
Virtual Machines: Non-Reductionist Bridges
between the Functional and the Physical

Matthias Scheutz

Abstract Various notions of supervenience have been proposed as a solution to
the “mind-body problem” to account for the dependence of mental states on their
realizing physical states. In this chapter, we view the mind-body problem as an
instance of the more general problem of how a virtual machine (VM) can be
implemented in other virtual or physical machines. We propose a formal framework
for defining virtual machine architectures and how they are composed of interacting
functional units. The aim is to define a rich notion of implementation that can
ultimately show how virtual machines defined in different ontologies can be related
by way of implementing one virtual machine in another virtual (or physical)
machine without requiring that the ontology in which the implemented VM is defined
be reducible to the ontology of the implementing VM.

1 Introduction

The notion of supervenience has become a major explanatory device for tackling
the mind-body problem, in particular, and for relating higher-level properties to
lower-level properties, in general. As Kim (1998, p. 9) puts it: “Supervenience
is standardly taken as a relation between two sets of properties, the supervenient
properties and their base properties” (p. 9). Especially for those who espouse non-
reductive physicalism, supervenience seems to provide a solution to the mind-
body problem: by claiming that mental properties supervene on physical properties,
the dependence of mental properties on physical properties is secured, and the
possibility of changes in the mental without changes in the physical are prevented.
At the same time, this dependence does not necessarily lead to the reduction of

Matthias Scheutz
Department of Computer Science, Tufts University, Medford, MA 02155, USA
e-mail: matthias.scheutz@tufts.edu

1

2 Virtual Machines

mental properties to physical properties, as supervenience (at least in some of its
readings) is compatible with substance dualism as well as token physicalism.

However, for “property supervenience” to be a potential candidate for a
“solution” to the mind-body problem, two crucial assumptions about mental
properties need to made: first, that mental properties are properties of physical
systems (which means that “being in pain”, for example, is a property of a particular
patch of four-dimensional space-time occupied by a creature capable of having
pain). And secondly, that the mind-body problem reduces to a problem about a
relation between mental and physical properties. Yet, it is not obvious that either
assumption is justified, since prima facie mind and brain seem to be more than a
mere collection of properties, given that psychological entities such as thoughts,
imaginations, experiences, etc. are of a very different nature from cells, chemicals,
potentials, etc. Thus, to say that the quantifiers in a psychological theory range over
the same entities as the quantifiers in a physical theory (which has to be effectively
assumed by proponents of property supervenience) seems to be a claim that at the
very least needs to be argued for.

We believe that such an argument might turn out to be very difficult, if not
impossible, and that instead of restricting the notion of supervenience to properties,
it might be more promising to talk about whole ontologies supervening on other
ontologies (see Sloman 1998). And while we certainly do not know yet how this
link is effected in the case of mind and brain, we can find paradigmatic examples of
different causally interacting ontological levels in the computer science notion of a
virtual machine, i.e., the formal specifications of computational architectures using
a particular ontology. Using the notion of virtual machines being implemented in
other virtual or physical machines, we will argue that the notion of implementation
(of a virtual machine) might elucidate non-reductive dependence in at least one way
that property supervenience cannot accomplish: A being implemented in B does not
only establish a dependence of A on B, but it also shows how, in addition to that,
A depends on B. Hence, we suggest that the notion of implementation might turn
out to be able to do more work in attempts to solve the mind-body problem or how
higher-level ontologies are realized in lower-level ontologies than any of the current
notions of (property) supervenience, for notions of supervenience can ultimately
only state the mind-problem, while the notion of implementation might be able to
solve it.

2 Supervenience and the Mind-Body Problem

The mind-body problem posed as the question “how does the mind relate to the
body?” is very general in nature. It does not per se imply anything about the
underlying ontologies, neither the mental nor the bodily. One common answer to the
above question is that the mental is determined by and dependent on the physical.
This relationship is expressed in term of supervenience, saying that the mental
supervenes on the physical. Usually supervenience is defined as a relation between

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 3

properties, but that shifts the original problem to “how do mental properties relate
to physical properties”. The so-obtained restriction, however, seems unnecessary,
if not unwarranted, unless it can be shown that the relation between mental and
physical ontologies somehow reduces to a relation between certain classes of
properties. This, however, does not seem to be the case. Fist of all, relations
cannot be completely reduced to properties (this is a well-known fact from logic).
Furthermore, even if it is possible to view some mental relations in terms of a
particular set of physical properties, the language will be unnecessarily complicated
by avoiding to talk about physical relations. Finally, the general question remains
why mental entities such as beliefs, plans, hunches, discoveries, etc. need to be
treated as “properties”. We believe that this restriction is an alleged consequence of
the physicalist ontological substance monism, which does not allow for any non-
physical entities. Alleged, because it does not apriori follow that entities have to be
automatically treated as properties of physical space-time simply because they are
physically realized/realizable. In fact, it would not make sense at all to treat numbers
as properties of physical objects. As Cantor has reminded us, numbers, qua entities,
are properties of sets, i.e., non-physical objects and as such they are not properties
of any physical space-time entity. Yet, one does not usually dispense with numbers
or sets for that matter simply because they are abstract entities (unless one is a
committed nominalist, but then there are other difficulties). So, there is at least no
apriori reason why mental entities have to be viewed as in some sense “reduced” to
properties that supervene on physical properties and can be instantiated by them. We
believe that keeping mental entities as such in our ontology does not do any harm to
the physicalist program of viewing material objects with mentality as being entirely
composed of “physical stuff”.

