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Introduction 
Affect, or more precisely, affective control, is wide-spread in nature. From simple homeostatic 
control, to need-based control, to simple mood-based control, to basic and complex emotional 
control, and various other forms, affective control mechanisms of varying complexity underlie all 
behavior in animals. In humans, affective states are deeply intertwined with cognition and are an 
essential part of human mentality. And affective states often play a critical role in social behavior, 
from simple displays of prowess, to sexual attraction, to aggressive encounters, to social 
attachment, and many others. The challenge for cognitive science and its various defining 
disciplines including philosophy, psychology, artificial intelligence, and neuroscience is to explain 
what affective control is, what kinds of affective control occur in nature, how affective control can 
be implemented, and how it is implemented in biological organisms – we call this the “affect 
challenge”.  

The “affect challenge” comes on the heels of much conceptual disagreement in psychology 
alone (but also in philosophy and artificial intelligence) about what affect concepts are. For 
example, the difference between moods and emotions has been explained in various non-exclusive 
ways: Ekman (1994) only sees them as differing in terms of time-scale with moods being 
longer-lasting than emotions, while for Davidson (1994) emotions bias actions while moods bias 
cognition; yet another explanation is offered by Frijda (1994) who distinguishes moods and 
emotions based on their intentionality, i.e., emotions have an object towards which they are 
directed, while moods are non-intentional states. To appreciate the extent of the disagreement, one 
does not even have to compare classes of affective states such as emotions or moods; it suffices to 
look at any of the classes itself, e.g., the class of emotions. As succinctly put by Delancey (2002, p. 
3), “there probably is no scientifically appropriate class of things referred to by our term emotion. 
Such disparate phenomena—fear, guilt, shame, melancholy, and so on—are grouped under this 
term that it is dubious that they share anything but a family resemblance.”  And, in fact, several 
authors have noted that there is not even agreement about what “basic emotions” are supposed to 
be (e.g., Ortony & Turner, 1990; Griffiths, 1997). 

The “affect” challenge is, however, not limited to understanding affect concepts and the 
functional role of affective control processes instantiating these affect concepts in agent 
architectures. It also includes giving accounts of why affect is so pervasive in nature, and thus why 
certain forms of affective control might be better than other forms of control. In fact, we believe 
that understanding the dynamics of affective control processes and their utility for controlling and 
managing an agent’s body (e.g., against the backdrop of survival and procreation) will help in 
answering many open questions about the nature of individual and social behavior. For example, 
understanding the nature of affective control will help elucidate the different ways in which 
affective and cognitive processes (such as reasoning, problem-solving, and decision-making) can 
interact. Moreover, a detailed account of affective control processes in individuals will also help to 
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explain the dynamics and regulatory roles of emotion processes in social interactions (e.g., in 
aggressive exchanges). Most importantly, the utility and limits of affective control will allow us to 
determine, at least in part, possible evolutionary pressures leading to the evolution of higher-level 
cognition. 

While we are currently a long way from being able to answer the above questions, we believe 
that it is possible to make headway on a smaller set of questions whose answers will contribute to 
making progress on the larger picture. For example, we can investigate whether the display of 
affective states will lead to better performance in cooperative tasks or better conflict resolution 
strategies in competitive tasks in multi-agent environments. We can also attempt to determine 
which affective control states will or are likely to evolve in cooperative and competitive 
multi-agent environments. And we can investigate the trade-offs between simple affective control 
and more complex deliberative control requiring representational mechanisms in the control 
architecture. 

In this chapter, we focus on the utility of affective control states for ensuring an agent’s 
survival in competitive multi-agent environments. We argue that for simple agents, simple 
affective control mechanisms can be defined that will result in high performance both in ordinary 
foraging tasks (e.g., searching for food) and in social encounters (e.g., competition for mates). As a 
result, we make the case that affective control via the transmission of simple signals can lead to 
social coordination that obviates the need for more complex forms of communication (i.e., 
symbolic communication based on systematic representational schemata). Methodologically, to 
avoid the conceptual difficulties associated with affect concepts, we will start by analyzing affect 
concepts in terms of architectural capacities of agent architectures, i.e., we explicate the 
architectural assumptions underlying a particular affect concept. Based on these architectural 
definitions, we can then define agent control architectures with mechanisms that can instantiate 
affect concepts, and we can implement these architectures in artificial agents in a simulated 
environment where agents have to perform survival tasks. Systematic experiments with these 
simulated agents and subsequent statistical analyzes of the results based on clearly defined 
performance measures then allow us to investigate the trade-offs between different architectures 
based on a variety of individual, social, and environmental factors (Scheutz, 2004c, 2004b). 

The method of performing simulation experiments in order to investigate agent properties and 
be able to make claims about their likely evolution has been termed synthetic ethology 
(MacLennan, 1991) and was originally used to study the evolution of communication in a 
multi-agent artificial simulation environment. In a similar vein, the term “synthetic psychology” 
was coined (Braitenberg, 1984) to refer to the method of designing, building, and observing the 
behavior of artificial agents (“vehicles”) in order to study psychological principles, in general, and 
the difference between observable behavior and mechanisms that bring about that behavior, in 
particular. In our study of the evolution of affect and communication, we will use a combination of 
both methodologies together with a third dimension that one could call “synthetic philosophy” – 
the method of attempting to understand and define mental concepts, in particular affect concepts, in 
terms of properties of agent architectures (and environmental processes, to the extent that they are 
part of the control loop). 

