled by the designer’s program-
ming language choice (S10). That choice should not
be dictated by the agent system itself; a designer might
want to use a specific language for implementation of
agent control code or agent function.

Different from SAS, MAS are primarily concerned
with the design of distributed applications in which
multiple, often heterogeneous agents interact. In gen-
eral, MAS provide the framework in which individual
agents operate without specifying the function or ar-
chitecture for individual agents (only for agents that
effectively implement the MAS infrastructure such as
“registry agents”, “yellow and white pages agents”,
etc. are functional roles and implementations given).
We identify ten MAS features in total, four that can be
considered functional, five that are implementational,
and one that has elements of both.

We begin with the functional features, starting
with the level of communication abstraction (M1) sup-
plied by the system, from sockets to a well-defined
languages (such as KQML or the FIPA ACL). Com-
munication between agents raises issues of trust, and
should be subject to agent authentication (M2), while
the system should also provide some level of system
access control (M3). Also at the system level, agent
management (M4) tools provide a system supervisor
the ability to start, stop, suspend, or remove individ-
ual agents. Some of the security features fall under



the purview of distribution services (M5), which en-
compasses additional aspects of distributing applica-
tions, both functional and implementational, possibly
including “white pages” (or naming services), “yellow
pages”, agent migration, and agent management.

The remaining five features we identify are im-
plementation dependent. As a MAS moves toward
providing an open multi-agent environment, security
concerns grow proportionally and should be explicitly
addressed. In addition to M2 and M3, an imple-
mented system might support various forms of mes-
sage encryption (M6). MAS often need system-wide
monitoring. One aspect of this, similar to SAS, is the
need for logging facilities (M7), which can be applied
to system monitoring (M8; i.e., infrastructure com-
ponents) or agent monitoring (M9; i.e., the run-time
state of individual agents). A monitoring graphical
user interface (M10) may border on being required if
the system is large and/or complex.

Current cognitive architectures (SOAR, ACT-R,
EPIC, and others) do not support any of the dis-
tributed mechanisms of MAS systems, while some
MAS systems support some SAS features. We briefly
review two common systems, RETSINA [10] and
JADE [1], representative for others.

RETSINA facilitates complex agent interactions
by establishing an open environment in which hetero-
geneous agents can participate. A variety of “com-
ponents” are linked to form the environment’s frame-
work. The Communicator provides an abstraction of
the physical transmission layer for both synchronous
and asynchronous agent communication. An Agent
Naming Service provides mechanisms that allow loca-
tion transparency. Multi-agent Management Services
allow both logging and some amount of control of agent
activity. The existence of Matchmakers supply yellow
pages functionality, which provide the means of me-
diating or brokering agent connections according to
services offered by an agent. Finally, the security fea-
tures found in RETSINA are especially strong. Since
the goal of RETSINA is to provide the infrastructure
of a multi-agent environment, little support is given
for SAS-agent design and implementation.

The Java Agent Development (JADE) Frame-
work conforms to the specifications laid out by the
Foundation for Intelligent Physical Agents (FIPA). Be-
ing FIPA-compliant carries with it the requirement
that JADE define agent management services, a com-
munication channel, an ANS that performs both white
and yellow page services (called the directory facili-
tator), a communication language, and various secu-
rity features. At a conceptual level, the included fea-
tures are similar to those found in RETSINA. The un-
derlying infrastructure in JADE is composed of plat-
forms and containers. A platform refers to a coher-

ent instance of JADE that may either be on a single
host or distributed across a network. This includes
the Java virtual machine(s), the management agents
(a manager service, an ANS, a communication chan-
nel, and a message dispatcher), and the user-defined
agents. A platform is further broken down into at
least two “agent containers”, which utilize Java’s re-
mote method invocation (RMI) mechanisms as RMI
server objects responsible for controlling the execution
of agents on a single host. This infrastructure is dif-
ferent from RETSINA and other agent systems, where
each agent executes as an operating system process.
JADE does supply some SAS features such as agent
skeletons and the incorporation of the Java Expert
System Shell, a rule-based/expert system language.

3 Merging SAS-MAS Systems: The
ADE System

Table 1 summarizes the features present in JADE
and RETSINA. While both systems provide the infras-
tructure necessary for agent-to-agent communication,
including distribution services, middle-agents, collab-
orative or competitive agent interaction protocols, and
agent management facilities, they do not provide much
support for complex SAS-architecture design and im-
plementation. Yet, there is great utility to be gained
from directly supporting SAS-agents and their archi-
tectures in the context of MAS systems, in particular,
when complex MAS-agents can be defined in terms of
SAS-architectures whose components can themselves
be implemented in terms of MAS-agents.

