
1

When Physical Systems Realize Functions…

M atthias Scheutz (matthias.scheutz@univie.ac.at)
Department of Philosophy of Science

University of Vienna
Sensengasse 8/10

A-1020 Wien

Abstract

After briefly discussing the relevance of the notions “computation” and “ implementation” for
cognitive science, I summarize some of the problems that have been found in their most
common interpretations. In particular, I argue that standard notions of computation together
with a “state-to-state correspondence view of implementation” cannot overcome difficulties
posed by Putnam’s Realization Theorem and that, therefore, a different approach to
implementation is required. The notion “realization of a function” , developed out of physical
theories, is then introduced as a replacement for the notional pair “computation-
implementation”. After gradual refinement, taking practical constraints into account, this
notion gives rise to the notion “digital system” which singles out physical systems that could
be actually used, and possibly even built.

K eywords: computation, implementation, computationalism, realization of a function,
digital system, computer, computational practice, cognitive science, artificial intelligence

1. Introduction

One of the most controversial and still ongoing debates in cognitive science centers
around the claim that minds are like computers, that mental states are computational
states. If this were indeed so, then research programs like strong AI might actually
succeed one day in modeling as well as explaining what mind is. The main problem,
however, with the “computational claim on mind” (CCM) is that is still not quite clear
what it means to be computational. Smith (1998), for example, lists at least five different
construals of computation, each of which approaches the issue from a different
intellectual position, focuses on different aspects of computation, and pursues different
purposes (explanatory, practical, etc.). Many proofs of “equivalence” tie these various
notions of computation together, i.e., if a function is computable according to any one
formalism, then it is computable according to all of them. Hence, it is commonly
accepted that the term “computational” may be interpreted in any of these senses. The
particular choice (or the canonical formalism) will depend on whichever seems more
practical or appropriate for the enterprise at hand (in this case, the study of cognition).

There are, however, strong arguments against this endeavor of explaining mind in
terms of computation: some disagree with established notions of computation and argue
that these notions will be of no help for CCM because they even fail to capture essential
aspects of computation (e.g., intentionality, see Smith, 1996). Others, accepting them,
show that some of these notions, such as Turing-computability, are too “coarse-grained”

2

to be suitable for cognitive explanations (e.g., Putnam, 1988, who proves that every
ordinary open system “ implements” every finite state machine without input and output,
or Searle, 1992, who polemicizes that even ordinary walls can be interpreted as
“ implementing” the Wordstar program). The former line of attack concentrates on our
misunderstanding of what everyday computation is all about, whereas the latter debunks
our understanding of how an abstract computation can be realized in the physical—how a
computation is “ implemented” .1

In this paper, I will argue that a satisfactory account of implementation in order to
answer essential questions such as “What computation does a given physical system
implement?” (“the implementation problem”) or “Can the human mind be described
computationally?” is still missing. In particular, a solution to the implementation
problem is conditio sine qua non for CCM, otherwise CCM is not even well-defined.
After presenting what I take to be the methodological defects of standard approaches to
“ implementation” , I will outline a theory of implementation which not only overcomes
these obstacles, but as a consequence also suggests different notions of computation.

The first part of this paper starts out with a brief review of the standard conceptions of
computation in their historical context, setting the stage for the presentation of Putnam’s
Realization Theorem. This claim (that every finite state machine is realized in every
physical system) points, in my interpretation, directly to the lack of a thorough
understanding of implementation. The consequence of Putnam’s theorem is devastating
for computionalism as well as the foundations of computation, since it shows that every
theory of computation is built on weak grounds (if not on no grounds whatsoever)
without a theory of implementation. Most attempts to counter and overcome Putnam-like
results in order to rescue standard notions of computation (such as “Turing machine
computable”) share the view that implementation is a function relating computational and
physical states (e.g., Chalmers (1996,1997), Copeland (1996), or Melnyk (1996)). In my
view, this “state-to-state correspondence view of implementation” (as I coined it) fails,
however, to get at the heart of Putnam’s construction.2 A methodological analysis
concludes the first part and suggests that a state-to-state correspondence view is not
general enough to explain how abstract computations can be connected to concrete
systems. Instead of assuming abstract computations and asking how they relate to the
physical, it seems more promising to approach the implementation issue by starting with
physical systems and their mathematical descriptions (which will eventually give rise to
computations).

The second part takes up this suggestion and shows that it is possible to tackle the
notion “computation” from a practical point of view (by looking at the devices that
humans design, build, and use). Physical descriptions of these devices will lend
themselves to the very general notion “realization of a function” , a precursor and
amalgam of the notions “computation” and “ implementation” . The notion of realization
of a function, in turn, will become more and more restricted as practical and/or physical
constraints (such as measurability, feasibility, etc.) are incorporated. Although this
account is far from being a full-fledged theory of implementation, it can describe
relations between abstract and concrete systems in terms general enough to subsume
standard computational systems. These systems are viewed as being realized by special

3

kinds of physical systems, called “digitality supporting systems”. The main virtue of this
approach for any resulting theory of computation is, then, that the respective notions of
“computation” and “ implementation” are not, as otherwise commonly maintained,
defined at a set-theoretic level. Rather, they are mathematical extractions obtained from
behavioral descriptions of concrete systems, developed from a progression through
various levels of abstraction, thereby never abandoning—and, thus, retaining up to the
highest level—their close ties to the concrete world.

Part I :
Computation + Implementation = ?

2. Turing M achines and Implementation

What is commonly considered “computation” (Turing machines, Markov algorithms,
universal grammars, recursive functions, PASCAL programs, etc.), has as one of its
defining characteristics the property of being independent from the physical. In other
words, computations are (normally) defined without recourse to the nature of the systems
that (potentially) realize them. This prominent feature, the independence of computations
from their physical realizations, has made computation an attractive candidate for
functional explanations of mental processes in cognitive science.

Among the various computational formalisms, the Turing machine model has gained
most attention, ever since Putnam (1967) gave birth to (Turing machine) functionalism
by suggesting how computational states of these machines could be used for
understanding mental states. His “multiple realizability argument”—there might be
different physical realizations for one and the same cognitive organization—shows that
type-identity is too strong a requirement to link the mental to the physical by utilizing the
independence of abstract Turing machines from their physical realization. From then on,
the separation of computation from what does the computing, the “computer” , was
considered a virtue, not a flaw. While in the philosophy of mind the nexus between the
mental and the physical has been the fulcrum of debates (determining the division lines
between type and token-identity theory, functionalism, eliminativism, etc.), the link
between computations and computers was implicitly assumed to be unproblematic. The
naiveté of this assumption seems quite surprising in light of CCM: if minds are taken to
be computational, then the relation between computation and computer is of crucial
importance in its role of explaining the relation between mind and body. Yet, the theory
of computation has mostly been concerned with the relations of various computational
formalisms to each other.

Before actual computers even existed (except if one wants to count as existent all the
mechanical “calculators” such as Babbage’s “difference engine” , etc.), the forefathers of
the theory of computation—Gödel, Church, Kleene, and Turing—had already laid its
foundations: the class of recursive functions equals the class of λ-computable functions
equals the class of Turing machine computable functions. These results were possible,

4

because what a computation computes is expressed in terms of functions from inputs to
outputs; and using functions as mediators, different computational formalisms can be
compared according to the class of functions they compute. The extensional identity of
all these formalisms supports a famous thesis formulated by Church (and by Turing
independently) that any of these mechanisms captures our intuitive notion of
computation, that is, what it means to compute. Although this thesis cannot be proved in
principle, it gains a lot of plausibility given the above mentioned equivalence results.

Of these different formalisms the Turing machine is the only one which directly links
computation to a mechanical device, to something physical. Whereas all the others
tacitly assume that such a link is possible (e.g., to explain human computational behavior
in terms of λ-computable functions), it is the Turing machine that via equivalence results
provides this necessary connection to the concrete. This gives further evidence for its
central role in the philosophy of mind as well as in the theory of computation. But it also
means that if the Turing machine model fails to withstand attacks regarding its
implementation, then all the other formalisms are cut off from the concrete as well.

