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Abstract—Combining robotic architectures with cyber systems
has enormous potential for future robotic applications because
it enables the possibility of online sharing of all aspects of the
robotic architecture: the knowledge contained in architectural
components, the parameterization of these components, the very
component algorithms, as well as the architectural layout. In
this paper, we discuss the potential of using cyber systems
for knowledge sharing and use among multiple robots. We
isolate functional requirements for the robotic middleware to
enable such knowledge sharing, briefly discuss our own first
steps in developing such a system, and show a proof-of-concept
demonstration where two robots share and immediately use a
new capability acquired through one-shot learning.

I. INTRODUCTION

Researchers in artificial intelligence and robotics have for
quite some time advanced ambitious agendas of developing
data-driven learning algorithms for robotic systems that allow
robots to acquire new knowledge, from perceptual learning
(such as object learning or SLAM), to skill learning (such
as reinforcement learning of behaviors and learning from
instruction), to policy-based learning (e.g., of decision policies,
etc.). The tacit assumptions behind these data driven efforts are
that (1) much of the knowledge required for a well-functioning
robotic system can be learned from available data and does not
have to be designed by hand, and (2) as robots are becoming
more complex, providing “engineered” knowledge is becoming
increasingly difficult, time-consuming, and error-prone.

In addition to data-driven approaches that exploit statistical
information in large data sets, recent knowledge-based efforts
have focused on “one-shot” learning (i.e., the ability to learn
something new from one exemplar alone utilizing prior knowl-
edge and contextual information). For example, a robot could
learn how to perform a new action or rule from observation,
or it could be instructed in natural language how to perform it
[1]. The main advantages of one-shot learning over statistical
approaches are that no large data sets are required as teaching
input, that learning is typically much faster and can often be
performed during task execution.

Both data-driven and knowledge-based learning paradigms
have almost exclusively focused on learning in individual
robots (even when these learning approaches were part of
a multi-robot setup). Yet, learning in robots overall could

be significantly accelerated and improved if robots had the
ability to share any learned information anytime anywhere.
In this paper, we show how in particular one-shot learning
in conjunction with the ability to share learned knowledge
can lead to massive parallel robot learning at unprecedented
speeds.

We start by proving the motivation for sharing knowledge
in the context of robot learning and point to its potential for
future robotic systems. Next we discuss the architectural and
infrastructure requirements for robotic systems to be able to
systematically share and use any type of knowledge at any
point in time during their operation. We also briefly introduce
our ADE infrastructure which provides the necessary capabili-
ties for online knowledge sharing and use for robotic systems.
We then demonstrate in a one-shot learning example with
two robots how the ADE infrastructure allows for immediate
online knowledge sharing and use. The subsequent discussion
section elaborates on the potential of this approach for future
robotic applicatoins and the conclusion summarize the ideas of
combining learning with knowledge sharing for future robots.

II. MOTIVATION

Ubiquitous access to “the grid” (i.e., online computational
resources) paired with the availability of massive and diverse
data sets “in the cloud” is increasingly transforming research
in science and engineering, allowing for hitherto unimaginable
forms of scientific discovery. Not surprisingly, these massively
parallel distributed cyber systems that can run powerful data
mining and machine learning algorithms on large data sets
are becoming a major enabling factor for developing more
complex robotic systems. Advanced learning algorithms have
been employed on large image and movies databases for
learning about objects, scenes and activities, or on large
natural language corpora for learning various aspects about
natural language (from part-of-speech tagging, to parsing and
semantics, concepts, etc.). And recent demonstrations of AI
systems such as IBM’s Watson only hint at the potential of
large data sets combined with the right kinds of learning and
search algorithm.

In fact, to the extent that data is or will be available,
almost every knowledge-based aspect of a robotic system
could be learned from “big data”: perceivable objects and their



properties from large image data bases such as Flickr; words,
concepts, and facts from large corpora and online linguistic
resources such as WordNet, VerbNet, ConceptNet, OpenCyc,
and others; actions, activities, and events from online videos
(such as YouTube); norms, etiquette, and other aspects of
human social exchanges from online fora, blogs, Twitter, etc.
And the available data can be analyzed in many different
ways, from using classifiers to extract categorical information,
to finding relations among data items, higher-level rules for
generative processes, and others. Even the different ways of
how things could be learned can be learned from online
information. Critically, several aspects of the grid-based or
cloud-based cyber systems make them perfect resources for
robots and thus “extensions” of the robotic architecture:

• Data storage: Data does not have the be stored locally
on robots, hence it is not subject to the local storage
limitations onboard robotic platforms; moreover, the
same data can be shared among many robotic agents
(rather than replicated locally)

• Processing resources: Processing does not have to
be performed on the robot’s local CPUs, hence is
again not subject the onboard processing limitations
of robotic systems; rather, processing-intense compu-
tations can be shared among many robots

• Data acquisition: Data can be acquired and processed
in parallel, thus allowing robots to utilize data acquired
by other robots instead of having to acquire the data
themselves; shared data acquisition thus enables to
massively parallel collaborative learning among many
agents

Note that in addition to providing data storage, processing
resources, and an infrastructure for shared data acquisition,
the cyber system addresses critical architectural limitations of
robotic architectures: scalability (of storage and processing
resources) and availability (of access to the cyber system,
its data and processing resources). As a result, designers of
robotic systems that can utilize cyber systems would not have
to worry about questions of access control, concurrency, fault-
tolerance, networking, and data backup, all of which are han-
dled by the cyber system. For robotic architectures would not
need to maintain storage-intensive long-term memories locally,
nor would they have to use local computational resources
for operating on those memories (e.g., for indexing them,
for search and retrieval, etc.). Rather, local computational
resources on robots could be solely used for operating the
robotic platform (taking in perceptions, performing actions,
maintaining short-term memories, managing goals, interacting
with humans, etc.). Frequently used long-term items could
simply be transferred from the cyber system to the local
system as needed (e.g., similar to the caching mechanisms
for paged virtual memory systems in computers); all other
long-term knowledge items could reside in the cyber system,
and many computational expensive processes such as planning,
reasoning, problem-solving, etc. could occur in the cyber
system as well (often times in parallel).

The advantages of such a setting are manifold, but the
two most critical advantages are knowledge preservation in the
light of robotic failures and knowledge seeding for initializing
new robots: given that all relevant information will always be

stored in a typically distributed fashion in the cyber system,
little to no knowledge will be lost when an individual robot
breaks; and new robots coming online can download and
immediately utilize the knowledge built up by their cohort
(assuming that the knowledge is represented in a way that
allows a robot to utilize it immediately – we will come
back to this point later). The cyber system thus will enable
machines to acquire new knowledge and skills at completely
unprecedented rates, as every robot that learns anything new at
all can potentially contribute this knowledge to the collective
knowledge stored in the cyber system. And different from
humans who, even if this knowledge is available, cannot
immediately use it (e.g., because the knowledge is stored in
the form of linguistic descriptions that have to be read and
understood first), it is possible to develop mechanisms for a
robotic architecture that will remove any functional difference
from the robot’s operating perspective between knowledge
stored and processed locally on the robot and knowledge stored
and processed in the cyber system.

III. BACKGROUND AND RELATED WORK

Several recent projects have started to investigate ways of
utilizing cyber systems for robotics. For example, the EU-
funded RoboEarth project1 was initiated by a multidisciplinary
partnership of robotics researchers from academia and industry
with the goals to

• create and execute action recipes

• integrate localization and mapping

• perform 3D sensing

• learning control

• track objects dynamically

• mine data from RoboEarth past data

The project aims to show that “connection to a networked
information repository greatly speeds up the learning and adap-
tation process that allows robotic systems to perform complex
tasks” and that “a system connected to such a repository will
be capable of autonomously carrying out useful tasks that were
not explicitly planned for at design time”.

Specific conceptual suggestions have been made for “cloud
robotic architectures” [2] that would allow for ad-hoc “cloud
networks” among multiple robots with peer-to-peer connec-
tions as well as connections between robots and existing cyber
systems. The focus, however, was mostly on the challenges
involved in the networking infrastructure.

Other work has successfully demonstrated robot learning
through written instructions utilizing freely available online
information. Nyga and Beetz, for example, demonstrated how a
robot could learn to follow recipes written in natural language
on wikihow.com. The robot used of a variety of online re-
sources including the WordNet lexical database, the FrameNet
action database, the Stanford Parser and wikihow.com, as well
as Amazon Mechanical Turk for acquiring labels [3].