We start by introducing a very general notion of affective control, followed by a description of 
how simple affective control states can be implemented in an agent control architecture for simple 
agents performing foraging and conflict resolution tasks in a competitive multi-agent environment. 
We then summarize results from a large number of experiments we have performed over one 
decade that together provide strong evidence for the utility of simple affective control in simple 
organisms and thus the likely evolution of affective control systems. At the same time, we 
summarize results about the utility of communication showing that “representational” 
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communication (i.e., communication that uses systematic symbolic representations to encode 
meanings) is unlikely to evolve for simple organisms. 

Background 
Different forms of affective control have been been studied over the years.  Pfeifer (1988) and 
Sloman and Croucher (1981) are among the early investigations in artificial intelligence that laid 
the foundations for what is now known as “affective computing” (Picard, 1997). Researchers have 
started to study “affective” user interfaces, “believable” synthetic characters and life-like animated 
agents with emotions, affective or affect-aware instructional and virtual agents, and others (e.g., 
see Trappl, Petta, & Payr, 2001 for a more recent overview). While the motivations for the various 
research directions and their specific aims are naturally quite different (e.g., making animated 
characters more believable by endowing them with emotional facial expressions vs. understanding 
the utility of affect processes for action selection), there is a tacit assumption common to all the 
different approaches that affective control, in one form or another, can be useful for and might have 
important applications in artificial agents. We have previously compiled a list of twelve potential 
roles of emotions for artificial agents (Scheutz, 2004e): 
 

1. alarm mechanisms (e.g., fast reflex-like reactions in critical situations that interrupt other 
processes) 

2. action selection (e.g., what to do next based on the current emotional state) 

3. adaptation (e.g., short or long-term changes in behavior due to affective states) 

4. learning (e.g., affective evaluations used for reinforcement learning) 

5. motivation (e.g., creating motives as part of an emotional coping mechanism)  

6. social regulation (e.g., using emotional signals to achieve social effects) 

7. goal management (e.g., creation of new goals or reprioritization of existing ones) 

8. strategic processing (e.g., selection of different search strategies based on overall affective 
state) 

9. memory control (e.g., affective bias on memory access and retrieval as well as decay rate of 
memory items) 

10. information integration (e.g., emotional filtering of data from various information channels 
or blocking of such integration) 

11. attentional focus (e.g., selection of data to be processed based on affective evaluation) 

12. self model (e.g., affect as representations of “what a situation is like for the agent”) 

 
This list, although not intended to be exhaustive, does point to the varied functional nature of affect 
mechanisms, from architectural roles to roles in social regulation. While surprisingly little work 
has focused on investigating roles 7 through 12 (although there are exceptions, e.g., (Gratch & 
Marsella, 2004)), work on interfaces, user interactions, human-robot interactions and other 
human-computer interaction fields has focused primarily on the sixth role, social regulation. In 
artificial intelligence, most work has been concerned with the first five roles, in particular, 
attention has been given to affective or emotional action selection, both in simulated agents (e.g. 
Gadanho, 2003) and robotic agents (Murphy, Lisetti, Tardif, Irish, & Gage, 2002). Similarly, quite 
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a bit of work has investigated the utility of evaluations that are internally generated and reflect 
some aspect of the internal environment (rather than the external environment) for reinforcement 
learning (although most reinforcement learning models in artificial intelligence do not call the 
evaluations “affective”). For example, Grossberg’s general CogEM models (e.g., Grossberg & 
Schmajuk, 1987) of learning cognitive, emotional, and motor properties can account for several 
effects in Pavlovian fear conditioning (e.g., secondary conditioning or attentional blocking), but 
have not been directly applied to empirical data (e.g., data from fear conditioning studies with rats). 
Other more targeted models of the amygdala, which performs several functions in emotion 
processing, assume a dual pathway model of emotional processing and were tested in auditory fear 
conditioning and simulated lesion studies (LeDoux, 1996). There are also attempts to include 
simulated bodily processes in artificial agents, e.g., simulated hormones for emotional control 
(Cãnamero, 1997). 

One difficulty with affect models is that it is often not clearly articulated why these are models 
of affect and what particular affective states they are models of (which sometimes leads to labels of 
implemented states that are familiar from human psychology such as “surprise” when, in fact, the 
implemented state in the model is nothing like what one would consider human surprise, e.g., 
Scheutz, 2002a). Rather than leaving it up to the interpretation of the reader (and risking 
misinterpretation), we have tried to be very specific about kinds of states we were concerned with 
in our work. Specifically, in Sloman, Chrisley, & Scheutz (2005) we introduced a critical 
high-level distinction between two very different kinds of control states in an agent architecture, 
those of desire-like and belief-like states, to be able to single out a general class of states that we 
took to be what we ordinarily intend by “affective”, namely desire-like states: 

 
A desire-like state D of a system S is one whose function it is to get S to do something to 
preserve or to change the state of the world—which could include part of S (in a 
particular way dependent on D). Examples include preferences, pleasures, pains, 
evaluations, attitudes, goals, intentions, and moods. 
 

Contrast this to belief-like states: 
 

A belief-like state B of a system S is one whose function is to provide information that 
could, in combination with one or more different sorts of desire-like states, enable the 
desire-like states to fulfill their functions. Examples include beliefs (particular and 
general), percepts, memories, and fact-sensor states. 
 

Affective states, being desire-like states, are thus at the heart of what causes an organism to act, 
either to maintain a state or to change a state. Specifically, depending on whether the organism is 
trying to preserve a condition, as compared to changing it, allows us to distinguish two broad 
classes of affective states, namely positive and negative affective states. More specifically, 
 

A state P of a system S is a positively affective state if being in P or moving towards 
being in P changes the dispositions of S so as to cause processes which increase the 
likelihood of P persisting, or which tend to produce or enhance processes that bring P 
into existence or maintain the existence of P.  