2.1 Types of supervenience

Several types of supervenience have been distinguished in the literature, the
most common ones being “weak supervenience”, “strong supervenience”, and
“global supervenience”.1 Whereas weak and strong supervenience apply to sets of
properties, global supervenience applies to properties of whole worlds. Fixing two
sets of properties α and β , then these notions can be defined as follows: α-properties
supervene on β -properties if and only if

(Weak supervenience) necessarily, for any mental property A∈α , if anything has
A, there exists a property B∈β it has B, and anything that has B has A.

1 There are various versions of these three notions depending on how the modalities are defined.
Furthermore, there are other kinds of supervenience, which involve relationships between patterns,
or mathematical structures, e.g. one mathematical structure modelled in another.

4 Virtual Machines

(Strong supervenience) necessarily, for any mental property A∈α , if anything has
A, there exists a property B∈β it has B, and necessarily anything that has B has
A.2

(Global supervenience) for any worlds wi and w j, if wi and w j are β -
indiscernible, then wi and w j are α-indiscernible.

While the relation between strong and weak supervenience is clearly that
of implication (i.e., strong implies weak), the relation of both kinds to
global supervenience is not all that clear. Some have argued that global and
strong supervenience are equivalent (e.g., Kim, 1984), others claim that global
supervenience is even weaker than weak supervenience (e.g., Petrie, 1987). One
of the main problems with global supervenience is that if two worlds differ at all
(even if only in the slightest respect) than their supervening properties could be
entirely different according to supervenient, which is rather counterintuitive. On the
other hand, a similar more “local” problem might arise for the two other versions
of supervenience as well. Assume that mental properties of humans supervene
on physical properties of brains, e.g., that pain supervenes of C-fiber stimulation.
Suppose D-fibers are very similar to C-fibers, in fact, they are functionally
equivalent at a neural level, but do not have certain low-level physical properties
regarding their cell structure, etc. Then D-fibers could have entirely different
supervening properties and this would be consistent with weak as well as strong
supervenience. From a functionalist point of view, however, the two kinds of fibers
should have the same supervening properties, if they have the same functionality
(at a relevant level of description). This goes to show that supervenience is not
quite sufficient for the functionalist to explain how the mental is determined by the
physical if it is possible that the same functional role could lead to different mental
properties. Consequently, none of the three versions of supervenience seem to be
sufficient to capture the functionalist view on how the mental relates to the physical,
i.e. how the mental is realized or implemented in the physical.

2.2 Relation Supervenience

There are other problems with a notion of supervenience that only considers the
relation between sets of properties. It has been argued, for example, that relational
mental properties do not supervene on properties of brains or organisms alone, but
on environmental properties in addition (e.g., see Papineau, 1995, or Heil, 1992).
While it seems that this deficiency could be remedied by adding environmental
properties, it still leaves the strange aftertaste that something important about the
relation of individual and environment is lost in such a move. But one does not
even have to include the environment to see that reducing relational properties (if
possible at all) will have unwanted side effects. One most obvious implication of

2 Note that the difference between strong and weak supervenience lies in the added necessity
operator in the last conjunct.

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 5

such a restriction is that the language used to talk about mental architectures will
be unnecessarily complicated if it has to be phrased it in terms of properties. For
example, to say that “short term memory is connected to long term memory via
recurrent excitatory connections” would translate the ternary relation “ connected
to via ” into something like the property of “having a short term memory
and a long term memory such that these memories are connected by recurrent
connections”. Of course, in the property reading it is not possible to “access” the
parts of the expression that makes up the property definition, such as “recurrent
connection”, “connected by”, “short term memory”, etc. (One would have to
introduce another property for all these terms...), hence it is not possible to state
explicitly that the property really expresses a relation. Not only is this very clumsy,
but it also not clear how many mental properties one would have to introduce to
capture all the various theoretically interesting relationships among them.

Another complicating factor is that some of these properties might not supervene
even weakly, as they might be entirely dependent on internal configurations of the
mental architecture at a given time (e.g., the recurrent memory connection might be
achieved by many different physical connections at different times, and the physical
property that gave rise to the recurrent connection at some point, might give rise to
something else at a different time).

It is not clear that all mental relations can be couched in terms of physical
properties and their relation. Take, for example, Kim’s suggestion of how to define
the supervenience of a mental relation R on set of physical properties B (Kim, 1993,
p. 161):

For any n-tuples, 〈x1, . . . ,xn〉 and 〈y1, . . . ,yn〉, if they are indiscernible in set B, then
R(x1, . . . ,xn) if and only if R(y1, . . . ,yn), where 〈x1, . . . ,xn〉 and 〈y1, . . . ,yn〉 are in
indiscernible in B just in case xi is indiscernible from yi in respect of B-properties.

As Kim notes, while this might be sufficient for relations like “taller than”, which
hold of tuples because of their “intrinsic” properties alone, it will not suffice in
general; just consider causal relations such as “earlier than” or “east of”. In the
latter case, the notion of indiscernability will have to be defined in a different way.
Kim’s suggestion for such an account of indiscernability, in case an n-ary relation R
is present in the base set, is as follows:

Two entities x and y are indiscernable with respect to R if and only if for all x1,..,xn−1 and
y1,..,yn−1, R(x,x1,..,xn−1) if and only if R(y,y1,..,yn−1) and R(x1,x,x2,..,xn−1) if and only if
R(y1,y,y2,..,yn−1) and ... and R(x1,..,xn−1,x) if and only if R(y1,..,yn−1,y).