The KeJia project has also made progress in allowing
robots to learn from written natural-language data [4]; when

1See http://www.robotearth.org/.



the OK-KeJia robot detects a gap in its knowledge base
(whether conceptual, procedural or functional), it attempts to
acquire openly available information to fill the gap (e.g., from
the OMICS database).

However, there is currently no project that has demon-
strated how multiple robots by way of utilizing cyber sys-
tems can share and use knowledge, in particular, knowledge
acquired through one-shot learning during task execution in
the way described here.

IV. INTEGRATING ROBOTIC ARCHITECTURES WITH
CYBER SYSTEMS

For robots to be able to utilize cyber systems in the
above envisioned ways, several basic hardware and software
provisions are necessary. On the hardware side, network con-
nectivity to the cyber system is required through any type of
networking interface (tethered Ethernet or Wifi) that will allow
robots to connect to the cyber system (if not all the time, then
at least intermittently). On the software side, the operating
system running on the robot’s computing equipment needs to
support networking (including basic IP features such as packet
routing, packet forwarding and adhoc networking, e.g., to be
able to build and use adhoc networks among multiple robots
within wifi capabilities but without WAN connections to be
able route packets through the adhoc wifi network to a resource
with WAN connectivity).

Given these basic hardware and OS networking capabil-
ities, the critical functional features for online knowledge
sharing and shared knowledge use need to be provided by the
robotic infrastructures in which the robotic control architec-
tures are implemented [5]. We first briefly review architectural
concepts in order to determine what can or cannot be shared
among multiple robots, and then discuss the mechanisms
needed for the different levels of sharing.

A. Sharing potential in robotic architectures

Robotic architectures, as any agent architecture, consist
of two main parts: the functional components (consisting of
various algorithms for data processing together with param-
eters of those algorithms) and their structural organization
(“architecture layout”) and the knowledge for those compo-
nents represented in data structures on which the component
algorithms can operate. The functional components and ar-
chitectural layout typically remain the same across multiple
platforms, tasks, and missions, while the knowledge for those
components are typically task and mission dependent.

The extent to which a robotic architecture can be shared,
i.e., both the knowledge contained in the architecture as well
as parts of the architecture itself, depends on how the archi-
tecture is realized in the implementing robotic middleware.
For example, if the architecture is “monolithic” in that all
components are implemented in one computational process (as
with classical cognitive architectures), then only architectural
parameters, but not individual algorithms can be shared, in
addition to knowledge contained in the architecture. If, on the
other hand, the architecture is “modular” in that at least some
components, if not all, are implemented in a distributed fashion
in the middleware (as is typical for recent complex robotic
architectures), then even component algorithms can be shared

if the architecture has a way to handle temporary unavailability
of components (as is also typically the case in recent robotic
architectures). We thus have the following list of potential
knowledge items that could be shared among multiple robots:

• individual components for NLP, SLAM, episodic
memory, etc. (i.e., the “algorithms”)

• configuration data for those individual components
(i.e., the parameterization of the algorithms)

• data stored in individual components (i.e., the knowl-
edge for the architecture such as dictionaries, skills,
maps, rules, etc.)

• configuration of groups of components (i.e., the struc-
ture of the architecture)

Since we are not restricting sharing to data stored in indi-
vidual components, but also allow for sharing of architectural
components, parameters, and layout, virtually every aspect of
the control system is now a resource that has the potential to be
shared and used, thus allowing for several intriguing features
such as “continuous automatic learning and upgrades”.

Continuous automatic learning means that by way of
sharing essential architecture storage components such as long-
term memories, dictionaries, image and rule databases, and
others, each robot will profit from any other robot learning
new knowledge, because any such knowledge item will be
directly stored and thus contributed to this common knowl-
edge repository. Note that learning can occur in parallel
and independent consolidation processes running in the cyber
system can remove duplicate knowledge items to streamline
the database. Moreover, indexing schemes much like those
use by web-based search engines can provide fast data access
and proactive data transfer (based on task state and mission
context) will often allow robots to “download” knowledge
items into their local architectural components before they are
needed (e.g., if a robot knows that a map of a building will be
required for performing a search and rescue operation, it can
download that map if it is available into its SLAM component
before entering the building; otherwise, it will build a new map
and contribute it to the repository).