When Turing invented his model of “computation” , he wanted to capture the human
activity of “computing” , i.e., the processes a person goes through while performing a
calculation or computation using paper and pencil. By “abstracting away” from persons,
scratch paper, etc., he claimed that all “computational steps” a human could possibly
perform (only following rules and making notes) could also be done by his machine (see
Turing, 1936). That way the imagined device called Turing machine became a model of
human computing, an idealized model, to be precise, since it can process and store
arbitrarily long, finite strings of characters. Note that the level at which the mechanism
of a Turing machine is described lies above the “mechanical level of description of
physical bodies” . It is rather the same at which we describe the behavior of a person
when he or she performs a computation.

Nevertheless, at the core of the concept “Turing machine” lies the idea of a
mechanical device that can actually be built (the infinite tape being substituted by an
arbitrarily extendable tape, for example), or that, when taken as an idealized entity, exists
in Plato’s heaven. Either way, the mathematical structure, i.e., the quintuple that is
usually taken to be “the Turing machine” , can be viewed as a mathematical model or
description of that (ideal) physical device.

The mathematical model serves a twofold purpose: it is not only thought to be a
mathematical model of the device “Turing machine” , but also an adequate representation
of a human person performing computations with paper and pencil following rules. But
what exactly is the relationship between the formal structure (i.e., quintuple) and the
physical system (i.e., human)? The answer to the “ implementation problem” for Turing
machines is certainly non-trivial. Not even the relationship between the mathematical
structure and the device “Turing machine” is all that clear (e.g., how are abstract states
related to physical states?). Only at a very high level of description, can a
correspondence be established (one could, for example, define physical states to be the
position of the tape head plus the internal state of the machine plus all the characters on
the tape).

5

The same is true of the relation between a human computer and the device “Turing
machine” . At the level of (classical) fields, for example, the question “How exactly do
tape head movement and printing on tape relate to hand movements and scribbling on
scratch paper?” is probably not answerable (see the next section). Thus, only by
involving metatheoretical considerations about the nature of mechanical possibilities
could Turing argue that humans (following rules) and Turing machines have the same
“computational” limitations. Note that physical models of Turing machines are subject to
the same kinds of practical constraints that humans are—neither do they have arbitrary
amounts of scratch paper/tape nor time at their disposal. Hence, the abstract
mathematical structure is an idealization of and theoretical limit for both.

But how about systems that do not obviously behave in such a way as to give rise to
mechanical descriptions? Could those systems implement Turing machines? And what
about the physical system “brain” ? Does the brain with its various electric inputs and
outputs implement a Turing machine? Even though the problem of what humans can
compute with paper and pencil following rules seems decided, the general problem of
what a physical system can compute according to the notion “Turing computable” will be
left open if there is no theory that explains how to relate physical systems to the
mathematical structure “Turing machine” .

3. Putnam’s Argument

The independence of computations from the physical systems realizing them seems to be
their strength and weakness at the same time. Although computational formalisms allow
one to specify which function f is defined by a particular computation (in the sense that
the computation takes values from the domain of f as inputs and delivers values from the
range of f as outputs), they implicitly presuppose a notion of implementation, i.e., that it
is understood what physical systems can actually “run” the computation. But, as has
clearly been pointed out by Putnam (1988), no satisfactory theory of implementation is
yet available, since every ordinary open system is the realization of every abstract finite
automaton. Given the central role that abstract finite automata play in computer and
cognitive science, this result is more than puzzling.

Putnam’s proof of this counterintuitive theorem—I christened it “Putnam’s
Realization Theorem”—hinges crucially upon a very “ liberal” formation of physical
states/state types, namely an arbitrary (possibly infinite) union of “maximal states” ,
assuming a field theoretic level of description:

“ In physics an arbitrary disjunction (finite or infinite) of so-called ‘maximal states’
counts as a ‘physical state’ , where the maximal states (in classical physics) are
complete specifications of the values of all the field variables at all the space-time
points” . [Putnam (1988), p. 95]

Regions in phase-space, that is, sequences of physical states, which in turn are taken to be
real-time intervals during the “ lifetime” of a physical system S (e.g., all maximal states of
S from to 12:00 to 12:04 on October 22, 1997), are set in correspondence to sequences of
abstract states (determined by the machine table of the automaton)—see figure 1. This

6

A

way state transitions are “causal” in the sense that they can be predicted from the laws of
physics given the physical conditions on the boundary of S throughout its lifetime.

Automata states

Computational steps

Real-time
12:00 12:01 12:02 12:03 12:04

Physical states of S S1 S2 S3 S4

Figure 1 Physical states are defined as sets of maximal states of a
system S for a given interval of real-time (from 12:00 to 12:04) in such
a way that they are in correspondence with automata states in a “run”
(“ABAC”) of the automaton.

State types are then defined as the union of all physical states corresponding to a
single state of the automaton (note that these types are still considered “legitimate
physical states” by the physical theory)—see figure 2.

Since “sequences” of state transitions (=computational steps in the abstract) are
crucial to Putnam’s construction, this will have to be reflected in a definition of what it
means for a physical system to realize a finite state automaton (FSA):

Automata state type

S1 S3
Physical state type

12:00 12:01 12:02 12:03

Figure 2 Physical state types are defined as sets of maximal states of
all physical states which correspond to the same automaton state
resulting in an isomorphic mapping between physical and automaton
state types—for details of the construction see the appendix of Putnam
(1988).

Definition 1: A physical system S (described in a theory P) realizes n computational steps
of a FSA (without input and output) within a given interval I of real-time if there exists a
1-1 mapping f from automata state types onto physical state types of S and a division of I

B A CA

7

into n subintervals such that for all automata states q, p the following holds: if q�p is a
transition in the automaton from the k-th to the k+1-th computational step (1<=k<n) and
S is in state f(q) during the k-th subinterval, then this will “cause” S to change into state
f(p) in the k+1-th subinterval.

Given this definition, we can formulate Putnam’s result:

Theorem 2: (Putnam’s Realization Theorem) There exists a theory P such that for every
ordinary open system S, for every finite state automaton M (without input and output), for
every number n of computational steps of the automaton M, and for every real-time
interval I (divisible into n subintervals) S (described in P) realizes n computational steps
of M within I.

Putnam’s diagnosis of what went awry to make his construction possible points to the
liberal formation of physical states/state types. In order to avoid this kind of
counterintuitive result we “[…] must restrict the class of allowable realizers to
disjunctions of basic physical states […] which really do (in an intuitive sense) have
‘something in common’ ” [Putnam (1988), p. 100]. In restricting the choices of physical
states (that are supposed to correspond to computational states) to “natural” states which
really do have something in common, one must not, however, involve “higher level”
properties if the system is to exhibit these properties by virtue of its particular physical
states; or in Putnam’s words (who discusses the same problem for propositional attitudes,
which are supposed to be reduced to physical-computational states):

“ […] this ‘something in common’ must itself be describable at a physical, or at worst at
a computational level: if the disjuncts in a disjunction of maximal physical states have
nothing in common that can be seen at the physical level and nothing that can be seen
at the computational level, then to say they ‘have in common that they are all
realizations of the propositional attitude A’ , where A is the very propositional attitude
that we wish to reduce, would just be to cheat.” [Putnam (1988), p. 100]

The main implication of Putnam’s proof for the current enterprise is that without
restricting the formation of physical state types a direct correspondence between physical
state types and machine state types can always be found. Implementation viewed as such
a mapping, however, cannot single out interesting physical systems as “computers” , since
the class of finite state automata (without input and output) coincides with all physical
systems (describable at the level of physical fields) under this notion.3 As a consequence,
this result—if true—provides strong evidence against the tenability of a state-to-state
view of implementation.

4. Problems with the State-to-State Correspondence View of Implementation

Assuming a notion of “computational state” (or abstract state, for that matter), there are
basically two critical points if a direct mapping between abstract and physical states is to
be established: either the mapping itself or the formation of physical states/state types

8

might not be constrained enough (or both). In Putnam’s construction it seems that the
state formation is the tricky part, whereas the mapping seems straight-forward. But
interestingly enough, this alone is not what Putnam has been criticized for. Some find
Puntam’s notion of causality insufficient, others attack his (implicit) notion of
“ implementation” . Chalmers (1996), for example, criticizes the correspondence between
physical and abstract states insufficient. At the same time he assumes the formation of
physical state types to be unproblematic. Similarly, Melnyk (1996) and Endicott (1996),
too, in their endeavor to refute the arguments against computationalism in Searle (1992),
hold a state-to-state correspondence view, which presupposes the formation of physical
types. Without going into details of the respective arguments and presenting individual
counter-examples, which I have done elsewhere (Scheutz, 1997), I rather prefer to
advance a general argument that makes it seem very unlikely for a state-to-state
correspondence view of implementation to succeed in general.