There are, however, problems with this requirement, as Kim points out, for
suppose “we want to discuss whether a certain property P of wholes supervenes on
the properties and relations characterizing their parts. Let X and Y be two distinct
wholes with no overlapping parts, and suppose X consists of parts x1,..,xn and
Y consists of y1,..,ym. We would expect some properties of X and Y to depend
on the relationships characterizing their parts–how these parts are organized and
structured–as well as the properties of the parts. [...] What should we say about the
conditions under X and Y may be said to be “mereological indiscernible”–that is,
alike in respect of the way they are made up of parts? In a situation of this kind it

6 Virtual Machines

would be absurd to enforce [the above requirement for indiscernability]. For suppose
that a dyadic relation, R, holds for two mereological parts of X, 〈x1,x2〉; [the above
requirement for indiscernability] would require mereological indiscernability of X
and Y that some y j be related to x2! Obviously, what we want is that X and Y
be characterized by the same relational structure. [...] If x1has R to x2, the some
corresponding element of, y j, of Y must have R to an appropriate yh, not to x2.”
(Kim, 1993, p. 164)

Kim then excludes isomorphism between X and Y as too strong a condition for
mereological indiscernability, and suggests that “we may do well to work with
similarity in the subvenient base set, rather than insist on indiscernability, when
relations are present. In particular, the supervenience of the properties of wholes
might be more appropriately explained in terms of their mereological similarity
rather than their mereological indiscernability.” (Kim, 1993, p. 164). Unfortunately,
Kim then draws the conclusion that “strict relational supervenience–that is,
relational supervenience satisfying [the above requirement for indiscernability]–
may not be such a useful concept after all”, mainly because of the problems with
the above requirement for indiscernability, it seems. This, however, can be remedied,
as we will show later, by using an extension of the notion of “bisimilarity” which
underwrites the notion of implementation.

3 Virtual Machines and Virtual Machine Functionalism

In a sense, mereological supervenience is a special case of the general case of the
supervenience of one ontology on another, namely the case where “higher level
entities” can be seen as being composed of “lower level entities”. The stratified
view of our physical world is an example: molecules are made out of atoms, cells
consist of many molecules, (higher) organisms are assemblies of many cells, etc. But
while this mereological relationship seems to be generally true of “physical levels of
description” (unless one wants to count some quantum decomposition phenomena
as contradicting this claim), it is not true of all levels of descriptions, in particular,
not of so-called implementation levels, i.e., levels of abstraction at which virtual
machines are described.

The notion of “virtual machine” is prominent in cognitive science and even
more so in computer science. By “virtual machine” we mean a specification of
both an architecture and the kinds of processes that this architecture supports.
The architecture specification typically includes basic entities or “parts” and their
functional properties as well as descriptions of the various ways how these parts
can be connected. Furthermore, it includes a specification of input and output kinds
of the architecture and of operations that can be performed on them. If the virtual
machine is a computational virtual machine, then it is convenient to think of its
processes as being specified by some program, but there are also other ways of
specifying interactions of various parts.

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 7

Example 1. When we talk about SCHEME being a virtual machine, for example, we
certainly do not mean that it is indeed some sort of “machine” (in a standard sense
of “machine”)–compare this to the term “search engine”, etc. Rather, there seem to
be two parts involved, (1) the programming language SCHEME, which consists of
symbols and compositions of these symbols, and (2) the SCHEME interpreter (i.e.,
the semantics of SCHEME), which evaluates SCHEME expressions. The later is
what is considered the “virtual machine”, as it does perform an operation, namely
that of interpreting SCHEME expressions. To do this, it needs additional primitives
and objects (such as environments, etc. most of which are accessible from within
SCHEME) that allow it to store and retrieve, to evaluate and modify SCHEME
expressions, and consequently (as implied by “store and retrieve”, etc.) it needs
some sort of scratch space (“working memory”) and storage space (“long term
memory”) to operate with (tokens of) SCHEME expressions.

Virtual machine functionalism, then, is the view that all mental states (and
this includes “phenomenal states”) are states of processes of a virtual machine
and mental concepts can be understood in terms of the concepts defining the
respective virtual machine architecture. Virtual machine functionalism differs from
other functionalist accounts in that it distinguishes between structural features of an
architecture (such as its parts, the states that they can be in, and how they are related
to other parts) and the processes supported by it (e.g., all possible processes of one
subsystem and how they can influence the behavior of the processes of another
subsystem). While parts of the virtual machine are generally viewed as serving
particular functional roles in the overall architecture specification (analogous to
functionalist accounts of functional states), states of the virtual machine, i.e., states
of the processes “running on it”, are taken to instantiate mental states.

If minds are then viewed as certain kinds of virtual machines, as we suggest,
then it follows that supervenience, in order to be of any interest in addressing the
mind-body problem (or the problem of how virtual machines relate to physical
machines or other virtual machines), must be a relation between ontologies, i.e.,
it must include more than properties and relations. In particular, there will be a
complex relation between the entities and concepts used in the specification of the
supervenient virtual machine A and the entities and concepts used in the subvenient
virtual machine or physical system B: while A entities will be related to B entities
or conglomerations thereof, it might not be possible to relate A concepts to B
concepts. Put differently, while A entities are implemented or realized in B entities,
A concepts might not be reducible to B concepts. To couch this in terms of the
mind-body problem: virtual machine functionalism suggests that mental entities
are implemented in physical entities, while mental concepts are not reducible to
physical concepts. This way the dependence and determination of the supervening
virtual machine on the subvenient or implementing virtual machine is guaranteed
without being reductionist about the supervenient ontology.