Feature JADE RETSINA

S1: Architecture Support
√

-
S2: Architectural Routines

√ √

S3: Data Processing Routines - -
S S4: Simulation - -
A S5: Logging Facilities

√ √

S S6: Concurrency/Threading
√

-
S7: Programming Lang. Support

√ √

S8: Device Configuration - -
S9: Interface Abstraction - -
S10: Device Update Frequency - -
M1: Communication Abstraction

√ √

M2: Distribution Services
√ √

M3: Logging Facilities
√ √

M M4: Agent Monitoring
√

-
A M5: System Monitoring

√ √

S M6: Monitoring GUI
√ √

M7: Agent Management
√ √

M8: Message Encryption
√ √

M9: Agent Authentication
√ √

M10: System Access Control
√ √

Table 1: Comparison of two MAS, RETSINA and
JADE, with respect to 10 SAS and 10 MAS features.

In the context of the threat detection system, a
complex MAS-agent could be a natural language pro-
cessing agent NLPL that is capable of providing a
language-independent semantic summary of the con-
tent of given piece of text in a particular target lan-
guage L. Multiple instances of NLPL coexist in the



running system as they are processing large numbers of
data streams in parallel. Each NLPL is implemented
in the cognitive architecture SOAR (e.g., using NL-
SOAR [6]), where the rule-base is implemented as a
MAS-agent and thus sharable among agents. The im-
mediate advantage is that rules learned by one NLPL

agent (e.g., via “chunking” in SOAR) can be used by
others.

We have developed a MAS system for embod-
ied real-time systems (like robots or most intelligence
gathering applications), called ADE [7], which imple-
ments all features in Table 1 and directly supports
the recursive implementation of components of SAS-
architectures in terms of MAS-agents (i.e., compo-
nents of SAS-agent can consist of heterogeneous MAS-
agents, which themselves have SAS-architectures that
consists of MAS-agents, etc.). ADE comes with a large
set of implemented ADE SAS components: from per-
ceptual processing (including machine vision, laser lo-
calization, speech processing and recognition), to goal
and action planning and processing (including goal and
action management, action scripting and sequencing,
navigation planners and primitive motor behaviors), to
natural language processing (including incremental and
non-incremental parsers, discourse and dialogue en-
gines, and text generation components), and planning
and reasoning (including interfaces for linking in com-
plete or partial cognitive architectures, task-planners,
and reasoning engines), most of which have been used
successfully in our DIARC architecture [9].

The ADE server model was designed for poten-
tially hostile insecure distributed dynamic multi-OS
computing environments, where connections between
any two hosts participating in the ADE system cannot
be assumed to be secure nor present throughout the
lifetime of an application. Consequently, mechanisms
are required for ADE servers to protect communicated
information, detect failures of connections, and recover
from failure. Moreover, different components in ADE
might have different levels of classification and thus
require special access control (e.g., operators main-
taining the system might be permitted to access the
rule-base of an NLPL agent, but not its working mem-
ory that stores sensitive facts). Both requirements are
met by ADE’s “heartbeat mechanism”, which is imple-
mented by every ADE-Server server: right after regis-
tration with an ADE-Registry, an ADE-Server starts
sending (possible encrypted) status packets at regular
intervals. Each status packet contains the server’s ID,
its unique credentials, which are created dynamically
by the registry in response to each packet and need
to be included in the followup heartbeat packet, and
the status of its currently active connections. When a
client requests a server connection, the registry for-
wards the request to the server passing along the

client’s ID and credentials. If the request is accepted,
the server will return a remote reference to itself to the
registry, which is then returned to client, and a sep-
arate peer-to-peer heartbeat connection is started be-
tween client and server (in addition to the one between
server and registry). Whenever a heartbeat times out
(i.e., when a packet fails to arrive in time), a special
function is called within the MAS-agents on each side
of the connection to deal with the failure.1

4 Synergistic Features of SAS-MAS
Systems

The combination of SAS and MAS mechanisms
in a system like ADE gives rise to several synergistic
features that we believe are of crucial importance to
homeland security applications. The first synergistic
feature we identify is Arbitrary-level Access Control.
In a standard MAS, like JADE and RETSINA, it is
possible to assign privileges to individual distributed
MAS-agents and allow users selected access to them.
For example, an analysis agent AA started by an in-
vestigator as part of an interactive session (e.g., to
determine whether a particular hypothesized relation
between two very different data sources exists) will
inherit the investigator’s privileges. Hence, if AA at-
tempts to request a resource for which the investigator
does not have clearance (e.g., access to a database, an-
other analysis agent, etc.) AA’s access operation will
fail. While it is possible in such a system to restrict
access to MAS-agents like AA, it is not possible to re-
strict access to their constituent components (e.g., to
different sets of AA’s production rules).