Physical states of an object are normally defined by the theory in which that object is
described. As it happens with classical fields, there might be too many states that could
potentially correspond to some abstract, in this case computational, state. In order to
exclude certain unwanted candidates, one has to define an individuation criterion
according to which physical states are singled out. This criterion, however, is not defined
within the physical theory that is used to describe the object, but rather at a higher level
of description. In the worst case, this will be exactly the computational level, namely in
the case that none of the potential “ lower level” theories can define a property in their
respective languages such that the set of states conforming to that property corresponds in
a “natural” way to the computational state. The potential circularity is apparent: what it
is to be a certain computational state, is to be a set of physical states which are grouped
together because they are taken to correspond to that very computational state.

Every state-to-state view of implementation must, therefore, avoid being 1) vacuously
broad (because physical state type formations are too liberal), and 2) circular (because
individuation criteria for physical states are not provided at a level lower than the
computational one).

In the case of physical fields, one is left with a very pessimistic prospect: there are
more than countably many different possible physical states according to the state space
of fields (for every interval of real-time). Which of those correspond to a physically
possible object, and which correspond to a given object in a “natural way”? Since there
are even more possible mappings from physical states onto abstract states, it seems totally
implausible if not impossible to specify finite criteria that single out the right mappings.
The only way we could find such a mapping is either by pure chance or by using higher
level properties that constrain possible objects significantly and hence the plethora of
mappings. If we are lucky, then the number of mappings will be so constrained by these
properties that we can actually write down the definition of a (correspondence-)function.
But again, this “will work” only by using properties defined at levels of description
higher than physical fields, yet lower than the computational level of description (which
must not be used in defining a mapping from physical states to computational states, if
the task is to find out what kind of computation a given physical system implements).
One advantage of higher level theories is that they supply “higher level” -objects that can

9

be individuated according to criteria also supplied by these theories. Properties of these
objects, in turn, could be used to define states.4 State-to-state correspondences would
then have to be defined separately for individual theories.

Involving higher order theories, however, does not solve the problem of forming
physical state types if the theory does not provide such a concept. Take a pyramidal cell,
for example, and its physical description in the language of biochemistry, which does not
provide a notion of physical state type that could be set in direct correspondence with
states of connectionist units. How would one go about defining physical state types such
that the behavior of the cell corresponds to the computation of its “connectionist
counterpart” and, at the same time, these type formation rules exclude type formations
that would give rise to “unwanted” computations? This does not seem clear at all.

So the main difficulties of the state-to-state correspondence view of implementation
sneak in the backdoor again, if the question “How are abstract computations tied to the
concrete?” is asked. Even the rephrasing “What computation is implemented by a
concrete system?” is not sufficient, since it, too, assumes a notion of computation.
Because computations have to be linked to concrete systems (which are described at a
certain level) in order to be computations, the implementation-relation must hold between
computations and levels of descriptions of systems.

This leaves various questions unanswered: which (lower) level is the right one?
Which level supplies the right kinds of states to be linked to the computational ones? Is
there a systematic way to 1) find the right level and 2) find the right states/state types at
this level? A theory of implementation should be able to answer all these questions in a
systematic way for all possible levels of description. Any state-to-state correspondence
view, however, is naturally limited to a level of description and a notion of state at that
level (if it exists at all, otherwise the particular choice has to be justified with all its
consequences…), and can, therefore, not provide any criterion for particular choices of
levels. Furthermore, a theory of implementation should provide necessary and sufficient
criteria to determine whether a class of computations is implemented by a class of
physical systems (described at a given level), otherwise the term “implementation” is not
appropriate. As long as these problems are not solved, Putnam-like constructions will
present a potential threat to any state-to-state correspondence view of implementation,
since there exist levels of description at which—paraphrasing a famous dictum by
Feyerabend—anything computes.

5. Taking the Physical Seriously

The main reason for all these difficulties with a satisfactory account of implementation is,
in my view, that computation has been defined abstractly at a “ level of symbol
manipulation” , rather than in terms of an abstraction over the physical properties
determining the functionality of a physical device. The latter approach is taken by
computer practitioners, who have to define programming languages for the hardware they
construct (in order to make it accessible and, hence, usable for other people). By
abstracting over hardware specifics such as particular brands of parts, speeds of gates,
etc. they are able to come up with an abstract description of what it means to compute on

10

their kind of machine. This way implementation and computation are defined together
and the question of how computations are tied to the physical in general does not arise. It
is this kind of practical wisdom that theories of implementation have yet to capture.

Even if one willingly granted Turing machines such a link (assuming that there are
physical systems that correspond to them, ignoring all the aforementioned difficulties),
they would still be mere models of what can be done mechanically (by a human, a robot,
etc.). Gandy (1980), for example, shows that four principles underwrite the concept of
“mechanical doability” and that a violation of each of these principles gives rise to
“Super-Turing” computation. It follows that any system whose behavior can be
completely described at the level of configurations, changes of configurations, etc. and
which conforms to these four principles, will be at best Turing-computable. It does not
follow, of course, that this level of description is the appropriate one for what humans can
do (if they use scratch paper, but are not bound to using rules, say).5

The relevance for cognitive science (assuming CCM) is immediate: suppose brains
are best described at a lower-than-mechanical level of description L (e.g., a biological
level), and the mechanical level of description is not sufficient for L. If some of the
phenomena not describable in terms of “mechanics” are crucial to a theory of mind, then
either minds are not computational (if computational is meant to be “mechanical”) or a
different notion of computation is required (e.g., if one wants to describe biological
systems such as cells, autopoetic systems, neural networks, etc. as “computational”).

Considerations of this sort have already inspired many cognitive scientists to shift
their explanatory framework from computational to dynamical, because they believe that
the computational level of description is not essential to understanding cognition (see,
e.g., van Gelder, 1998). Although one has to be careful with statements like this, because
their truth depends on what “computational” means, I would agree that Turing machines
are not well-suited to describe the behavior of various physical systems at lower levels
such as chemical levels or even biological levels. And since the class of functions
computable by Turing machines is the same as the class of recursive functions, it follows
that these functions, too, might not be adequate to describe the input-output behavior of
systems at lower levels of description. It even seems possible that the behavior of some
physical systems could only be adequately described using recursively enumerable
functions (certain quantum processes, say). Furthermore, if it were possible to utilize
their behavioral complexity for “computational purposes” , (computer) scientists would
willingly extend their notion of “computation” to the class of functions “ implemented” by
those systems (see also the discussion section at the end of this paper).

All of these considerations together have led me to believe that a different theoretical
framework is required in order to capture not only accepted, but also potential notions of
computation. This formalism should allow one to define a corresponding notion of
implementation (for each notion of computation) which explains how to link the abstract
to the concrete without opening doors to Putnam-like constructions. One possible
strategy to develop such a framework—the one I will take up in this paper—is to start in
the concrete, in the physical, and not in the abstract: take a physical theory P and consider
its (simple and complex) objects together with their properties. P will supply laws that
describe the behavior F of a given arrangement of these objects—called physical system

11

S—under certain environmental conditions over time. Depending on P, objects,
behaviors, and environmental conditions will be very different. However, every object in
P will be subject to a certain change in some physical dimension (its “output”) if exposed
to certain environmental conditions (its “ input”). The second part of this paper will show
how input, output, and behavior of a physical system as described by a physical theory
can be used to distill a (matter-independent) mathematical mapping f—the function
realized by S—between inputs and outputs of S by abstracting over every physical
dimension. This abstraction will not be arbitrary, but determined by P. Precisely
because the trace to the “real stuff” is not forgotten, Putnam-like constructions cannot be
applied when the notions “computation” and “ implementation” (introduced for systems
describable by physical theories) are later derived from the more fundamental notion
“realization of a function” .