Even if one does not want to subscribe to the “virtual machine functionalist”
stance on mind, the underlying notion of supervenience of an ontology is still
more basic and general than any restricted notion of property or even relation
supervenience. Any adherent of the latter notions will still have to explain why

8 Virtual Machines

“being a belief”, for example, is a property of a physical object. First of all, it
seems that “physics” prima facie does not supply the right kinds of objects that
can have beliefs. If it does, then this needs to be pointed out. Furthermore, if my
beliefs are inconsistent, for example, there does not have to be anything in the
physical world that has that property of inconsistency and also has some physical
property on which being a set of inconsistent beliefs supervenes. The burden of
proof as to why such mental entities and their properties have to be reducible to
physical properties is on the side of the adherent of property supervenience. And,
furthermore, even if this difficulty could be resolved, an even trickier issue remains:
as Kim (1993) points out at numerous places, “mind-body supervenience [...] does
not state a solution to the mind-body problem; rather it states the problem itself”
(ibid., p. 168). Rather, he believes that in order to obtain a substantive mind-body
theory the dependence underlying the mind-body property covariance needs to be
explicated and that mereological supervenience is a promising candidate. We agree
with Kim that supervenience claims alone are insufficient to explain the mind-
body dependence as they fail to show how the mind depends on the body. Any
plausible candidate mind-body theory needs to explicate and explain the relationship
between two ontologies, the mental and the physical, and one of the most promising
candidates showing how the mental can be related to the physical is the virtual
machine functionalism together with an appropriate notion of implementation.

4 Towards a Formal Specification of VM Architectures

The notion of “virtual machine architecture” or, more generally, “functional
architecture” is central to the fields of cognitive science and artificial intelligence.
It is thought to capture the basic information processing capabilities of natural or
artificial information processing systems by specifying how functional “primitives”
(or units), which cannot be explained in terms of decomposing them into smaller
functional units, are related to each other to form a network of functions, all of
which together define the information processing (and possibly cognitive) system.
One of the interesting features of functional architectures is that they offer an escape
from Ryle’s Regress (sometimes also called “the homunculus fallacy”) by using
smallest non-decomposable functional units (these units are themselves explained
by appealing to the properties of the systems implementing them).

Functional architectures can be used to explain mental states in terms of their
functional (or causal) role, which can be decomposed into simpler terms (or states)
until the smallest functional units are reached. If functionalism is right that mental
states are defined solely by their causal role, then a functional specification of a
cognitive architecture (i.e., providing a “functional architecture”) is sufficient to
study and explain mental phenomena at a certain level of description.

Some people have even linked functional specifications to defining a
programming language: “Specifying the functional architecture of a system is like
providing a manual that defines some programming language. Indeed, defining a

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 9

programming language is equivalent to specifying the functional architecture of a
virtual machine” (Pylyshyn, 1984, p. 92).

In this section, we will work towards the definition of the notion of “functional
unit”, which is intended to capture the intuition that functional architectures consist
of many different, yet connected functional parts or “subarchitectures”, each of
which can be in many different internal states. The basic idea of a “functional unit”
is that it consists of input, inner, and output states as well as a transition function
relating input and inner to output and inner states in time. Functional units will
be allowed multiple inputs and outputs along what will be called “input or output
channels”. The notion of “channel” is to be understood in the sense of Shannon
(1975) from an implementation point of view. From a logical point of view, however,
it rather corresponds to the notion of “information channel”, for example, as in
Barwise and Seligman (1998).

4.1 Functional Units

Before tackling the complex case with multiple inputs and output, however, we shall
start with the simple case of a functional unit with only one input and only one
output. In a sense, such a functional unit is nothing but a finite state automaton
without start state and final states, where transitions are labelled with a duration,
i.e., the time it takes to transit from one state to the other. We will assume a (not
necessarily finite) set Time, which comprises possible durations (e.g., “1 msec”, “2
msec”, etc.) and is closed under addition (i.e., any two durations can be added and
will yield another duration that is again in Time. Note that no assumption is made as
to how durations are specified, measured, etc. They are simply assumed to be given
in advance. Also, there are issues regarding the nature of these durations that will
not be addressed here (e.g., whether they are average durations).

Definition 1. A simple functional unit SFU is a tuple
〈〈Input〉,〈Out put〉,〈Inner〉, trans〉 where Input is the set of input states, Inner is
the set of inner state, Out put is the set of output states, and trans is the transition
function trans : Input× Inner −→ Time×Out put× Inner.

A special case is a functional unit with no inner states, where input states are
directly related to output states. Such functional units will be called “atomic” (or
“primitive” in Cummins’ terms) and will become important later as basic building
blocks in functional architectures.3

Definition 2. A simple atomic functional unit SAFU is a tuple
〈〈Input〉,〈Out put〉, trans〉 where Input is the set of input states, Out put is
the set of output states, and trans : Input −→Time×Out put the function mapping
inputs to durations and outputs.

3 Ideally, a functional specification should be able to reduce the overall functional architecture to
atomic functional units and their connections.

10 Virtual Machines

Obviously, a simple atomic functional unit is a functional unit in the sense that it
can be written as 〈Input,Out put,�, trans′〉, where trans′= {〈〈a〉,〈t,b〉〉|〈a,〈t,b〉〉 ∈
trans}.

Everything said so far can be extended to functional units that have multiple input
and multiple output channels. Instead of talking about “the input set” or “the output
set”, we simply consider finite sequences of such sets.