However, such finer-grained access control can be
extremely useful and lead to better scalability, per-
formance, and security of an application. This might
require another synergistic feature, the ability to use
Shared, Location Independent Components. For ex-
ample, if AA is itself distributed, then different in-
stances of AA can share components in the system,
which reduces memory, CPU, and storage require-
ments. Different privileges could then, for example, be
assigned to sets of rules that allow for different ways of
data combination or special purpose data mining algo-
rithms that connect information within a database in
a particular way, and only analysis agents with the ap-
propriate access rights will be able to use them. More-
over, the distribution of components of AA might also
improve the agent’s performance (e.g., due to paral-
lelization). Sharing components is particularly desir-
able when resources are specialized and/or limited.

1More details on the functionality of ADE can be obtained at
http://ade.sourceforge.net/.



While there two ways to address the component-
level access problem in standard MAS, neither of them
is satisfactory (although the second also addresses the
component-level sharing problem). The first requires
the definition of different MAS analysis agents for each
access class, thus duplicating programming and main-
tenance effort and adding run-time resource overhead
because common parts of the analysis agents cannot
be shared among instances. The second approach uses
MAS-agents to define the components of AA. How-
ever, since standard MAS do not provide much sup-
port for SAS-architectures, the distributed SAS archi-
tecture of the AA will have to be largely developed
from scratch and the communication among the dif-
ferent MAS-agents of AA will likely be slowed down
due to various forms of overhead (authentication, dis-
tribution, ACL, etc.). Moreover, explicit bookkeeping
of all MAS-agents belonging to one AA is required
including which MAS-agent can be shared (by whom
and at what time). In sum, while it is not impossible
to implement Arbitrary-level Access Control on top
of the access control provided by standard MAS, both
development and run-time overhead will be significant.

To avoid this overhead of reimplementing SAS
components from scratch, ADE features a rich set of
sever APIs for different types of SAS components (as
described above) together with reference implementa-
tions for each interface, which can either be used di-
rectly in an ADE system or extended to implement cus-
tom functionality. The implemented services can then
be ADE-Server advertised by an ADE-Server as soon
as it comes up in an ADE system (e.g., a vision process-
ing component for the detection of faces in images) and
used by consumers (i.e., other ADE-Server s). Access
to its services is controlled at the method level by an
ADE-Registry, which provides MAS security features.
A set of ADE-Server s and their connections can then
form a SAS-architecture of a complex MAS-agent like
AA, thus automatically allowing for Shared, Location
Independent Components (no inherent distinction is
made in ADE between MAS-agents and components of
a SAS architecture in ADE).

There are other advantages of the access control
in ADE that are important for long-term operation and
maintenance of distributed applications: components
(i.e., MAS agents) common to a large class of more
complex MAS-agents (like AA) can be easily upgraded
in the whole system. One of several possible ways to
do this in ADE is for the new component MAS-agent
to register with an ADE-Registry, which, in turn, will
deregister the old component agent (whenever an in-
stance of AA requires the particular component, it will
get an instance of the new type).

The ability to share arbitrary components and
provide selective accesses to them is complemented

by component-level Dynamic System Reconfiguration.
This feature is critical for long-term operations for sev-
eral reasons. For one, because applications that are
resource demanding, but cannot continue at a given
time due to resource constraints, will be able to con-
tinue as long as there are some resources available at
some place in the system. Suppose a reasoning en-
gine runs out of working memory on a host computer
(e.g., because it has accumulated too many facts in
working memory over time) and suppose further that
working memory consists of component MAS-agents
(e.g., each agent represents a set of facts). Then it
is possible for the system to automatically reconfigure
itself by moving currently unnecessary working mem-
ory entries to other hosts (e.g., by using last access
as a criterion analogous to some caching algorithms in
operating systems). Other reasons for Dynamic Sys-
tem Reconfiguration are the need to restart compo-
nents elsewhere due to various failures on hosts (e.g.,
hardware failures, crashes, or temporary network un-
availability) or to improve the load, response time, and
reliability of the running application.

In ADE, a ADE-Registry can monitor the perfor-
mance of its registered servers and in order to avoid
overloading them (e.g., as measured by the server’s re-
sponse time) start a duplicate component, which can
be subsequently used (another possibility is re-route
existing connections as long as the state of the server
can be saved and recreated remotely). Alternatively,
an extension to ADE-Server functionality might al-
low dynamic changes to be made to a component’s
allowable number of connections, forcing requests for
that component to be redirected or fail. The heartbeat
mechanism can also be used to control load balancing,
which, in some sense, can be viewed as a controlled
component failure and recovery, where the component
is restarted on a different host. This not only requires
mechanisms for maintaining a component’s state, but
also a means of “forwarding” connections to the com-
ponent’s new location. Used in this way, ADE is able to
perform auto-migration, making the system as a whole
more robust and increasing performance.