 
Again, in contrast 
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A state N of a system S is a negatively affective state if being in N or moving towards 
being in N changes the dispositions of S so as to cause processes which reduce the 
likelihood of N persisting, or which tend to resist processes that bring N into existence.  

 
Given this simple conceptual apparatus, we can now define different affect concepts in terms of 
architectural mechanisms and investigate ways to implement them in agent architectures. By 
construing affect concepts as intrinsically architecture-based, it is possible to account for 
similarities and subtle differences of a great variety of affect concepts that are labeled the same in 
ordinary language and in large parts of the literature. A question like “Is system S capable of having 
fear? ” now becomes “Is system S capable of having fear16? ”, where fear16 is a “fear concept” 
specified in terms of functional capacities of an agent architecture. Such a move will not only 
eliminate ambiguities in language usage (“your agent model does not implement fear, it 
implements anxiety”), but also allow us to say when affect concepts of a particular kind are 
implemented (and can be instantiated) in an agent, as we are able to check whether the architecture 
controlling the agent supports the affect concepts specified functionally in terms of architectural 
requirements. 

In general, for us to be able to understand the nature of affective states as they occur in 
biological systems, we need to (1) what affective states are and what different kinds of affective 
states there are, (2) how and why affective mechanisms came about, and (3) what their function (if 
they have a function) is in information processing architectures. This questions can be widened 
from biological to artificial systems by adding the question (4) how affect mechanisms can be 
incorporated into agent architectures and implemented in artificial agents.  Conceptual analyses of 
affective states are mostly targeted at answering questions (1) and (3), investigations in the 
empirical sciences mostly attempt to answer questions (2) and (3). Successful implementations of 
AI models, on the other hand, which employ typically simple affective states to control the 
behavior of simulated or real agents, provide partial answers to questions (3) and (4), but do not 
answer questions (1) or (2). 

We believe that answers to these questions will likely not come forth from independent 
inquiries, but from the interplay of conceptual analyses, empirical findings and concrete 
experiments with agent architectures. The proposed research strategy, then, is to start with a notion 
of affective state that is applicable to natural systems, determine/define its function in a particular 
agent architecture, and subsequently try to explore the properties of this state for concrete agents in 
different environments with the goal of extending the notion to more complex cases. This includes 
investigating ways in which slight changes in environments can change the trade-offs between 
design options for the architecture and hence for the functional role of the affective state. Such 
explorations of “neighborhoods in design and niche space” (e.g., Sloman, 2000) will help us 
understand what the competitive advantage of a particular change in architecture or mechanism 
might be in a particular environment, and how the benefits change in slightly different 
environments. 

We now start with a more detailed illustration of how one can define agent architectures that 
can instantiate affect concepts in terms of control components and then proceed to defining specific 
architectures for biologically plausible survival tasks that we can use to answer questions about the 
evolution of affect and communication. 

Simple Affective Control 
First and foremost, we need control elements, for affect as construed above essentially deals with 
the control of agents. Secondly, the control elements need to be connected to other components in a 
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way that allows them to influence the behavior and/or behavioral dispositions of the controlled 
agent. Finally, the control loop consisting of one or more control elements, the controlled 
components and the environment needs to be such that the functional description of the affect 
concepts matches the dispositional characteristics determined by the architectural layout as well as 
the interactions of the agent with its environment. In the following, we will focus on two rough 
classes of affective states, motivational and emotional states, and construe their states in general 
control-theoretic terms. 

“Motivations” (in their most general functional description) are desire-like states in that they 
influence and bias an agent’s behavioral dispositions in such a way as to contribute to the 
realization of a state of the environment (including the agent) desired by the agent. They are caused 
by the disparity between an agent’s desire state and the state of the environment, and are 
themselves causes for actions that are intended to change the state of the environment so as to make 
it agree with the agents’ desires. Whether a state of an agent’s control system (as determined by its 
architecture) is a motivational state, then, depends essentially on the state’s causal connection to 
environmental states and its potential to influence the agent’s actions. 

By “simple motivational states” we intend to refer to motivational states that have little to no 
cognitive involvement and are primarily linked to “basic needs” of an agent (e.g., to maintain a 
certain charge level of the battery in a robot). For some of these states, the familiar term “drive” is 
appropriate, namely if the agent is driven in a mostly reactive way to act so as to eliminate the 
disparity between a desired and an actual state that was the cause for the motivational state (e.g., 
the adjustment of a homeostatic variable). For example, for a state of an agent’s control system to 
qualify as a “hunger state” (i.e., an instance of a simple motivational state), roughly speaking the 
instantiation of this state needs to be caused by lack of energy, and needs to cause, in turn, 
food-seeking behavior (e.g., Lorenz & Leyhausen, 1973; McFarland, 1981). However, not all 
drives need to be linked to a “disparity” (e.g., play drives in dogs or cats may be triggered by 
boredom and thus may not be directly linked to any homeostatic imbalance), in which case they 
will not be (entirely) driven by motivations. 

It is then possible to use outputs from gain controllers to influence motor control circuits to 
implement the kind of control system that will be able to instantiate such motivations. A “hunger 
state”, for example, could be instantiated by a proportional controller P (e.g., Özbay, 2000) in the 
following way: input to P comes from an internal sensor Se that measures the current energy level. 
P compares a set point edes (i.e., the desired energy level), to the actual energy level eact and 
scales the difference by a gain factor ge: P=ge (edes−eact). The output then is a measure of the 
urgency with which the system requires energy. Hence, the intensity of the motivation is modeled 
by the magnitude of the output of the control circuit. 

To be able to instantiate a hunger state, the controller P needs to be connected to components 
that control the agent’s effectors in such a way that a positive output can influence and bias the 
agent’s behavior towards food-seeking, where the intensity with which the agent searches for food 
depends on the magnitude of the output of P (reflecting the urgency with which food is needed). 