Definition 3. A functional unit FU is a tuple 〈Input,Out put, Inner, trans〉 where
Input is a finite sequence (denoted as tuple) of sets of input states, Inner a finite
sequence of sets of inner states, Out put a finite sequence of sets of output states,
and trans is the transition function defined on sequences of sets as trans : Input×
Inner −→ Time×Out put× Inner.

An atomic functional unit AFU is a tuple 〈Input,Out put, trans〉 where Input
is a finite sequence of input states, Out put is a finite sequence of output states, and
trans : Input −→Time×Out put the function mapping input sequences to durations
and output sequences.

Note that this definition is very similar to what Chalmers’ (1996) has called
“combinatorial state automaton” (or CSA, for short). One minor difference is that
CSAs can be infinite in that they can have an infinite sequence of inner states,
which functional units cannot have. Another more important difference is that
they incorporate the duration of their state transitions explicitly (and thus timing
constraints implicitly).

Eventually we want to start building functional units from atomic functional
units, i.e., from units of which we only know the IO-function, but where no inner
states or state descriptions are available.4 In this case, the connecting states, i.e., the
output states of the first and input states of the second atomic functional unit will
become the “inner states” of the new functional unit obtained by composition.

4.2 Composition of Functional Units

The next step is to use functional units to build more complex functional units.
This can be achieved by connecting output channels of one functional unit to input
channels of another (or possibly the same) functional unit. This connection will be
effected by a “transducer function”, which maps all possible values of an output
channel in a 1-1 correspondence onto all possible values of an input channel.

Definition 4 (Composition of Functional Units). Let FU1 and FU2 be two
functional units (not necessarily distinct) and let Out putFU1(i) be the set of values
of the i-th output channel of FU1 and InputFU2(j) the set of values of the j-th input
channel of FU2. Then a bijective function f from Out putFU1(i) to InputFU2(j) is
called an “i,j-transducer” from FU1 to FU2. We then say that two functional units

4 Note that this does not imply that the unit does not have internal states of any internal structure,
only that we do not know what the details of its inner states or internal structure.

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 11

FU1 and FU2 are i,j-composable if there is an i,j-transducer from FU1 to FU2. And
two functional units are said to be composable if they are i,j-composable for some
i and j.

Transducers play an important role in connecting functional units; yet, they are
mathematical constructions, and in the implementation of functional units links
between units might have to be effected by a physical transducer. Hence, there are
at least three different readings of “exists a bijection f”: the general mathematical
sense, the physical sense, and the practical sense, corresponding to three notions of
possibility, the logical, physical, and feasible. For now, we will focus solely on the
mathematical reading.

Merely connecting some input and output channels of functional units is not
sufficient if we want to look at the resultant unit as a functional unit itself (as we
have not defined what the “inner states” of the newly obtained unit are supposed to
be). The idea then is to use a “product” of the inner states of both functional units in
the sense that the new functional unit can at most have n ·m different inner states, if
the the first FU has n inner states and the second m.

Definition 5. Let FU1 and FU2 be two i,j-composable functional units and let f be
an i,j-transducer from FU1 to FU2. Then the f-composition of FU1 and FU2 is the
tuple 〈InputFU1 ,Out putFU2 , InnerFU1 × InnerFU2 , trans〉 where trans is the relation
defined as the set of all tuples 〈〈in1,〈s1,s2〉〉,〈t,out2,〈s′1,s′2〉〉〉 such that

1. in1 ∈ InputFU1
2. out2 ∈ Out putFU2
3. 〈〈in1,s1〉,〈t1,out1,s′1〉〉 ∈ transFU1 for some t1
4. 〈〈in2,s2〉,〈t2,out2,s′2〉〉 ∈ transFU2 for some t2
5. f (out(i)1) = in(j)2
6. t = t1 + t25

The way the above definition stands is not quite satisfactory. First of all, it is
not clear what is going to happen with the outputs of the first functional units that
are not connected to any inputs of the second, and vice versa with the inputs of the
second unit that are not connected to any outputs of the first. Are they not used? One
way to remedy this is to add the remaining input channels of the second to the input
channels of the first, and to do the same for the output channels. However, this might
lead to unwanted effects because of the time difference at which the input signals
arrive at the second functional unit: the inputs that go through the first functional
unit are by a factor of t1 delayed as opposed to the ones that go directly to the
second unit, and thus the overall output might be different from a scenario, in which
the corresponding inputs are all applied at the same time to the second unit (e.g., by
adding a delay units to all the input channels of the second functional unit that are
not connected to outputs of the first functional unit, and to all output channels of the

5 This is the overall duration between any input and the propagated effect through the one
connected line to any output.

12 Virtual Machines

first that are not connected to input channels of the second, as the output channels
of the second functional unit are delayed by a factor of t2).

By adding all input lines and all output lines, we arrive at the definition of a
complete f-composition:

Definition 6 (Complete f-composition). Let FU1 and FU2 be two i,j-composable
functional units and let f be an i,j-transducer from FU1 to FU2. Furthermore, let
Input be the concatenation of the sequences InputFU1 and InputFU2/ j (which is
the sequence reduced by the j-th component) and Out put be the concatenation
of the sequences Out putFU1/i (the sequence reduced by the i-th component) and
Out putFU2 .

Then the complete f-composition FU1 ⇒ f FU2 of FU1 and FU2 is the tuple
〈Input,Out put, InnerFU1 × InnerFU2 , trans〉 where trans is the relation defined as
the set of all tuples 〈〈in1,〈s1,s2〉〉,〈t,out2,〈s′1,s′2〉〉〉 such that

1. in1 ∈ Input
2. out2 ∈ Out put
3. 〈〈in1,s1〉,〈t1,out1,s′1〉〉 ∈ transFU1 for some t1
4. 〈〈in2,s2〉,〈t2,out2,s′2〉〉 ∈ transFU2 for some t2
5. f (out(i)1) = in(j)2
6. t = t1 for in1 ∈ InputFU1
7. t = t2 for in1 ∈ InputFU2/ j

As a corollary we get that both ways of combining functional units result in
new functional units (the only difference being that some of the input and output
channels are not available if the combination is not complete).