 Part I I :
? = Realization of a Function

6. Setting the Stage: Electromagnetic Fields and Circuit Theory

Let us, then, start with a physical theory at a rather low level of description, the level of
electromagnetic fields, and see how we can develop a notion of what it means for a
physical system (described at this level) to realize a function. The theory of
electromagnetism, as axiomatized by the four Maxwell equations, describes the behavior
of (moving) charges: how (moving) charges give rise to two kinds of fields, the
electrostatic and the magnetostatic field, and how these fields interact over time, resulting
in electromagnetic fields (here, I assume classical fields for simplicity sake. I am not
concerned with the integration of electromagnetic fields into quantum field theory, e.g.,
how particles arise out of fields, etc.).

In the simplest case, fields are studied in a vacuum, but Maxwell’ s equations can be
modified to account for fields in material media as well as the change across material
boundaries. In particular, the theory explains the interaction of potentials and currents in
spatial regions “ filled” with various materials over time (e.g., a cylindrical region of
space filled with copper). Dividing materials into two rough categories, conductors and
insulators, one can launch an investigation into the nature of different spatial
combinations of materials giving rise to different electric properties. Without providing a
detailed mathematical derivation, one can imagine how a categorization of combinations
of different materials into types with the same electric properties could be attempted (by
abstracting over particular material properties such as conductance or spatial arrangement
such as volume). A cylindrical region filled with a given material in a vacuum, for
example, will exhibit certain law-like properties with respect to the difference in potential
between its two ends, if current flows through it. Furthermore, it will be possible to
extract laws from the study of different such arrangements (e.g., Ohm’s law, which

12

describes the relation between potential, current, and conductance of such “material
regions”).

This abstraction process leads, in the end, to the development of circuit theory, which
arises from the theory of electromagnetic fields by abstracting over material properties of
spatial regions as well as the regions themselves. It considers “closed-loop”
arrangements (i.e., circuits) of two sorts of “higher level” objects: active and passive
components. Active components are energy sources (e.g., batteries), passive ones are
energy consumers (e.g., resistors, capacitors, or inductors). The “electric” properties of
components and circuits are expressed in terms of “potential” , “current” , “conductance” ,
“ inductance” , “resistance” , “capacity” , “voltage” , etc.6

The reason for choosing circuit theory as a venture point in the current enterprise is
twofold: on the one hand, circuit theory is motivated by computational practice (although
it also has some relevance for the neurosciences—see the end of this section), since
computers by and large are built out of electric components. On the other hand, it
provides “basic objects” , which can be individuated according to their properties and
combined to form circuits, as opposed to electromagnetism, where space points together
with their charge are the “basic objects” of the theory. Although one can reduce “circuit
talk” to “ field talk” , a field-theoretic approach would distract from the current goal
because of its mathematically involved nature. Additional information about certain
kinds of materials, their atomic make-up, as well as facts from crystallography, atomic
physics, chemistry, etc. would be needed to describe circuits completely at a level of
fields. Circuit theory allows one to abstract over these “physical peculiarities” and
assume objects such as resistors and capacitors without having to know their physical
realization. Yet, one is guaranteed that these types of objects (within practical limits, of
course) are readily available, i.e., can be built, since circuit theory was developed under
the pressure of practical, engineering tasks. It, thus, combines the “physical rigor” of
classical fields with the “engineering view” of idealized circuits, which are both
necessary to describe actual and possible objects that are metaphysically tenable and
physically plausible.7 For the rest of this paper, I will assume circuit theory for all
examples, yet allow “P” to range over any physical theory in all of the formal definitions,
where the term “physical theory” is meant to comprise every theory that describes natural
phenomena at a certain level of description in terms of “physical” laws (such as biology,
chemistry, etc.).

Any (physical) theory used to describe real-world phenomena is built upon the
mathematical framework that has been developed to describe change: the theory of
differential equations (this is a matter of fact, not a necessity). Formally, this means that
the theory consists of all mathematical (and logical) axioms needed for the theory of
differential equations together with all necessary physical eigenaxioms (i.e., the axioms
of the physical theory). It will contain additional predicates for different physical
magnitudes (such as mass, energy, and time, for example) as well as other factors
depending on the theory and the purpose it is used for. A formal version of circuit
theory, in particular, could contain predicates like “ is_a_resistor(x)” , “ is_a_voltage(x)” ,
etc. and relational primitives like “has_resistance(x,y)” , “ is_connected_to(x,y)” , etc.
Using these predicates, one can formulate general laws such as

13

∀x(is_a_resistor(x)→∃!y(is_a_resistance(y)∧has_resistance(x,y))).
Given this axiom, a function symbol can be introduced for the resistance of a component,
and this function in turn can be used to define Ohm’s law. It should be obvious now,
how I envision the process of defining a formal version of circuit theory, so I will move
on.

7. What it M eans for a Physical System to Realize a Function

Physical theories, as already noted, describe the behavior of physical objects (and
possible arrangements of them) under certain environmental conditions over time. What
a physical object is depends on the theory under consideration. Each theory will supply a
notion of primitive object (even if this can only be determined by looking at the domain
over which the quantifiers of the theory range). I will use the term “physical system” to
emphasize this theory-dependence. Circuit theory, for example, can describe the
behavior of the system “resistor” when a voltage is applied. This can be also viewed as
describing the “ input-output function” of the component: take a 2 Ω resistor (the
“component”) to which a voltage of 200 mV (the “ input”) is applied. The current flow
then—according to Ohm’s law V=R*I (which is a special case of a differential equation
where time is left out, i.e., ∆t=0)—is 100 mA (the “output”). So, the resistor has the
property of “embodying” the function F(x)=x/2 from voltages to currents.

What does it mean, therefore, to “embody” a certain function, to “have” a certain
function, to “ function” in a certain way? It means to obey the laws of physics that are
described by that function. So, each concrete, individual resistor of 2 Ω will under an
applied voltage of 200 mV yield a current of 100 mA—this is what the laws of physics
predict (and if they are correct, this is what will happen modulo some practical problems
such as “purity” of the material, exactness of the applied voltage, etc. which I will ignore
for the moment). There are obviously critical notions involved in the above statement
such as “predictions” , “ law obeying” , maybe even “counterfactual” , but I will not be able
to go into details here.8 However, exactly how the resistor “achieves” this mapping is a
different question and can be answered by looking at the chemical structure, the
arrangement of molecules, facts about electrons, etc. At this point we are only interested
in the “what” -question and the answer to it does not require theories at “ lower levels” of
description.9

There is a sense in which the above resistor realizes the same function as a copper
wire that is split into two parallel wires at some point: according to Ohm/Kirkhoff’ s laws
the current will split in half (assuming they are joined together or fed into equal loads).
So if the current at one end was 100 mA, then it will be 50 mA at each of the two other
ends. The function “realized” by this wire is then F’ (x)=x/2 from currents to currents, as
opposed to the function F(x)=x/2 from voltages to currents. So, although the physical
dimensions that are used for input and output (i.e., the domain and the range of the
function that describes an aspect of the system under consideration) are different, the
abstract mapping between those objects is the same. If, therefore, one drops the physical
“qualities” (dimensions such as voltage or current) in the description of the “function” of

14

the components and just considers the “quantities” (magnitudes of the physical units),
then one can describe the “ input-output” -function of both components as f(x)=x/2 from
numbers to numbers (Reals to Reals, say, given that voltages and currents are usually
defined as Real values in circuit theory). In short: dimensions are dropped, units are
retained.