5 Summary

Each of the three synergistic features, Arbitrary-
level Access Control, Shared, Location Independent
Components and Dynamic System Reconfiguration,
blurs the separation between agent and system ar-
chitecture levels, giving SAS-architecture components,
whenever necessary and useful, MAS-agent capabili-
ties. Different from other MAS systems, ADE allows for
a direct mapping between a common SAS-architecture
to its distributed implementation. In fact, in the sim-



plest case, ADE allows for a distribution of an other-
wise non-distributed SAS architecture (for example,
we have implemented various distributed action selec-
tion mechanisms for different robotic architectures in
ADE [8]). In more complex cases, MAS agents can have
architectural components that are themselves MAS
agents, which themselves are MAS agents, etc.

We believe that the three synergistic features de-
scribed above are only a small set of the kinds of archi-
tectural mechanisms that a combined SAS-MAS sys-
tem like ADE can potentially support. For example,
to implement a form of error recovery, we have used
the heartbeat mechanism to detect component failure,
triggering a mechanism that restarts it on the same
or a different host [3]. The substitution of one in-
stance of a component for another allows a “fixed” in-
dividual architecture to transparently take advantage
of distributed components by a simple redirection of
the request for connection.

Testing new components that should replace ex-
isting ones while the system is running is a more sub-
stantial example that relies on the three synergistic
features. This can be accomplished by limiting access
to components to authorized system maintainers and
designers, who request a second set of connections to
the requisite, shared ADE-Server s. The new compo-
nent runs simultaneously and in parallel with the old
one, taking in all the inputs of the old component, but
without having its outputs effect changes in the sys-
tem. Both components are monitored until testing has
confirmed the proper function of the new component.
The old component can then be removed and the sys-
tem dynamically reconfigured without interruption of
overall system function.

Besides identifying and implementing more syn-
ergistic features, future work with ADE will include the
development of a prototype threat detection system
similar to the one described in the introduction. The
system will employ distributed natural language pro-
cessing modules together with probabilistic inference
and evidence combination mechanisms and utilize er-
ror recovery and “self-healing” mechanisms incorpo-
rated into ADE to satisfy the demands for reliability,
security, and long-term operation of large-scale au-
tonomously operating intelligence systems.

Acknowledgements

This work was in part supported by ONR grant
#N00014-10-1-0104. Thanks to Jim Kramer for his
help with the analysis of SAS and MAS systems and
its features.

References

[1] F. Bellifemine, A. Poggi, and G. Rimassa. JADE -
a FIPA-compliant agent framework. In Proceedings
of the PAAM99 Conference, 97–108, London, April
1999.

[2] Foundations for Intelligent Physical Agents. FIPA
agent management specification (sc00023k). World
Wide Web, 2004.

[3] James Kramer and Matthias Scheutz Reflection
and Reasoning Mechanisms for Failure Detection
and Recovery in a Distributed Robotic Architec-
ture for Complex Robots In Proceedings of the
2007 IEEE International Conference on Robotics
and Automation, 3699–3704, Rome, Italy, Apirl
2007.

[4] N. R. Jennings, K. Sycara, and M. Wooldridge. A
roadmap of agent research and development. Jour-
nal of Autonomous Agents and Multi-Agent Sys-
tems, 1(1):7–38, 1998.

[5] K. Premaratne, M. N. Murthi, J. Zhang,
M. Scheutz, and P. H. Bauer. A Dempster-Shafer
theoretic conditional approach to evidence updat-
ing for fusion of hard and soft data. In Proc.
International Conference on Information Fusion
(ICIF’09), 2122–2129, Seattle, WA, July 2009.

[6] C. A. Rytting and D. Lonsdale. Integrating word-
net with nl-soar. In WordNet and other lexical re-
sources: Applications, extensions, and customiza-
tions, 162–164. North American Association for
Computational Linguistics, 2001.

[7] M. Scheutz. ADE - steps towards a distributed de-
velopment and runtime environment for complex
robotic agent architectures. Applied Artificial In-
telligence, 20(4-5), 2006.

[8] M. Scheutz and V. Andronache. Architectural
mechanisms for dynamic changes of behavior se-
lection strategies in behavior-based systems. IEEE
Transactions of System, Man, and Cybernetics
Part B: Cybernetics, 34(6), 2004.

[9] Matthias Scheutz, Paul Schermerhorn, James
Kramer, and David Anderson. First steps toward
natural human-like HRI. Autonomous Robots,
22(4):411–423, May 2007.

[10] K. Sycara, M. Paolucci, M. V. Velsen, and
J. Giampapa. The RETSINA MAS infrastruc-
ture. Autonomous Agents and Multi-Agent Sys-
tems, 7(1):29–48, 2003.