Continuous automatic upgrades refers to the continuous
improvement of the performance of robotic architectures by
way of adjusting parameters, upgrading component algorithms,
and altering component layouts (by replacing existing con-
nectivity and/or adding/removing components). For example,
it is possible in architectures with distributed components
to “upgrade” individual components at run-time when newer
algorithms are available on other robots as along as the
architecture supports “dynamical component substitution” (i.e.,
swapping of components while the system is running) [6].
This feature allows robots to automatically stay up-to-date
whenever newer algorithms and features become available
by way of running architectures of deployed robots, while
removing the need for robot operators to manually initiate
upgrade processes. Note that even in the monolithic case it
might still be possible to “upgrade the architecture” at run-time
by way of replacing the whole architecture at once (which may
or may not work in a given context, e.g., if the system cannot
be shut down during the upgrade).



B. Requirements for knowledge sharing use

The middleware in which the robotic architectures are
implemented must provide several features to allow for the
above types knowledge sharing among architectures:

• Cyber system connection: The prerequisite for all data
exchanges between the robotic architecture (RA) and
the cyber system (CS) is the ability of the RA to
establish, maintain and repair a connection to any
type of CS that could serve as a data repository and
computing resource (e.g., the “Amazon Cloud Drive”
and the “Amazon Elastic Compute Cloud”, or simply
a set of compute clusters with local disk storage);
this includes access control and authentication of
the RA in the CS, discovery of available data and
computing services offered by the CS for the particular
RA, and discovery of other connected RAs and their
capabilities (to be able to establish direct connections
with other RAs).

• Data type descriptions: To be able to share data,
data types have to be negotiated for all levels of
data, including component-based data (e.g., a com-
mon map representation for SLAM, common word
representations for parsers, common RGB-D repre-
sentation for point clouds, etc.) as well as architec-
tural components (e.g., algorithms, parameters, and
component configurations) for which ultimately an ar-
chitecture description language is required; moreover,
a hardware/software capability specification language
is required to formalize the necessary capabilities on
the RA’s side to be able to consume a particular
knowledge item (e.g., what kinds of manipulator and
sensory capabilities are necessary for executing a
particular kinds of script, what kind of processing is
required to be able to consume 3D point clouds, etc.).

• Data transfers: Once an RA is connected to the CS
and the kinds of data types that can be handled by
both sides have been negotiated, data transfer can be
initiated by both the RA and the CS (e.g., the RA
might send a newly recognized object together with
its 3D point cloud to the CS for storage, the CS might
send an action plan from an CS-based planner to the
robot for execution, etc.); moreover, in addition to sin-
gle requests for data items or processing, continuously
updating data streams might need to be established
(e.g., video streams for recording the robot’s activities,
or force sensor streams for collecting data to improve
the robot’s manipulation control, etc.).

• Knowledge search: The RA can initiate searches for
knowledge items pertaining to any aspect of the
robotic architecture in the CS, including search for
knowledge items to be used in existing components
in the RA (e.g., a new executable skill for an action
execution component, a new object representation for
the vision system, a new production rule for the rea-
soning system, etc.) as well as components themselves
to be used for replacing them (e.g., a new policy-based
planning component replacing a deterministic classical
planner).

• Instantiation and processing request: The RA can
utilize the CS computational infrastructure to instan-
tiate and run new architectural components on an
“as-needed” basis (e.g., a route planning algorithm
in a complex environment might not have to run on
the RA, but could be performed in a path planning
component running in the CS which can utilize the
parallelism of the CS); results obtained from such runs
can, in turn, be stored in the CS for future use by other
robots (e.g., another robot requesting the same route);
this allows for a distributed operation of an RA where
parts run on the robot while other parts run in the CS.

• Online component substitution: Both the RA and the
CS need to be able to replace running components by
equivalent or better components without interrupting
the operation of both systems; the ability to substitute
one component for another component ...

The above mechanisms then allow for different types of
knowledge sharing and learning: active versus passive sharing
(where in the active case, an RA sends information directly
to another RA, while in the passive case it simply places the
information in the cyber system) and also active versus passive
learning (where in the active case, the RA learns something
new by using onboard and CS-based resources, while the
passive case the RA simply searches for information in the
CS.