This step of abstraction is critical to the whole enterprise and I will, therefore,
develop the argument in greater detail. Eliminating physical particulars of inputs and
outputs, will allow us to describe what resistor and wire have in common with respect to
their mathematical (functional) description, namely that “the resistor and the wire both
realize the function f(x)” (in different physical ways, of course). The resistor realizes f in
the sense that for every voltage x, if x is applied to the resistor, a current of x/2 will result
by the laws of physics; the wire, in that for every current x, if x is applied to one end of
the wire, a current of x/2 will result by the laws of physics on each one of the other ends.
What is, therefore, different is the domain of f (since in one case it is the set of all
currents, in the other the set of all voltages), what is the same is the syntactic structure of
(the definition of) the function. There are two ways to express the difference between
voltages and currents, 1) syntactically by using a two-sorted logic: f(v)=v/2 and f(a)=a/2
(where “v” is a variable ranging over volts and “a” a variable ranging over amperes), and
2) semantically by using a model-theoretic interpretation ∀x∈V(f(x)=x/2) and
∀x∈A(f(x)=x/2) (where “V” denotes the set of voltages and “A” the set of amperes). In
the former case, the algebraic field axioms (within the formal theory) coincide for both
sorts.10 In the latter case, V and A can be shown to be extensionally identical up to
isomorphism.

Given these two ways of capturing the difference between volts and amperes, one
would like to arrive at the mapping f(x)=x/2 from Reals to Reals. One strategy is to argue
that physics uses a mathematical language to describe concrete objects and that both volts
and amperes are modeled by Reals in that language.11 This opens the discussion about
whether Reals are the “right models” for physical quantities, etc.

Another argument comes from model theory stressing the fact that two sets are
identical up to isomorphism (with respect to the field operations “+” and “* ”), if they
satisfy all field axioms. It follows that a model where the set of Volts is the set of Reals
is as good a model as one where the set of Volts is the set of Rationals, since the
extensions of the predicates “V” and “A” are isomorphic (this is, of course, only true for
the field axioms. If additional axioms are added, e.g., that every quadratic equation has a
solution, then the Rationals might get excluded). This view depends on one’s stance on
issues like “standard interpretation” and “standard models” (and is related to questions
like “How are the real numbers constructed?” , “What are real numbers, sets of natural
numbers or limits of Dedekind cuts?” , or “What is the standard model of real numbers?”).

A third possibility is to stay within the syntactic realm of the formal theory. Then one
can treat variables of different sorts as being of yet another sort, namely the sort “Real” ,
if all field axioms are defined for all of them. In the one-sorted case, one can substitute
“x∈Real” for every quantifier restricted to a set (e.g., “∀x∈Real…” for “∀x∈V…”), if all
field axioms are defined for that set. Formally, this means that the theory is either
extended by another sort plus all the axioms for that sort or that a new (name for a) set is

15

introduced together with all relevant axioms. That way one avoids being forced to take a
stand on either physical modeling paradigms or whether “ identical up to isomorphism” is
sufficient to “nail down” the set of Reals (i.e., if isomorphism is sufficient to determine a
set of objects or if “ more” is needed). Hence, I will use the term “syntactic isomorphism”
in the following to emphasize that I have this third syntactic alternative in mind, even
though I will treat isomorphisms semantically for the sake of expositional clarity. Note
that this way even nominalists who are not committed to the existence of Reals should be
able to accept the following definitions.

The “common structure” of the two functional descriptions F and F’ for resistor and
wire, respectively, can now be viewed as the mapping f(x)=x/2 from Reals to Reals. The
“abstraction” over the physical dimension is achieved by supplying two syntactic
isomorphisms: the input encoding I(x) from voltages to Reals and the output encoding
O(x) from currents to Reals. Figure 3 depicts the relations among F, f, I and O (in this
case for the resistor, but it really works for any physical system).

 r f f(r)=O(F(I -1(r)))

 I O

 I -1(r) F(I -1(r))

Figure 3 The relation between the resistor and the function it realizes:
given a certain Real r, the value f(r) is then obtained by taking the
encoding of the input I -1(r), applying it to the resistor, and then
decoding the output F(I -1(r)), using the output encoding, resulting in
O(F(I -1(r))), which is equal to f(r).

This suggests a general/generic definition of what it means for a physical system S
described by a (physical) theory P to realize a function f:12

Definition 3: A function f with domain D and range R is realized by a physical system S
(describable in a theory P) if and only if the following conditions hold:
1. There exists a (syntactic) isomorphic mapping I from the “ input domain” of S to D13

2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S to R
3. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties (i.e., F is a mapping from the “ input domain” of S to its
“output domain” described in the language and by the laws of P) such that for all
x∈D the following holds: O(F(I -1(x)))=f(x).

Note that just requiring bijective mappings I and O is not enough to determine f: let
I(x)=x for all x except for I(1)=0 and I(0)=1 (and the same for O), and F(x)=x/2. Then
f(1)=O(F(I -1(1)))=O(F(0))=O(0)=1, although f(1)=1/2 would have been the correct value.

F - the physical
description (=
Ohm’s law) for a
2 Ohm resistor in
circuit theory

16

One could even argue that “ isomorphism” is still too weak, since it does not distinguish
between I and all I ’ such that I ’ (x)=aI(x)+b for all a, b in the domain of f (see also
Cummins (1989), pp. 102). The same is true for the output encoding: O’ (x)=cO(x)+d for
all c, d in the range of f. Therefore, any one of the functions f ’ (x)=cf(ax+b)+d, i.e.,
c(ax+b)/2+d (which reduces to a’x+b’ for a’=ca/2 and b’=cb/2+d) seems to be a possible
candidate for the function realized by F. However, not all of them are reasonable, since
f ’ (x)=x for a’=1 and b’=0, for example, and this obviously defeats the purpose of the
resistor. In a way, there is only one (isomorphic) mapping that can do the job, the one
taking “0-volt” to “0” , “1-volt” to “1” , n-volt (where “n” is defined as the sum of n “1-
volt” elements) to n, etc. This also suggests an answers to a similar problem posed by
Cummins, who introduced the notion “direct interpretation” for a particular isomorphism
between symbolic and physical input/output, which he admittedly could not define
(Cummins, 1989, p. 104).

The above definition, being cast as a schema (parameterized by the theory P) to allow
for greatest possible generality, is naturally quite vague. It can neither specify what
“physical system” means (let alone its behavior) nor what the inputs and outputs are for
that system, but that is not its purpose anyway. These “empty places” will have to be
filled in with particular values from the respective theory P to make the definition
complete. In the above examples, one would substitute “circuit theory” for “P” ,
“resistor” for “physical system” together with the appropriate inputs and outputs (i.e.,
voltages and currents at the two ports of the resistor) as described. Other problems,
however, such as the (short) time lag between the point of application of the
voltage/current and the current on the output side (electrons moving only at a finite
speed), or the range of functionality of the physical system, require attention and will be
tackled as we start to mould this definition guided by practical constraints.

8. Analog Electr ic Circuits

So far, we have talked about the fact that electronic components can be described by an
“ input-output” function (which will naturally differ from component to component).
Each individual function is rather restricted, hence quite simple. So in order to allow for
more complex functions, one could consider more complex arrangements of these
components (systems of components). Take, for example, high-pass filters (consisting of
a resistor and a capacitor) which realize functions from frequency to frequency that will
be the identity for high frequencies and the constant function f(x)=0 for low frequencies.
One could also consider systems that change their input-output behavior depending on
other external factors (e.g., resistors change their resistance depending on their
temperature). In particular, these external factors might be exploited to make a system
more versatile. Take, for example, an amplifier which contains a potentiometer to allow
for adjustment of the amplification factor. It will then realize the function fp(x)=xp
(where p is the amplification factor, 0<p<=100, say). Notice that this function is
parameterized by and dependent on p.14 These kinds of functions are especially practical,
because they allow a single system to realize multiple functions; in other words, they
make it a “multi-functional” system. Every radio, for example, is such a multi-functional

17

system, being capable of receiving multiple channels and extracting the low frequency
information that was coded in the high frequency at different volumes (its function is
parameterized by “volume control” , “channel selection” , etc.).15

Although all components work in the real world and are, therefore, subject to time
and space constraints, I have not taken either into account. Take, for example, a delay
circuit (which outputs incoming signals, i.e., voltages, after a certain delay d). This
system seems to realize the identity function f(x)=x, but we would agree that it differs in
an essential way from a single copper wire (which also realizes the identity function): the
former only computes identity if time is left out; otherwise it realizes the function
f(x,t)=gx(t-d) (where f(x,y) is 0 for all y<d and gx(t) is the function that describes the value
of x at time t). This function is much more complex than the identity function, which
now can be seen as a special case when d=0 (obviously, if time is taken seriously, then no
physical system will ever realize the identity function, since d will never be 0).