Corollary 1. The (complete) f-composition of two f-composable functional units is
a functional unit.

Proof. Let FU1 ⇒ f FU2 be the (complete) f-composition of two i,j-composable
functional units FU1 and FU2 and let f be an i-j-transducer from FU1 to
FU2. Obviously, InputFU1⇒ f FU2 InnerFU1⇒ f FU2 and Out putFU1⇒ f FU2 are sets as
required; to see that transFU1⇒ f FU2 is of the right kind, observe that each tuple
is of the form 〈〈in,〈s1,s2〉〉,〈t,out,〈s′1,s′2〉〉〉, where 〈s1,s2〉 and 〈s′1,s′2〉 are in
InnerFU1⇒ f FU2 (as InnerFU1⇒ f FU2 is defined on Inner1 × Inner2) and t ∈ Time
given that Time is closed under addition.

So f-composition can be used to create more complex functional units from
simpler ones. Note that timing (as mediated by “duration”) plays a crucial role in
constructing more complex functional units: without the explicit duration parameter
it would not be possible to distinguish circuits that can be distinguished now (e.g.,
and XOR gate with a self-feedback loop).

Example 2. Suppose we are given the two functional units
FU1 = {〈{b}〉,〈{c}〉,〈{S}〉,{〈〈b,S〉,〈15,c,S〉〉}}, and FU2 =
{〈{a}〉,〈{e,o}〉,〈{O,E}〉,{〈〈a,E〉,〈10,o,O〉〉,〈〈a,O〉,〈10,e,E〉〉}} and the

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 13

function f = {〈c,a〉} (Time is the set of positive integers). . Observe
that both units are 1,1-composable and that f is a 1,1-transducer from
FU1 to FU2. Hence, the complete f-composition is FU1 ⇒ FU2 =
{{b},{e,o},{〈S,E〉,〈S,O〉},{〈〈b,〈S,E〉〉,〈25,o,〈S,O〉〉〉,〈〈b,〈S,O〉〉,〈25,e,〈S,E〉〉〉}}.

We also introduce another way of combining functional units which, different
from the above combination, explicitly introduces a new internal state, namely the
state of connection between the functional units as effected by the transducer. We
will shall call “(complete) f-extension” to indicate that a new internal state was
added to the functional unit.6

Definition 7 (Complete f-extension). Let FU1 and FU2 be two i,j-composable
functional units and let f be an i,j-transducer from FU1 to FU2. Furthermore, let
Input be the concatenation of the sequences InputFU1 and InputFU2/ j (which is
the sequence reduced by the j-th component) and Out put be the concatenation
of the sequences Out putFU1/i (the sequence reduced by the i-th component) and
Out putFU2 .

Then the complete f-extension FU1 ⇒+
f FU2 of FU1 and FU2 is the tuple

〈Input,Out put, InnerFU1 × f × InnerFU2 , trans〉 where trans is the relation defined
as the set of all tuples 〈〈in1,〈s1,n,s2〉〉,〈t,out2,〈s′1,n′,s′2〉〉〉 such that

1. in1 ∈ Input
2. out2 ∈ Out put
3. 〈〈in1,s1〉,〈t1,out1,s′1〉〉 ∈ transFU1 for some t1
4. 〈〈in2,s2〉,〈t2,out2,s′2〉〉 ∈ transFU2 for some t2
5. n,n′ ∈ f (out1(i)) = in2(j)
6. t = t1 for in1 ∈ InputFU1
7. t = t2 for in1 ∈ InputFU2/ j

4.3 Functional Architectures and their Realization

Now that we have a way for functional units to be composed and extended, we also
need to define a criterion for when we consider them “functionally equivalent”, i.e.,
when they produce the same input-output mappings for all input patterns and times.
Moreover, since we are interested in internal states as well, we want to have a way
of distinguishing functionally equivalent units that also have, in some sense, the
same internal states from those that might have a different internal state structure.
This is, for example, important for the kinds of higher-level internal states that such
a functional unit might realize (e.g., which mental states a particular functional
architecture can instantiate). The idea here is based on Scheutz 2001 where we
consider to computational systems the same if the internal states can be related
through “bisimulation”. Here we adapt the notion of bisimulation to functional units:

6 Note that we can get an “incomplete” extension the same we got an incomplete composition by
ignoring the input states of the second unit and the output states of the first that are not connected.