Similar to motivational states, “emotions”, in the most general functional description, are 
desire-like states. They, too, influence and bias an agent’s behavioral dispositions. Yet, different 
from motivational states, which are linked to a disparity between a desired and an actual state, they 
do not have to be caused by any disparity (between an actual and a desired state). Furthermore, they 
themselves can be the states that the agent does or does not desire (whereas motivational states are 
directed towards or away from what the agent desires). A “fear state”, for example, in and of itself 
is an undesirable state of an agent in that it indicates (potential) danger. As such, it causes the agent 
to behave in such a way as to prepare for or avoid the danger. Hence, while it can also be 
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motivational in the sense that it may move the agent away from the cause of fear–this is the desired 
state with respect to the motivational state instantiated by a fear state–it is also emotional as it itself 
is not a desired state (i.e., it is a negatively valenced state). A fear state with no clearly discernible 
danger present, which causes an agent to be more cautious and alert, may itself not instantiate a 
motivational state that is connected to a particular goal such as running away from a particular 
threat (i.e., a desired state of the world such as “run”). Furthermore, depending on the length of 
duration, such a state may be better construed as an instance of a mood state in that moods lack 
objects at which they are directed, contrary to emotional states (although the boundary between 
them is not clear-cut: it is not clear when exactly a fear state, i.e., something that is caused by a 
perception of a dangerous situation or object, turns into an anxiety-ridden mood-like state). 
Emotional and motivational states are, therefore, distinct, and emotional states may or may not 
instantiate motivational states.1 

A simple fear state caused by the presence of dangerous objects in the environment, for 
example, could change the agent’s behavioral dispositions in such as way as to make it keep a 
certain distance from these objects for a while. Note that, while the agent is changing its behavioral 
dispositions insofar as it is inclined to stay away from the cause of the fear, the dispositions are 
changed without making the agent achieve a particular goal (i.e., desired state), e.g., to get to an 
environment without these objects. In fact, it may be not be possible (or if possible, a bad move) to 
attempt to switch from a fear state to another (more pleasant or positively valenced) state in 
circumstances where the source of fear can either not be pinpointed or not be avoided altogether, 
and general caution over an extended period of time is a beneficial (if not the only) option. 

Again, we can use outputs from gain controllers to implement a control system that can 
instantiate an emotional state such as the above-described simple form of fear. Specifically, the 
fear state can be instantiated by a controller C, which integrates over time the frequency of 
occurrence of fear triggering conditions: input to C comes from an internal sensor Sf that is 
activated (under normal circumstances) by a fear triggering condition (e.g., the sensor outputs a 
unit impulse, Özbay, 2000). C integrates these inputs over time and outputs a signal that 
corresponds to the intensity of “fear”, hence to the degree with which the system should change its 
behavioral dispositions to be more alert, action-ready, etc. The controller could, for example, have 
the response characteristic given by g(t)=e−t to a unit impulse generated by the sensor or the 
perceptual system detecting a dangerous stimulus. 

An example of a controller for a simple fear mechanism is given by the following differential 
equation: 

 
∂Act
∂t =Sf Gsensor Act+Gdecay Act 

where Act is the current activation level of the control system, Gsensor is the gain for the sensor 
input and Gdecay is the discount value for past activations. Note that the decay here is important to 

                                                 
1 Note that we construe motivations to be directed towards a specific goal. In the case of an 
elevated “anxiety level”, as present in anxiety disorders, this kind of goal appears to be absent. 
Given that the state of anxiety itself is not desired, the agent could be viewed as “motivated” to 
change this state. If motivation is construed in this wide sense, then many emotional states may 
also be a motivational states (see also Ferguson, 1982). This does not seem to apply to all 
emotional states, however, in particular not to the kinds of states Sloman calls “tertiary 
emotions” or “perturbances” (Sloman, 1992), which could result from a loss of control of 
higher-level resource management processes in the agent’s control system. 
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allow the agent’s behavioral dispositions return to normal when there have not been any triggers of 
fear in a while. 

To be able to instantiate a fear state, the above controller C needs to be connected to 
components that control the agent’s effectors in such a way that the positive output from C can 
influence and bias the agent’s behavior towards avoiding or attempting to avoid dangerous objects, 
where the intensity with which the agent avoids or attempts to avoid these objects depends on the 
magnitude of the output of C (reflecting the agent’s level of fear). 

Biologically Plausible Affective Agents 
The examples of motivational and emotional control mechanisms in the previous section were 
purposefully kept as simple as possible, for even though there is a large number of possible, much 
more complex affective control mechanisms that can be implemented in control circuits, we are 
here only interested in the simplest of control circuits that can instantiate affect concepts. For, as 
we will argue, these simplest of all control circuits are sufficient to allow simple agents to achieve 
their basic goals (of gathering food and surviving long enough to have offspring). Specifically, we 
now define a simple biologically inspired agent architecture that allows agents to achieve high 
levels of performance in foraging and conflict resolution tasks. The former task deals with the 
search for food, the latter with conflicts that arise when two or more agents contest a resource, 
given that resources are often scarce. Both tasks take place in the context of evolutionary survival 
tasks where agents have to collect resources in able to procreate and pass on their genes. This is 
because evolution discovered affective control mechanisms in the very same context of 
competition for survival. In fact, some neuroscientists believe that affects can be considered the 
major “emotional operating systems” that are defined by genetically coded neural circuits and the 
interactions among them (Panksepp, 1992, 1998). 