Since time dependencies between input and output do not have to be constant
either—just take a delay where the delay factor is a multiple of the magnitude of the input
signal—even sophisticated input-output behaviors (with respect to time) are possible,
once time matters. Thus, the definition of “realization of a function” has to be augmented
by two time factors: an abstract time which is attached to the function f and the real-
world-time as described by P. In the following “RealTime” will always denote the set of
times derived from the theory P (e.g., the projection of the forth coordinate of space-
time), whereas “Time” is supposed to denote the set of abstract times (intervals or points).

Another important factor is the physical condition of the system when input is
applied, since, in most cases, the input-output behavior of the system will depend on it.
The output of a fully charged capacitor for a given input differs significantly from its
output for the same input if it is uncharged, for example. Hence, it is essential that the
physical description of the behavior of a system also contain a (complete) description of
its physical condition at the time when the input is applied. I will assume from now on
that this description of the physical condition is part of the description of S (e.g., the
initial conditions for a dynamic system).

Definition 4: A function f with domain D×Time and range R×Time is realized by a
physical system S (describable in a theory P) if and only if the following conditions hold:
1. There exists a (syntactic) isomorphic mapping I from the “ input domain” of S to D
2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S to R
3. There exists a (syntactic) isomorphic mapping T from RealTime to Time
4. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties over RealTime (i.e., F is a mapping from the “ input
domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) such that for all t∈Time and all x∈D the following holds: if
F(I -1(x),T -1(t))=<y,r>, then <O(y),T(r)>=f(x,t) (for y∈“output domain of S” and
r∈RealTime).

This straightforward augmentation has wanted as well as unwanted effects. The input-
output behavior of a system is now described as a functional relation between two graphs:

18

the graph of the input signal and the graph of the output signal over time. This way, the
temporal behavior of a system can be completely described. Suppose, for example, that it
takes time d for the electrons to pass a wire, then the function realized by the wire is
basically the one described above for the delay. However, abstract functions now have a
“time” attached to them and it is not quite clear what it means to have a “timed” version
of the addition function, say. One possible answer is to argue that physical systems
simply do not realize “timeless” functions (i.e., functions from timeless inputs to timeless
outputs). In other words, every input to a physical system has to happen in time and
hence the function which is realized by the system has to have a time parameter attached
to it (e.g., a Real parameter). This point has been stressed by adherents of dynamicsm as
one of the major shortcomings of the standard notion of computation: computations are
defined in terms of computational steps, not in terms of time (e.g., see van Gelder, 1998).

In some cases this time parameter is exactly what distinguishes one system from
another; given a delay circuit with 10 msec delay and another with 15 msec, dropping this
parameter would mean no longer being able to tell the two systems apart.16 Often,
however, the time relation between input and output does not matter. Two wires, made
of different material with different lengths, might (theoretically) still have the same
resistance (except that the output is sooner available in one wire than in the other). In this
case, we would like to ignore the time lag between input and output in order to be able to
speak of “the same function that both realize” . So, we first have to define what it means
for a system to realize a “timeless” function:

Definition 5: A “timeless” function f(x) with domain D and range R is realized by a
system S (describable in a theory P) if and only if the following conditions hold:
1. There exists a (syntactic) isomorphic mapping I from the “ input domain” of S to D
2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S to R
3. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties over RealTime (i.e., F is a mapping from the “ input
domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) and there exists a “delay-function” d(x) from inputs to times
(derived from F) such that for all r∈RealTime and all x∈D the following holds: if
F(I -1(x),r)=<y,r+d(x)>, then O(y)= f(x) (for y∈“output domain of S”).17

Notice that the time delay of the output is defined as a function of the input because the
relation between time lag and input will not be constant in all systems, but may depend
on specific inputs (e.g., if input and output to a capacitor are currents, then the capacitor
will produce delayed output depending on its capacity). This definition can then be used
to show that both wires discussed above, in fact, realize the same “timeless” function
f(x)=x: there exist two delay-functions d1(x) and d2(x) (from inputs to times), namely
d1(x)=0.01 and d2(x)=0.015 for all inputs x, such that if x is the input to both systems at
time t, then one system will output x at time t+d1(x) and the other will output x at time
t+d2(x). The last step accomplishes a crucial abstraction: the actual duration, the link
between input and output, the “behavioral” process that the system exhibits when an
input is applied, resulting in a delayed output, is neglected in favor of a “timeless”

19

mapping! This way various different systems will realize the same timeless function
independent of the time lag between input and output, i.e., their “speed”. It now becomes
possible to compare different systems with respect to their “functionality” , when time
does not matter. This, again, is a commonplace for computer practitioners: a PC with a
133 MHz CPU and one with 200 MHz CPU (other things being equal) differ only in
speed, but not in functionality.

Three remarks seem necessary at this point:
First, physics certainly places restrictions on the domain of the input, the domain of

the output, and the system itself. For example, one cannot expect to apply arbitrarily high
currents to a wire of a given size, not only because it would be hard to generate them, but
also because the wire would melt. This kind of dependence automatically delimits the
range of the abstract function that a physical system is able to realize. So, strictly
speaking, a wire that realizes the identity function according to the above definitions does
not realize the whole function, but only a part of it (the part in which the wire “operates
normally” according to the laws of physics; in the other part it will, of course, still work
according to the laws of physics, but different factors will come into play, and the
original equations will no longer apply). There are also physical reasons why certain
components have to have (at least or at most) a certain size (e.g., a capacitor that can
store the charge of 500 F will be too big to be soldered into a standard circuit board).
These constraints, in turn, might have an influence on the time-factor of the system, as
space and time are inseparably interwoven.

Second, there is also a limit to the accuracy with which an input signal can be
generated and an output signal can be recognized (see also Haugeland, 1982). This
problem results from the limits of measurability of physical magnitudes, no measurement
will be 100% exact, but will always contain an error—i.e., will be within some (small)
range of the actual value. Hence, from a practical point of view, the mere knowledge that
a certain circuit actually realizes a very complicated function might not be of great help if
there is no way of making inputs precise enough and/or reading off its outputs with
sufficient precision.

And last, one final remark concerning the nature of electric circuits. When one hears
“electric component” , one automatically associates this term with man-made parts that
are used to solder circuits. Thus, one implicitly assumes a certain physical structure:
silicon-arsenide molecules, gold wires, etc. And, in fact, at the beginning of this section,
I suggested exactly that. However, one could broaden one’s perspective and also
subsume “natural” (i.e., non man-made) electric components and circuits. In particular,
one could view neurons as circuits with electric properties (a description of the
functionality, of course, will include laws of chemistry, cell-biology, etc.). Given their
electric properties and the nature of their inputs and outputs, neurons then realize certain
functions (the ones that can be related in the above sense to their physical make-up). And
the fact that neurons are made of “biologically describable stuff” does not mean that there
might not be a man-made “artificial neuron” (possibly made out of inorganic substances)
with the same properties (or if not entirely the same, then at least with respect to the
input-output behavior) that in turn will realize the same functions. So one way to
understand natural cognitive systems is to analyze what functions neural circuits realize,

20

at exactly the electric level of description. These functions can then be compared (with
or without taking time into account) with the functions realized by artificial systems, or
analyzed mathematically. In any case, it will be possible (once the physics of neurons is
fully understood, if that is ever possible...) to determine the class of functions that are
realized by neurons. And that, in turn, will eventually allow us to look at the complex
input-output behaviors of networks of neurons (which then can be described as possible
combinations—such as compositions, iterations, etc.—of the class of functions realized
by a single neuron).