14 Virtual Machines

Definition 8 (Bisimulation between Functional Units). Let FU1 =
〈Input,Out put, Inner1, trans1〉 and FU2 = 〈Input,Out put, Inner2, trans2〉 be
two functional units where Input and Out put are two finite sequences of sets
of input and output states, respectively, Inner1 and Inner2 are two sequences of
sets of inner states, and trans1 and trans2 are the transition functions defined on
sequences of sets as trans1 : Input × Inner1 −→ Time× Out put × Inner1 and
trans2 : Input× Inner2 −→ Time×Out put× Inner2. The two functional units are
said to be bisimilar if there exists a non-empty relation R (called “bisimulation”)
defined on Inner1× Inner2 such that the following four conditions hold:

1. If 〈s1,s2〉 ∈ R and 〈〈i,s1〉,〈t,o,s′1〉〉 ∈ trans1), then there exists s′2 ∈ Inner2 such
that 〈s′1,s′2〉 ∈ R and 〈〈i,s2〉,〈t,o,s′2〉〉 ∈ trans2)

2. If 〈s1,s2〉 ∈ R and 〈〈i,s2〉,〈t,o,s′2〉〉 ∈ trans2), then there exists s′1 ∈ Inner1 such
that 〈s′1,s′2〉 ∈ R and 〈〈i,s1〉,〈t,o,s′1〉〉 ∈ trans1)

3. For every s1 ∈ Inner1 there exists a s2 ∈ Inner2 such that 〈s1,s2〉 ∈ R
4. For every s2 ∈ Inner2 there exists a s1 ∈ Inner1 such that 〈s1,s2〉 ∈ R

The bisimulation relation bins internal states in each functional unit and relates
them such that “redundant” but different internal states are grouped together (into
equivalence classes where each state in a class is, from the perspective of the
bisimulation relation, indistinguishable from the other members). As a corollary we
get that there is a smallest bisimilar functional unit which has the minimal number
of internal states necessary to effect the requisite input-output mapping given the
internal state structure (compare this to the notion of characteristic automaton in
Scheutz 2001).

As mentioned in the beginning, functional architectures are made up of
functional units (simple or complex), each of which serves a (causal) role in the
overall architecture:

Definition 9 (Functional Architecture). A functional architecture is a tuple
〈Arch,Parts,Labels〉 where Arch is a (usually composite) functional unit, Parts is a
finite set of functional units which are components of Arch (in that they, if composed
appropriately, will become bisimilar to Arch), and Label is a function assigning each
functional unit in Parts a unique label (which can be used, for example, to describe
the causal role of the labeled part; or it could be labeled with a predicate expressing
the mental property realized by the part, etc.).7

Note that Parts can be empty (in case Arch is not made up of any components,
i.e., if it is an atomic functional unit), or it may contain different kinds of functional
units. If it contains only simple atomic functional units, then the advantage is that
all “inner states” in Arch can be explained as and arise from connections between
units in Parts. Even if a functional architecture is not specified by virtue of only
simple functional units (without inner states), it is always possible to decompose

7 Cp. this with Copeland’s 1996 notion of architecture, which is based on the idea that one can
label parts of a physical system, and with Gandy 1980, who uses hereditarily finite sets to form
such hierarchies of parts of systems.

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 15

any functional architecture into atomic functional units, i.e., the given architecture
can be specified by an equivalent architecture such that the set Parts consists solely
of atomic functional units (this requires a straight-forward extension of the notion of
bisimulation between two functional units to functional architectures such that the
two Arch functional units are to be bisimilar, but not necessarily the functional units
in Parts). This is argument is supported by the following decomposition theorem:

Theorem 1 (Decomposition). Every functional unit with inner states can be
decomposed into atomic functional units without inner states.

Proof (Sketch). Let FU be the functional unit given by 〈Input,Out put, Inner, trans〉
where Input is a finite sequence of sets of input states, Inner is a finite sequence of
sets of inner states, Out put is a finite sequence of sets of output states, and trans
is the transition function defined on sequences of sets as trans : Input× Inner −→
Time×Out put × Inner. Then define two i,j-composable atomic functional units
AFU1 = 〈Input ∪ Inner, Inner∪ Inner, trans1〉 – the “state updater” – and AFU2 =
〈Input ∪ Inner,Out put, trans2〉 – the “output producer” – where trans1 : Input ×
Inner −→Time×Inner× Inner and trans2 : Input× Inner −→Time×Out put such
that 〈〈in, innerm〉,〈t, innern, innern〉〉 ∈ trans1 and 〈〈in, innerm〉,〈t,out〉〉 ∈ trans2
iff 〈〈in, innerm〉, innern,out〉 ∈ trans. First, we recursively produce a new atomic
functional unit FU ′1 = 〈Input,Out put, trans〉 by recursively connecting all output
lines for one set of inner states to the input lines for inner states using the identity
function as a transducer (this functional unit now maps input states onto inner states
of FU). Then recursive i,i-composition of the i-th output line from FU ′1 with the
corresponding i-th input line for inner states for FU2 for all i output lines of FU1
(leaving only input lines for Input states in FU2) eventually leads to a functional unit
that is bisimilar to FU . Finally, to use a new functional “split” unit which performs
the function split(X) = 〈X ,X〉 for all inputs sequences X , to duplicate the set of
input channels in two and connect one set of output channels to FU ′1, and the other
to FU2.

It then follows that every functional architecture has an equivalent functional
architecture consisting of only atomic functional units as parts and all internal states
are the states on the connection lines. This is important because we already have
a formal criterion for what it means to realize atomic functional units in something
physical, say, based on the notion of “realization of a function” developed in Scheutz
1999:

Definition 10 (Realization of Atomic Functional Unit). An atomic functional
unit AFU = 〈Input,Out put, trans〉 with a finite sequence of input states Input,
a finite sequence of output states Out put, and a state transition function
trans : Input −→Time×Out put mapping input sequences to durations and output
sequences is realized by a physical system S (describable in a theory P) if and only
if the following conditions hold:

16 Virtual Machines

1. There exists a (syntactic) isomorphic mapping I from the “input domain” of S to
Input8

2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S
to Out put

3. There exists a function F that describes the physical property (=behavior) of S for
the given input-output properties (i.e., F is a mapping from the “input domain”
of S to its “output domain” described in the language and by the laws of P) such
that for all x ∈ Input, O(F(I−1(x))) = trans(x) ∈ Out put.