We start with the basic perceptual system where a percept is viewed as generating “virtual 
forces” given by vector F. Force vectors point either in the direction of the percept or in the exact 
opposite direction depending on whether the agents perceives the object as attractive or repulsive. 
Moreover, the length |F| determines the degree to which the agent is attracted to or repelled by the 
object. For example, if the perceived object is food, the agent will be generally attracted to it, but 
the strength of attraction might depend on how badly the agent needs food (i.e., how “hungry” the 
agent is). Similarly, if the object is another agent, a predator say, then the agent is repelled by it and 
the degree of repulsion will depend on the properties of the enemy (i.e., how strong, fast, etc., it is). 
Each perceptual force vector is then scaled by the distance (typically by using 1/dn with d being 
the distance of the agent to the object and n>1 depending on the type of signal drop-off, typically 
n=2 for 3d-space or n=3 for the plane for most signals). Scaled perceptual force vectors for each 
kind of object are then summed and scaled again by a time-invariant or time-variant “gain value” to 
account for the interest the agent has in the particular modality. More formally, the overall summed 
force Ftot is given by 

 Ftot= ∑
m

 gm,φ  ∑
im=1

jm
 Fim

/d
nm
im

 

where gm,φ  is the (time-invariant or time-variant) gain value of the m-th modality possibly 
depending on φ, Fim

 is the force vector to the i-th object in modality m, dim
 is the distance of the 

agent from the i-th object in modality m, and nm is the drop-off exponent for the m-th modality. If 
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gm is a time-invariant, then the interest the agent has in modality m is the same regardless of the 
circumstances and φ is irrelevant. More often, however, gm,φ will be time-variant and thus 
depend on other factors (e.g., time, energy levels, etc.) in which case φ stands for those parameters 
that vary over time to generate different gain values. For example, it might be that φ=c/le where le 
is the energy level of the agent and the gain value indirectly depends on the energy stored in the 
agent. In that case, an agent will have higher gm,φ values when its stored energy is low and thus 
have higher interest in food (relative to the other modalities). The vector sum over all summed 
modality force vectors will then reflect this change in interest in that it will overall bias the summed 
force vector Ftot in the direction of the higher gain values, in that case the direction of food. 

The total force vector is used by the agent to determine the direction in which it should go to 
satisfy its needs. Whether or not it will end up going in that direction, however, will depend on 
additional factors, e.g., on whether it has enough energy to move there, whether there is an obstacle 
in the way, etc. The agent’s action system is the place where the final decision of what direction to 
move in is made. In the case of our simple agents, only available energy and physically possible 
motion are considered (although others are possible) to determine the speed and direction of an 
agent movement. Together, the perceptual and action system form the basic agent architecture for 
agents that can perform the foraging task. For one-resource foraging tasks, the foraging model then 
has two parameters: gm and nm for the gain and drop-off values of modality m, respectively. Each 
additional modality adds two more such parameters. And if there are time-variant gains, they might 
add more. 

When resources are scarce (food, mates, territory, etc.) and multiple agents are interested in the 
same resource, conflicts naturally arise over those resources that need to be resolved. These 
contests typically involve various displays of aggression or prowess (e.g., Lorenz, 1977; Adamo & 
Hanlon, 1996; Hofmann & Schildberger, 2001). These expressions (e.g., facial expressions, 
gestures, etc.) can be construed as signals that communicate the probability with which an animal 
will (continue to) fight, where – roughly speaking – the strength of the displayed expression is 
directly related to the likelihood that the animal will keep fighting. Hence, for the conflict 
resolution task, we add another component that can determine what an agent should do if a 
resource is contested, i.e., when two or more agents want to eat the same food source. We also 
make agents display their action tendency and allow them to perceive the action tendency of other 
agents. The conflict model consists of one parameter to determine the agent’s action tendency in a 
conflict situation: whether the agent wants to contest the resource and fight or whether the agent 
wants to move away from the resource and flee. We can express the agent’s action tendency as the 
probability to fight P(action=FIGHT) and define a variety of different conflict policies. For agents 
who ignore the display action tendencies of other agents, we can define the following policies: 

 
• Timid agents never fight: P(action=FIGHT)=0 

• Aggressive agents always fight: P(action=FIGHT)=1 

• Asocial agents play a mixed strategy: P(action=FIGHT)=p with 0<p<1 

 
Note while agents might play a fixed policy over their life-time, they could also change it based on 
circumstance, e.g., depending on whether they were able to win previous contests or on how low 
their energy level is. For example, an agent could update its policy to become “more aggressive” 
(i.e., increase P(action=FIGHT)) to be able to increase the likelihood that it will get lucky in the 
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future. We call such agents adaptive and add another parameter to the agent model that specifies 
how these agents change their policies over time. E.g., it might be possible for an agent to play the 
timid strategy until its energy level drops below a certain threshold, at which point it will start 
playing the aggressive strategy. Similarly, an agent might keep a tally of how many conflicts it has 
lost in the recent past and then increase or lower its aggression level based on how successful it was 
(e.g., mimicking what seems to happen in dominance relationships in social groups in nature). 