9. Digital Electronic Circuits

The last section showed that the electric level of description allows us to describe a vast
variety of complex circuits together with the functions they realize. However, I have
already mentioned that theory is only part of the story, and that practice is quite another.
Although one can theoretically define devices that realize very interesting functions, it
might not be possible to build and/or detect them (due to a lack of sufficiently precise
tools, measurement instruments, etc.). Another factor to consider is the impact of the
environment on real-world devices. The influence of noise levels and other disturbances
might prevent the circuit from functioning according to the “ idealized” laws of physics
(“ idealized” in the sense that all possible environmental influences are normally not taken
into consideration in standard formulations of physical laws when used in practical
settings...).18 Hence, every description will have a “small” error term ε attached to it for
the margin of error within which the system’s behavior cannot be exactly predicted.
However, once such an error boundary is given (together with reliable physical
conditions that the system will stay with sufficiently high probability within these
boundaries taking the environment of the system into account), then one can use these
systems for an inquiry into the nature of the functions they realize. The main difference
now (compared to the previous definition 5) is that the output of such a system will not
be the same under the same input conditions, but always within a certain interval
(actually, the same is true for the input as well, since it is practically impossible to
generate arbitrarily precise inputs).

This change in precision (i.e., the relaxation of the constraints) has to be taken into
account in the formulation of a new version of the definition “realization of a function” .
Note that four different error terms will have to be defined in advance (εdin, εdout for input-
output magnitudes and εtin, εtout for input-output times):

Definition 6: A “timeless” function f(x) with domain D and range R is (practically)
realized by a system S (describable in a theory P) with εdin, εdout for input-output
magnitudes and εtin, εtout for input-output times if and only if the following conditions
hold:
1. There exists a (syntactic) isomorphic mapping I from the “ input domain” of S to D
2. There exists a (syntactic) isomorphic mapping O from the “output domain” of S to R
3. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties over RealTime (i.e., F is a mapping from the “ input

21

domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) and a “delay-function” d(x) from inputs to times (derived from
F) such that for all r∈RealTime and all x∈D the following holds (for notational
convenience abbreviate the error interval for y determined by ε as
INT(y,ε)=def{ y|y-ε<=y<=y-ε}): if F(I- 1(INT(x,εdin)),INT(r,εtin))=<Y,Z>, then
O(Y)⊆INT(f(x),εdout) and Z⊆INT(r+d(x),εtout) (for Y⊆“output domain of S”).19

This definition works in a practical setting as follows: suppose the system S is given
together with a physical description of its functionality F and measurement errors εdin,
εdout for the input-output magnitudes, and εtin, εtout for the input-output times. For every
input x to the system (which could be anywhere between I -1(x-εdin) and I -1(x+εdin)), the
output needs to be within O -1(f(x)-εdout) and O -1(f(x)+εdout) (under the given mappings I
and O, of course). If f (or F for that matter) is unknown, then it can be approximately
determined by repeatedly applying various values of x to the system. Engineers, for
example, when they measure voltages at different places in a circuit in order to find the
reasons for the system’s improper functioning, use implicitly a definition of the above
kind. In general, every measurement will reach the limits of precision at some point, and
then the “original” value can only be “estimated” from the results of many different
measurements (within a certain interval).

Although this definition seems more appropriate given practical limitations, it is still
not satisfactory. The most urgent problem is certainly one that cannot be accounted for
by a definition in principle: what if the errors are (too) large? Then either the
(input/output data-entry/measurement) instruments have to be refined or the system is
probably of no practical use (independent of the function it theoretically realizes…). If
we restrict ourselves, therefore, to systems with acceptable error margins, then the
following three increasingly important shortcomings call for improvements:

First, notice that the range of data-entry/measurability is limited for every physical
system (as already mentioned at the end of the previous section). From a practical point
of view, there is not even a single physical system that realizes the addition function for
all integers. The best that can be hoped for are systems that realize parts of that function.
So, further restrictions have to be imposed on inputs and outputs: the domain of the
abstract function has to be restricted to the interval [xmin,xmax] which is determined by 1)
the data-entry/measurability constraints of devices producing the inputs and measuring
the resulting outputs and 2) the range within which the physical system functions
normally according to the laws of physics (a resistor, for example, does not behave
normally when it starts to melt because the applied current is too high).

Second, the relation between input and output errors has hitherto been neglected. The
only requirement imposed was that they be small enough to be of practical use.
However, their relation becomes critical as soon as networks of circuits (which are
constructed by connecting outputs of some circuits to inputs of others) are considered.
Assume that three serially connected resistors form a circuit. Suppose that all resistors
have an output error which is 10 times greater than their input error. Then the output
error of the whole circuit will be 1000 times the input error (and that might already be

22

unacceptable). It seems, therefore, reasonable to require that the output error be less than
or at most equal to the input error to allow for the construction of complex circuits, while
at the same time keeping the overall error small.20

Finally, but most importantly, there are generally problematic cases in which the
difference of two inputs to a system, x1 and x2, whose “error intervals” [x1-εin,x1+εin] and
[x2-εin,x2+εin] overlap, is crucial. It is not clear at all how such a system could be of
practical use. The main problem is that the function f which is supposed to be realized by
S will be real-valued (as a consequence of P for most theories P), whereas the function
describing the system’s behavior (in terms of measurability) seems rather discrete-valued
(a function from intervals of Reals to intervals of Reals with interval size 2*ε). Or to use
a metaphor: the abstract function is too “precise” for its “smudged” worldly counterpart.
As long as there are overlapping regions between intervals in F which correspond to two
distinct values of f, there will be cases in which, given a value x’ in an overlapping
region, one can neither determine the original x nor the resulting f(x). The reason is that
no bijection exists (hence no isomorphism either) between the Reals and disjoint intervals
of the Reals of size 2*ε for any ε>0. Hence, it would make more sense to let f take values
in the Integers (or Rationals) rather than the Reals. This would allow one to map discrete
values to unique intervals if, in addition, the data-entry/measurement errors were small
enough so that the intersection of any two images of discrete values, i.e., intervals, is
empty. In such a system, all values of f could be measured/produced, hence the system
would not only theoretically, but also practically (and verifiably) realize the function f (of
course, only within the boundaries of [xmin,xmax]). Notice that this last requirement
implies that only certain finite (“timeless”) functions can ever be totally realized (since
there are smallest and largest values determined by the errors and/or physical possibilities
of data-entry/measurement such as energy constraints, uncertainty, observability, etc.
which, in turn, are determined by size constraints of the physical system…).

Taking all three modifications into account, we can define what it means to realize a
part of a discrete-valued function f for given error terms εdata and εtime (which describe the
measurement error of data and time, respectively—the output error is now assumed to be
at most the input error, hence only one error term is needed):21

Definition 7: A “timeless” discrete function f(x) with domain D and range R is
(practically) realized within [xmin,xmax]⊆D realized by a system S (describable in a theory
P) with errors εdata for input-output magnitudes and εtime for time if and only if the
following conditions hold:
1. There exists a (syntactic) isomorphic mapping I from disjoint intervals of the “ input

domain” of S (where the interval length is >2*εdata) to D
2. There exists a (syntactic) isomorphic mapping O from disjoint intervals of the “output

domain” of S (where the interval length is >2*εdata) to R
3. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties over time (i.e., F is a mapping from the “ input
domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) and a “delay-function” d(x) from inputs to times (derived from

23

the F) such that for all r∈RealTime and all x∈[xmin,xmax] the following holds:
F(I -1(x),r)=<O -1(f(x)),r’> (where r’∈[r+d(x)-εtime), r+d(x)+εtime]).

22

This definition has achieved a great abstraction step: the magnitudes of physical
dimensions have been “discretized” to guarantee practical applicability, i.e., continuity
has been given up. However, the discrete values are still closely tied to the continuous
values that describe the functionality of S in P. What is different, in more metaphorical
terms, is that a grid (with box size >2*εdata) has been superimposed on the functional
graph, and only the points where the graph intersects with the grid are now considered.

Comparing definition 7 to definition 3, it becomes obvious how by incorporating
physical and practical constraints, one arrives at a very restricted definition of what it
means for a physical system to realize a function. Surely, we could have been satisfied
with definition 4 or even definition 5, and for theoretical purposes they are just fine. But
since we are interested in systems that we can actually use for various tasks (and might
have to build in order to use them), we have to restrict ourselves to accessible ones,
systems that can be utilized because they allow us to generate inputs and measure
outputs.