Given that we know what it means to realize the atomic functional units, we can
provide at least one way to realize any functional unit by simply using the same
construction as in the Decomposition Theorem and applying the above definition to
the two decomposed units. And, as a result, we also can postulate at least one way
of realizing a whole functional architecture, by realizing its Arch functional unit
(according to the above definition), and by ensuring that the same physical system
also realizes all atomic functional units. Of course, the “better way” of realizing
a functional architecture in a physical system (or another functional architecture)
is to ensure that all atomic functional units are realized in (distinct) parts of the
physical system and that those physical parts are connected in the same way (i.e.,
the connection graphs among realized units in the two architectures are isomorphic)
that the atomic functional units are connected to give rise to the whole functional
architecture. This requires us also to check that the inputs and outputs of all
connected physical parts match up (otherwise physical transducers will have to be
introduced to ensure that parts can be connected properly). Moreover, we also have
to pay attention to meet the timing constraints imposed by the parts of the functional
architecture in the physical system (as different transition times might give rise to
different functional systems). Note that the above construction not only works for
physical systems, but also for other virtual machine architectures, thus allowing us
to define a very general notion of one virtual machine being implemented in another
virtual machine.

5 Discussion

The above sketch of how one could define a general notion of implementing one
virtual machine in another by way of showing how their functional architectures
can be related is, of course, only a start. For one, the notion of virtual machine
used in the above discussion was very informal, and we attempted to make it more
formal by introducing the notion of a functional unit as constituent part of a virtual
machine. However, in this discussion, we glossed over the ontological status of input
and output states, i.e., what kinds of entities those ranged over. For example, the
inputs to one functional unit might be chess pieces, while the inputs and outputs

8 See Scheutz 1999 about the “qualifier “syntactic isomorphism” (for all practical purposes we can
simply consider it here an isomorphic mapping).

Virtual Machines: Non-Reductionist Bridges between the Functional and the Physical 17

to another might be polygons or words. As a result, there is an important open
problem left to tackle, namely how to map entities onto each other when they do
not belong to the same domain (e.g., real numbers). What is needed, effectively, is
a theory of transduction and encoding that shows how entities of one kind can be
obtained by putting together structures of entities of another kind (e.g., see Pollock
(2008) for a promising approach). For example, in word processors implemented
in von Neumann machines, words are made out of sequences of letters encoded
in 7-bit binary ASCII binary codes. If one input line in a component of the word
processing VM can hold any word (of at most 15 letters, say), this line would have to
be mapped on 15*7 binary input lines in the implementing VM. Similarly, we might
be able to encode some entities not only in terms of spatially separate codes, but
temporally (e.g., in the sequential way the Morse code is realized). All of this will
require more fleshing out of details in the above definitions to allow for more general
mappings between different ontological entities. However, the overall structure of
the relationship between components of an architecture, their connections, and the
implementing structures will overall remain the same. I.e., the higher-level VM that
is to be implemented in a lower-level VM will be defined by its architecture that
either can or cannot be realized, in the above sense, in the architecture of the lower-
level VM. As a result, the notion of implementation of virtual machines in other
virtual or physical machines shows one way in which whole ontologies could be
related, assuming that the problem of relating and encoding higher-level into lower-
level entities can be defined in general enough terms (the details of this definition
have to be left for another occasion). This also entails that any relation defined in
terms of the states of connections among atomic functional units realized in one
virtual machine are also realized in the implementing virtual machine. Moreover,
the mapping of VM parts of the higher-level VM onto VM parts in the lower-level
VM shows how the relation is realized. But note that the mapping does not mean
that the concepts – the intensions – associated with those entities and relations can
be reduced. In other words, VM implementation provides a way of showing how
higher-level entities can be encoded in, made out of, or related to possibly complex
structures of low-level entities without forcing one to equate or identify higher-
level entities with those realizing structures, thus providing non-reductive bridges
that preserve the conceptual autonomy of higher-level concepts in the ontology
without having to subscribe to spooky metaphysical theories (such as various forms
of dualism) in order to explain the dependence of higher-level on lower-level virtual
machines.

Acknowledgments

This paper would not have been possible without the many discussions with Aaron
Sloman the author was fortunate to have over the years, although Aaron is by no
means to blame for any errors or potential problems with the specific content.

18 Virtual Machines

References

Copeland J (1996) What is Computation? Synthese 108:335–359
Kim J (1984) Concepts of Supervenience. Philosophy and Phenomelogical Research

14:153–176
Kim J (1993) Supervenience and Mind: Selected philosophical essays. Cambridge

University Press, Cambridge
Kim J (1998) Mind in a Physical World. MIT Press, Cambridge, Mass
Papineau D (1995) Arguments for supervenience and physical realization. In:

Savellos E, Yalcin U (eds) Supervenience, Cambridge University Press,
Cambridge

Petria B (1987) Global Supervenience and Reduction. Philosophy and Phenomel-
ogical Research 48:119–130

Pollock J (2008) What Am I? Virtual Machines and the Mind/Body Problem.
Philosophy and Phenomelogical Research 76:237–309

Pylyshyn Z (1984) Computation and Cognition. MIT Press, Cambridge
Scheutz M (1999) When Physical Systems Realize Functions... Minds and

Machines 9:161–196
Scheutz M (2001) Causal vs. Computational Complexity? Minds and Machines

11:534–566
Sloman A (1998) Supervenience and implementation. Technical Report, School of

Computer Science, University of Birmingham.