Since agents will always display their action tendencies and since action tendencies are 
correlated with and thus predictive of the agent’s actual choice and subsequent action (i.e., a high 
probability of fighting will often lead to “fight” decisions and outcomes), using perceived action 
tendencies to make decisions about one’s own behavior can be beneficial. Hence, we can define 
several “social policies” that take both an agent’s own and the perceived action tendencies into 
account: 

 
• Social agents play a mixed strategy that depends on both their own and the perceived action 

tendency: P(action=FIGHT)=f(ps,po) where f(ps,po) is a policy depending on the agent’s 
own (ps) and the other agent’s perceived (po) action tendencies with 0<ps,po<12 

• Rational agents play the limit-case social strategy with P(action=fight)=1 if ps>po, 
P(action=FIGHT)=0 otherwise 

 
We can also imagine that agents might play different strategies not only based on their own and 
their opponent’s (perceived) action tendencies, but also on whether they perceive the other agent to 
be of their own versus another agent kind. We will call those agents “discriminating agents” and 
allow them to use two different strategies depending on whether the contesting agent is of their 
own or another kind. Finally, we have so far assumed that agents will display their action 
tendencies truthfully, but that does not have to be the case. Hence, we will also allow for agents to 
cheat and lie with their displays about their true action tendencies. Such “liar agents” will display 
one action tendency, but act on another. E.g., an agent might display that it is maximally aggressive 
P(action=FIGHT)=1, but really play a mixed strategy P(action=FIGHT)=ps with 0<ps<1. 

The preceding foraging and conflict models combined allow agents to forage for food and 
resolve conflicts that arise in multi-agent environments when multiple agents contest the same 
resource. The final step is to add a procreation model which allows agents to have offspring. While 
models of various sophistication are possible, we only consider the simplest possible model here, 
where an agent will automatically produce an offspring asexually when its energy level is above a 
given procreation threshold. The energy for the new agent (which is less than the procreation 
threshold) will be subtracted from the parenting agent’s energy store and a new agent will appear 
close proximity to the parent agent. The child agent will inherit all parent agent’s traits, with the 
possibility of some of the traits being mutated (based on a predefined mutation rate on the trait). 
This way evolutionary processes can be defined that result from genetic adaptations over time in 
the context of the population dynamics of surviving agents. 

                                                 
2 For a possible function f that has the rational agent strategy as a limit case, see (Scheutz & 
Schermerhorn, 2004b). 
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Evidence for the Utility of Simple Affective Control 
We are now in position to use results from simulation experiments with the affective agents 
defined above to make claims about the utility of affect control mechanisms and social signaling in 
the context of biologically plausible survival and procreation tasks that contain foraging and 
conflict subtasks. Specifically, we will base our claims on the success of different agent types, and 
consequently that of their architectures, as measured in terms of the average number of surviving 
agents of a kind after a large number of agent generations to establish that an agent kind is more 
likely to evolve – this is the standard evolutionary idea of fitness, i.e., that animals from a fitter 
species are more likely to procreate and pass on their genes than animals from a less fit species, 
which in turn might lead to the extinction of the less fit species when resources are scarce. In fact, 
we have been able to demonstrate that performance evaluations that measure foraging efficiency 
can be predictive of population dynamics and even evolutionary adaptations (Scheutz & 
Schermerhorn, 2005b).3 

The general setup for all studies we will discuss below was a simulated unlimited 2D 
environment where agents have to forage for food in order to survive and procreate. Initially, 
specified numbers of agents and food sources are placed in the environment according to a given 
distribution (e.g., random, uniform, Gaussian, etc.) and then the simulation is run as a discrete-time 
simulation where, at the beginning of each simulation cycle, every agent gets to sense its 
environment and then decide on an action. All intended actions are then executed in parallel (with 
the possibility of an action failing if its enabling conditions are not given anymore). Since multiple 
agents are in the same environment and food is often scarce, conflicts over food can arise, hence 
agents have to determine whether they want to engage in a conflict over a food item or leave the 
scene (conflicts can also happen about other agents, but we are not pursuing this direction here). 
Simulations are initialized with all initial parameters fixed and then run for a certain number of 
steps or until some termination criterion is reached (e.g., no more agent is alive). Then different 
variables in the simulation environment are used for measuring agent performance (e.g., the 
number of surviving agents, the overall energy stored in agents, etc.). Performance measures are 
averaged over a set of initial conditions that are taken to be samples from a large space of initial 
conditions. The averages can then be used to perform various statistical analyses (ANOVAs, 
ANCOVAs, MANOVAs, etc.) in order to determine the dependence of performance on a set of 
control, bodily, social, and environmental parameters (e.g., Schermerhorn & Scheutz, 2006, 
2007b). Instead of reporting the details of the experimental setup together with the specific 
statistical results, we will for space reasons concentrate on higher-level summaries of our findings, 
referring the reader to the respective publications for details. This will allow us to generate a 
summary of a variety of related studies that together provide strong evidence for the claims we 
would like to advance. 

In Scheutz & Sloman (2001), we demonstrated that simple motivational agents (with 
“hunger-like” and “thirst-like” control mechanisms) are likely to evolve from basic agents under 
many environmental variations such as the distribution and influx of energy and water sources in 
the environment as well as the number and distribution of other agents and obstacles. These 
“hunger-like” and “thirst-like” states were implemented by simple feedback control circuits 
connected to agent-internal energy-level and water-level sensors and mutation was allowed to 
operate on the output of these controllers to influence the way in which the control signal was used. 
In all evolutionary runs, the control output evolved to be used to implement positive time-variant 

                                                 
3 There are, however, other measures that can be used for variants of the survival task (Scheutz 
& Schermerhorn, 2003). 
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gain values for force vectors pointing to food and water sources. Hence, the control circuit 
increased the agent’s likelihood of moving towards food or water based on its needs, thus 
warranting the labels “hunger-like” and “thirst-like”. Similarly, we demonstrated in Scheutz 
(2001) that simple “fear-like”, but not “anger-like” states are likely to evolve, where the labels 
“fear-like” and “anger-like” were warranted because the agents evolved time-variant gain values 
for force vectors pointing to other agents and obstacles, thus causing them to move either away 
from or towards other agents and/or obstacles. We also showed that some of these connections can 
be learned during an agent’s lifetime using simple associative learning mechanisms (Scheutz, 
2000). These results were replicated and extended later in more systematic studies considering 
larger environmental variations (Scheutz, 2004e, 2004a). 