V. THE ADE MIDDLEWARE

We have developed the “Agent Development Environment”
(ADE) [7], [6] which is a fault-tolerant multi-agent system
(MAS) [8] that serves as a distributed implementation environ-
ment for complex robotic architectures. Analogous to current
robotic infrastructures (such as ROS [9] and several others),
ADE provides a basic communication and computational in-
frastructure for parallel distributed processes that implement
various functional components of an agent architecture (e.g.,
the interfaces to a robot’s sensors and actuators, the basic
navigation and manipulation behaviors, path and task planning,
perceptual processing, natural language parsing, reasoning and
problem solving, etc.).2 Different from other robotic infrastruc-
tures, ADE was recently extended to also include mechanisms
for connecting to cyber systems and for grid computing [10].

In a running ADE system, all participating ADE agents
start up independently and connect to each other as prescribed
in the architecture diagram to allow for information flow
among architectural components. A special agent, the ADE
registry, implements basic “white and yellow page services”
(i.e., specialized “broker agents” that help other agents to find
each other) to allow other ADE agents to (1) register and join
a distributed ADE system, (2) advertise their services to other
components, and (3) connect to other components to be able to
use their services. Every ADE system consists of at least one
ADE registry and any number of ADE agents with potentially
different functionality that must register with a registry on
start-up. A multi-robot ADE system, for example, typically has
one registry for each robot where each registry is responsible
for the ADE agents implementing that robot’s architecture.

2A detailed conceptual and empirical comparison of robotic infrastructures
up to 2006 can be found in [5].



Human: Aandy, please pick up the medkit.
Aandy: I do not know how to pick the medkit up.
Human: Cindy, can you please pick up the medkit?
Cindy: I do not know how to pick the medkit up.
Human: Let me show you.
Cindy: Ok.

[multimodal instruction begins]
Human: Put your hand above the medkit with your palm up like this.
Cindy: OK
Human: Close your hand.
Cindy: OK
Human: Lift your hand.
Cindy: OK
Human: And that’s how you pick it up.
Cindy: OK

[end of instruction]
Human: Please tell Aandy how to pick up the medkit.
Cindy: Certainly. I am doing that right now.

[Cindy transfer the newly learned action to Aandy]
Cindy: Transfer complete.
Human: Aandy, now can you do it?
Aandy: OK.

[Aandy received the script and can now perform the pickup action]

Fig. 1. A demonstration interaction between a human and two robots where the human teaches the robot an new activity which one robot
(Cindy) learns in “one shot” and shares directly with another robot (Aandy) via the ADE middleware. A video of the interaction can be found at
http://hrilab.tufts.edu/movies/teachoneteachall.mov.

The registries are all connected to each other which not only
provides mechanisms for fault-tolerant computing,3 but also a
means for enabling agent discovery and agent-to-agent com-
munication across multiple robotic architectures. In addition,
specialized ADE agents such as the “ADE grid manager” and
the “ADE grid engine” are provided for interacting with cyber
systems to be able to schedule, distribute, start, and monitor
the execution of distributed computational processes (such as
simulations or planning processes) [10]. These grid compo-
nents are started via their own registries in cyber systems
(e.g., a compute cluster or a cloud computing infrastructure)
and allow robots to submit expensive computations that can
be performed in massively parallel computing environments
offline. The results are then sent back to the robots for onboard
online use. In addition, special database agents are provided to
provide an interface to standard database systems and allow for
efficient storage and access of computational results from grid
computations. These databases can also serve as a common
repository for storing knowledge items that robots want to
share via the cyber system.

VI. DEMONSTRATION SCENARIO

To demonstrate the existing capabilities in ADE for en-
abling the connection between robotic architectures and cyber
systems and how this connection can be used for sharing newly
learned knowledge, we will briefly discuss a proof-of-concept
example where one robot (“Cindy”) is taught a new skill, asked
to share with another robot (“Aandy”), and the other robot
is subsequently asked to perform the new skill. Specifically,

3Since all registries share essential system information, any registry can
take over if another registry fails for whatever reason (e.g., a hardware fault
on the computer the registry is running on causing all ADE agents located
on that machine to fail) by noticing the fault and automatically restoring the
failed subsystem, if possible at all.

we will consider a human-robot interaction scenario where a
human instructor is teaching a robot the activity of “picking
up a medical kit” using a mixture of natural language and
physical demonstration. We assume that neither robot knows
in general how to pick up any object with a handle, and that, in
particular, neither robot knows how to pick up the medical kit
(even though it already knows what a medical kit is). The
following multi-modal multi-robot dialogue interaction is a
proto-typical example of how a robot could (1) be taught to
pick up medical kit that is placed in front of it on a table, (2)
assemble a “pick-up-medkit” script from this one interaction
(“one-shot learning”), (3) then immediately share the script
with another robot, which, in turn, can execute it right away
when asked. Both robots are in the example are running our
DIARC cognitive robotic architecture which is implemented
in the ADE middleware.