We also investigated the trade-offs between simple reactive agents (with time-invariant gains), 
simple affective agents (with time-variant gains), and a third class of “deliberative” agents of 
varying complexity that were able to plan routes through the environment in order to acquire 
resources more efficiently.  We showed that very simple deliberative mechanisms do not pay off 
in terms of overall performance, especially not if relative performance is considered, i.e., 
performance where the processing cost of using architectural mechanisms is taken into account – 
note that relative performance is ultimately what matters for evolutionary considerations because 
animals will need to spend energy for building, using, and maintaining any additional control 
circuits in their brains (Scheutz, Sloman, & Logan, 2000; Scheutz & Logan, 2001; Scheutz & 
Schermerhorn, 2002). These results were replicated in a variety of experiments investigating 
foraging efficiency in multi-agent territory exploration (MATE) tasks where a group of agents 
needed to collect as many resources either as quickly as possible or until all resources were 
collected (Scheutz & Schermerhorn, 2003, 2004a, 2004b, 2005a, 2005b; Scheutz, 2004d). 
Specifically, we used MATE tasks to investigate the trade-offs among architectural mechanisms, 
sensory range, agent group size and environmental complexity. We found that complex control 
systems with (optimal or close-to-optimal) planning capabilities do not pay off in environments 
with low structure in the distribution of food sources when relative performance is considered. In 
fact, not even simple “predictive mechanisms” that attempt to anticipate which food item other 
agents are targeting lead to better relative performance in various tasks (e.g., Schermerhorn & 
Scheutz, 2007a), although they can sometimes lead to better absolute performance (Scheutz & 
Schermerhorn, 2005a). Collectively, these studies show that simple reactive agents that perform a 
“greedy” search are highly effective in foraging for food. Together with the previous results about 
the likely evolution of simple affective control states we can conclude that affective control states 
will likely evolve for foraging tasks given the low architectural cost of implementing them (e.g., 
often a simple neuron can implement time-variant gain control). The question, then, is whether 
affective social control using the simple signaling model we introduced in the previous section is 
sufficient for coordinating social groups, as compared to more sophisticated methods of 
communicating information. 

In a first attempt to investigate the utility of signaling internal states to other agents, we showed 
that taking other agents’ truthfully-displayed internal fear states into account can lead to 
significantly better performance in multi-agent foraging tasks where conflicts can arise over 
resources, as compared to groups that do not indicate their fear levels (Scheutz, 2002b). Later, we 
designed a general game-theoretic framework for conflict resolution in simple agents and showed 
that there are fair conflict resolution strategies (for a particular notion of fairness) that lead to 
Pareto-optimal behavior (Schermerhorn & Scheutz, 2003). Moreover, we showed that there were 
simple ways of implementing fair strategies based on keeping track of how often an agent won or 
lost a conflict in the past and making one-shot behavioral decisions about who should get a 
resource based on this tally, effectively playing an adaptive rational strategy. Such adaptive 
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rational agents were superior to all other social and asocial agents in terms of the number of 
surviving agents after a certain number of generations in the conflict task (Scheutz, 2004d; Scheutz 
& Schermerhorn, 2004a). When agents are allowed to cheat, however, i.e., when they can wrongly 
indicate their action tendencies, then all truth-telling strategies will suffer (Scheutz & 
Schermerhorn, 2004b), which might be a reason why affective control in nature seems to be largely 
“hard-coded” to prevent organisms from cheating. We also analyzed the interactions between 
simple non-social affective control and social control through affective displays and conflict 
resolution strategies in order to determine the trade-offs between individual and social strategies 
and found that agents could make up for suboptimal strategies in the conflict task using specific 
gain values (behavioral propensities) in their foraging control that allowed them to avoid conflicts 
more frequently (Scheutz, 2006), thus providing evidence for the utility of simple (non-social) 
affective control (in the foraging task) in the light of conflicts, also possibly providing a way for 
agents to cope with cheaters in conflict tasks. 

Discussion 
In sum, we found strong evidence that simple affective control mechanisms implemented in terms 
of feedback controllers based on internal and external sensors (e.g., energy-level sensors or action 
tendency sensors) whose outputs are used to modulate (time-variant) gain values of percept force 
vectors (e.g., food sources or other agents) lead to significantly superior performance compared to 
time-invariant gain values, and that such control circuits are likely to evolve even in the context of 
competitive multi-agent environments with limited resources. Hence, the question arises whether 
there are circumstances in which either more complex deliberative mechanisms or more complex 
forms of communication are likely to evolve. We already mentioned evidence that more complex 
deliberative mechanisms (e.g., for planning trajectories through the environment to more 
efficiently collect food sources) do not have better relative performance than the considered 
affective mechanisms, and are thus not likely to evolve for simple agents in survival tasks (with 
foraging and conflict subtasks) in environments with low structure in the distribution of food 
sources. But this does not exclude the possibility of more complex control systems evolving in 
environments with more structure or in agents with more bodily limitations such as severely 
limited sensory ranges. 

Given that more complex deliberative control systems evolved in nature, it seems clear that 
certain bodily, task, and/or environmental features must have provided enough evolutionary 
pressure for deliberative control mechanisms to evolve. For example, different from our 
simulations where food sources were stationary, it is likely that agents who need to deal with 
moving food sources (e.g., in a predator-prey scenario) will require more complex control systems 
for foraging and survival (e.g., to predict where prey is located/hiding, to anticipate the prey’s 
evasive moves in a chase, etc.). While this is clearly an important direction to pursue, it is outside 
the scope of this chapter. Rather, we will examine the question whether more complex forms of 
communication would benefit the simple kinds of agents we have defined previously, given that 
we know that different forms of communication have evolved in nature for different purposes, in 
addition to signaling action tendencies in conflict situations as discussed above (e.g., signaling 
danger, indicating readiness for mating, reporting locations of food). Especially since we know that 
humans are capable of complex symbolic forms of communication, we believe that determining 
the evolutionary pressures for different forms of communication to evolve is particularly 
interesting in light of the results about affective control systems we have reviewed so far. In fact, 
given that signaling action tendencies alone can already achieve a very high level of coordination 
and performance in simple affective agents, it is not clear whether more complex forms of 
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communication could significantly increase the performance of simple agents, especially if 
relative performance is considered. 

For one, simple signals emitted from another agent such as “I see food here” or “I am likely 
going to fight” do not require much more in terms of processing on the receiving end (a simple 
perceptual system that can determine the signal’s direction, quality and intensity is sufficient). 
Contrast such “deictic signals” (Perconti, 2002) with more complex messages of the form “Agent 
A sees food F at location X at time t”, which require a much more complex architecture because 
agent names, food types, locations and times have to be explicit decoded from the message signals 
(typically assuming a systematic generative signal system). Clearly, such architectures come at an 
additional cost (for having, maintaining, and using the additional mechanisms). Moreover, the 
costs of communicating can also be substantive; an agent that needs to send signals at regular 
intervals over a given period of time might use up a significant portion of its energy reserves, 
possibly without any benefit if no other agent can hear the signals (for a longer version of this 
argument, see Scheutz & Schermerhorn, 2008). It should be clear, then, that claims about the 
evolvability of communication, in particular those about the likelihood of communication 
evolving, need to be very specific about the forms of communication they target – encoding 
direction and distance to food sources as well as food quality requires very different (sophisticated) 
mechanisms from simply “annotating the environment” using pheromones like ants do. 

We have investigated the utility of two major forms of communication: simple signaling, as 
described before, and more complex “representational messaging” where components of a 
communicated message require systematic representations of aspects of the environment (e.g., 
locations, food types, etc.). In various simulation studies, we compared simple agents with 
time-invariant gains with and without using signals for attracting (or repelling) other agents to 
(from) food sources in MATE tasks to agents that use more complex ways of communicating the 
location of food (“representational communication”). Overall, we found that representational 
communication is often not necessary to coordinate the behaviors of multiple agents in a social 
group (Schermerhorn & Scheutz, 2006) and that simple non-communicative predictive 
mechanisms can often significantly improve agent performance (Scheutz & Schermerhorn, 
2005a), while adding representational communication to agents with and without this prediction 
mechanism does not improve the performance of the respective group. Moreover, we found that, in 
more structured environments where food occurs in clusters and communication does lead to better 
absolute performance, there is no performance difference between simple signaling and 
representational communication (Scheutz & Schermerhorn, 2008). And finally, even if the task 
complexity is increased so that multiple agents have to be at the same location in an environment at 
the same time, there are various simple non-communicative mechanisms that allow agents to 
coordinate and that lead to performance equal to, if not superior to, agents using representational 
communication (Schermerhorn & Scheutz, 2007a). 

Conclusion 
In this paper, we introduced a general notion of “affective states” that construed affect concepts as 
architecture-based concepts defined in terms of control mechanisms in agent architectures. We 
gave various examples of simple affective control states and defined several classes of simple 
affective agents for biologically plausible foraging and conflict resolution tasks in the context of a 
more general survival task. Based on the ideas of “synthetic ethology, psychology and 
philosophy”, we reviewed the results of various previous studies with simulated agents and, based 
on this evidence, arrived at the conclusion that simple affective control mechanisms are very 
effective at guaranteeing agents a high absolute and, more importantly, relative performance in the 
survival task in competitive multi-agent environments with little structure. Consequently, we can 
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claim that simple affective control states are very likely to evolve. In fact, simple affective control 
states turned out to be so efficient (in terms of the performance gains relative to the added cost of 
the control mechanisms compared to the performance of agents with time-invariant gains without 
additional costs) that the effectiveness of affective control is likely the cause for why evolution 
produced so many simple creatures that use only simple forms of signaling, if any (e.g., as 
measured in terms of the number of species or biomass). Comparatively, very few species were 
able to evolve more sophisticated control systems, including representational communication. 

At present, it is not clear how and in what circumstances these more sophisticated control 
systems paid off relative to simpler affective control systems. One possibility is that constraints 
imposed on foraging tasks allowed agents to exploit them and evolve intermediate mechanisms 
that promised immediate performance gains. For example, we were able to show recently that the 
evolution of simple memories can lead to significant performance gains in foraging tasks where 
agents have to collect food and return it to a hive (Schermerhorn & Scheutz, 2009, 2005). Once 
such memories are in place, for whatever reason, agents will be able to use them in various ways. 
For example, they might be able to form associations between events and their affective 
evaluations of those events such that agents will be able to retrieve a memory item together with its 
affective value. This, in turn, might allow them to change gain values of force vectors in a more 
independent fashion compared to the fixed, determined way in which gain values are changed 
based on internal or external sensors. At present, this is all speculation, but it should be possible, at 
least in principle (if it turns out to be technologically infeasible due to an overly large number of 
parameters), to evaluate and ideally substantiate or refute such speculations in simulation studies 
with agents whose architectural parameters are systematic in the way we have done in the past. 
Such studies will not only contribute to a better understanding of the possible space of agent 
architectures and their performances, but also to a better understanding of our own mental concepts 
and their possible functions, including their evolutionary roles and, thus, the likelihood that 
instances of them would have evolved in nature. 
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