Figure 1 shows the interaction between the human instruc-
tor and the two robots. Note that for the Cindy robot to be
able to learn to move one of its hands into the handle with its
palm up in a way that will allow it to subsequently perform
the action on different types of objects placed in different
ways in different positions, the robot needs to abstract over
the exact position of the handle on the particular medkit and
generate a representation that is general enough to capture the
final position of the hand inside the medkit without being too
specific about the particular handle and the particular position
of the instructor’s hand.4

4The learned “action script” generated by the Cindy robot (which is then
shared with the Aandy robot) captures the relevant aspects of the learned
activity and can be executed by both robots (the details of how the robot can
generate the script are not the focus of this paper and thus described elsewhere
[11]).



VII. DISCUSSION

It seems clear from everything said so far that once
robotic architectures are connected to and integrated with cyber
systems, unprecedented massive online learning is possible
where robot can share and improve virtually every aspect of
their system. To just get a sense of the amount of such learning,
suppose that 10% of the currently 20 million service robots
could connect to a cyber system and exchange learned infor-
mation in the way demonstrated above. Furthermore, suppose
each individual robot is on average taught one new knowledge
item per day and collectively there are, again on average,
1000 distinct knowledge items in the whole population (i.e.,
there is a 95% overhead in teaching the same knowledge on
any given day). In that case, sharing the information will
give each robot access to all 1000 items on day one, and
potentially access to another 1000 items on day two, and so
forth, thus speeding up the knowledge acquisition by three
orders of magnitude. Moreover, in many cases, robots will not
have to be taught anything because all necessary information
is already available in the cloud. This will come in handy, for
example, in the case of factory robots where skilled human
workers can teach multiple robots different activities at the
same time and all robots in the factory (whether they were
taught or not) will know them and know how to use them
right away. Another example might be the cohort of household
robots where once one robot has found a solution for how
to stack a particular type of dishwasher with different types
of plates effectively, all other robots will know how to do
it without any human instruction or supervision. And very
much like current computers first and foremost connect to their
manufacturers web site to download the latest software when
they boot up for the first time, future robots could connect the
cyber system to retrieve configure their architecture and obtain
all the knowledge required to perform their tasks.5

There are other capabilities, in addition to to sharing knowl-
edge, that are enabled by connecting robotic architectures
with cyber systems. For example, robots could share sensory
information via streaming data (e.g., one robot could use data
streaming from another robot’s camera to augment its own
vision system or to monitor the state of the environment in the
other robot’s location; multiple robots could share the same
speech recognizer running on the robot co-located with the
operator, etc.).

VIII. CONCLUSION

We have argued that combining robotic architectures with
cyber systems has enormous potential for all kinds of future
robotic applications. We specifically focused on the possibil-
ity of online sharing all aspects of the robotic architecture,
including the knowledge contained in components, the pa-
rameterization of the components, component algorithms, as
well as the architectural layout. We discussed the computa-
tional mechanisms required of implementation infrastructure of
robotic architecture to enable interactions with cyber systems

5Exactly how this system will then be set up will depend on various factors,
including financial and market-specific factors. E.g., one could envision an
“app store” for robots where robots can shop for skills that they then can
purchase, see http://www.robotappstore.com/, or one could imagine a separate
cyber system for each robot cohort produced by a particular manufacturer.

and briefly described a first attempt at implementing such capa-
bilities in the ADE infrastructure. We also provided a proof-of-
concept demonstration showing that the mechanisms available
in the ADE system allow robots to immediately shared newly
learned information. We then briefly discussed the potential
knowledge sharing in industrial and service settings and also
pointed to other functional capabilities enabled by connecting
robotic architectures with cyber systems. Finally, it is worth
mentioning that aside from the technical challenges that still
remain to be solved to enable truly general knowledge sharing
among robots there are also important questions about the
human perception and acceptance of such “super-human”
capability of future robots, especially when these robots have
to work with humans in teams (we recently completed the first
such evaluation study [12]).
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