One of the tasks that systems can be used for is “computation”—i.e., they can be used
as “computers” . For something to qualify as a “computer” it has to be at least a useable,
physical system, which allows for data input and for measurable output, which works
within reasonable time constraints and is sufficiently reliable.23 Of course, other
conditions will have be added depending on one’s view of “computers” such as
“executing an algorithm”, etc. Some systems that realize functions according to
definition 7 have all those properties by virtue of discretizing magnitudes and restricting
the domain of possible values, others—where time plays a crucial role—require
additional constraints on time (see definition 8). Not for all such systems will it be
possible to define small error values, but some systems, those that are especially designed
to facilitate the input/output-mappings for certain intervals, will be extremely reliable
(because intervals are “ far” apart and error values, for both time and magnitude, are
small). Furthermore, these systems will be constructed to realize functions with a very
small, finite domain (of mostly only two values!).

These properties together have often been summarized as the “digitality” of a system
(see Haugeland, 1982, p. 215, or Haugeland, 1996, p. 9), i.e., the fact that there are
“reliable” procedures for applying input and measuring output within the operating limits
of the system and that there are finitely many distinct, discrete values given those limits.
“Digital” means something like “of, relating to, or using calculation directly with digits
rather than through measurable physical quantities” (Webster’s dictionary, 1995, italics
are mine).24 Although systems that fall under definition 7 do not necessarily calculate,
let alone with digits, they provide all the prerequisites that a system must have to support
digits, since they realize discrete (timeless) functions by virtue of the physical laws that
describe their behavior for a given set of inputs. Hence I will call them “digitality
supporting systems”.

Many electric components are especially designed to support two digits, so-called
Boolean circuits (such as AND-gates, OR-gates, NOT-gates, etc.). Most of them realize

24

very simple functions such as the XOR function: f(x,y)=0 if x=y, otherwise f(x,y)=1
(where ‘0’ and ‘1’ are the two digits). Note that it is sometimes necessary to explicitly
bring time into the picture again, especially to describe functions that use feedback (or to
avoid unwanted behaviors in complex networks of Boolean circuits where the delay time
of each unit becomes a critical factor in the overall performance). This requires us to
make a final abstraction and change f in definition 7 from “timeless” to “discrete time”
(analogous to definition 4), where the input and output domains of f now also contain
“discrete times” from the set Time (normally modeled by integers):

Definition 8: A discrete function f(x,t) with domain D×Time and range R×Time is
(practically) realized within [xmin,xmax])⊆D by a system S (describable in a theory P) with
errors εdata for input-output magnitudes and εtime for time if and only if the following
conditions hold:
1. There exists a (syntactic) isomorphic mapping I from disjoint intervals of the “ input

domain” of S (where the interval length is >2*εdata) to D
2. There exists a (syntactic) isomorphic mapping O from disjoint intervals of the “output

domain” of S (where the interval length is >2*εdata) to R
3. There exists a (syntactic) isomorphic mapping T from disjoint intervals of RealTime

(where the interval length is >2*εtime) to Time
4. There exists a function F that describes the physical property (=behavior) of S for the

given input-output properties over time (i.e., F is a mapping from the “ input
domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) such for all t∈Time and all x∈[xmin,xmax] the following holds: if
F(I -1(x),T -1(t))=<X,Z>, then <X,Z>=<O-1(x’),T -1(t’)> (where f(x,t)=<x’ ,t’>).25

This definition looks very much like definition 4, except that all values are discrete
instead of continuous. So, the above XOR function can now be captured as f(x,y,t+1)=0
if x=y at t, otherwise f(x,y,t+1)=1 (and f(x,y,0)=0, say). And it can be used to define more
complicated functions using feedback over time, such as the “oscillator” function g which
alternates between 0s and 1s, once the input changes from 0 to 1: g(x,t+1)=f(g(x,t),x,t+1)
and g(x,0)=0 (it will be realized by a simple XOR gate where the output is fed back into
its second input line).26

Figure 4 The oscillator circuit: once the input is changed from 0 to 1,
the output will oscillate between 0 and 1 as long as the input is 1.

To summarize the achievements so far: starting at the level of electric components
and the physical descriptions of their properties, I defined the notion “a system realizes a

XOR

25

function” where the system consisted of components describable in terms of the physics
of electricity. This notion was then—step by step—refined to account for practical
problems regarding precision of production and measurement of signals, reliability, range
of functioning, environmental influences, etc. The final definitions 7 and 8, respectively,
related a discrete function (with a time parameter) to digitality supporting systems, i.e.,
systems that are of practical significance because inputs to them can be generated, and
outputs (occurring after a limited time, possibly depending on the nature of the inputs)
can be recognized and measured.27

10. From Circuits to Digital Systems

Definitions 7 and 8 have made two major abstractions (as compared to definitions 5 and
4), but neither times nor input/output magnitudes are completely “decoupled” from the
concrete. The relation between input/output magnitudes as well as the one between
points in time (i.e., the space-time metric) is still reflected in the input-output mappings
together with their respective error terms. Values still stand for themselves and time
points still have their unique place in the continuous flow of time, whereas in genuine
digital systems only order matters, (spatial or value) distance and duration, i.e., metric
distances, are secondary (if defined at all). It is not essential how “far apart” any two
consecutive points are in time or space (of course, within limits) to be a particular digital
system. In fact, different digital systems are shown identical qua digital system exactly
by virtue of abstracting over physical peculiarities. Two steps must, therefore, be
undertaken in order to prepare physical systems for genuine digitality: existential
quantification over the particular error terms and a relaxation of the input-output
mappings from isomorphisms to isomorphic embeddings.

The first takes care of spatial and temporal distance of value and time, respectively.
Different physical systems will then realize, i.e., be the same digital system, even though
they differ with respect to their error terms and the magnitudes of their input-output
values. Take, for example, two physical systems (realizing binary AND-gates) which use
different voltages for the binary values 0 and 1 and have different gate times. Both will
now realize the same AND-gate (because of existential quantification over their error
terms). To see that this is not sufficient, however, consider a ternary AND-gate, AND3,
using the values 0, 1, and 2 (the strong Kleene AND-function, say). Assume that two
different physical systems, S3 and S10, are given. S3 operates within [0,4] Volts and
“maps” { 0,1,2} to voltages according to I(x)=O(x)=[x+1-0.1, x+1+0.1] with input-output
and time errors of 0.1 (where the time mapping is given by T(x)=[x+1-0.1, x+1+0.1]). S10

operates within [0,130] Volts and “maps” values from { 0,…,9} to voltages according to
I(x)=O(x)=[(x+1)2 -0.5(x+1),(x+1)2 +0.5(x+1)] with input-output and time errors of
0.5(x+1) (the time mapping is again given by T(x)=[x+1-0.1,x+1+0.1]). Whereas the
former is built to work for ternary systems only, the latter is thought to work for decimal
systems. Notice that input-output mappings in S10 are not linear, but quadratic (because
they depend on the input-output error). Suppose now, that S10 is used as AND3 instead of
S3 (because the following voltages: “100” (±10) for “1” , “10” (±10) for “0” , and “50”
(±10) for “2” are required in a given practical setting, say). Then S10, realizing the

26

decimal AND-gate AND10, also realizes AND3 under the isomorphic embeddings I* and
O* obtained by composing I and O with E defined by E(0)=1, E(1)=9, and E(2)=4.28 So,
both systems realize the same (abstract) function, namely AND3 under relaxed input-
output constraints (“digits are decoupled from the grid imposed on F by the input-output
mappings and the error terms”). And the speed of the circuits is negligible as long as it
stays within some limits determined pragmatically by the purpose of the circuit’s use.
Yet, it is important to keep in mind that these mappings are still not arbitrary (as they still
preserve the relation between different inputs), rather they permit us to “pick and choose”
specific values as digits (if only the distinctness of digits and neither their order nor
relative magnitudes matters).

For some circuits, the current output depends only on the current input. For many
others, the previous output will matter, too, especially for those circuits that allow
(internal) feedback. The current output of the “oscillator” circuit defined in the previous
section, for example, depends on the previous output and the current input. Hence, we
arrive at functions that are realized by digital systems over time:

Definition 9: A discrete function f(x,t) with domain D×Time and range R×Time (D and R
finite) is realized by a system S (describable in a theory P):
1. There exists a (syntactic) isomorphic embedding I from disjoint intervals of the “ input

domain” of S (where the interval length is >2*εdata for some εdata dependent on S) to D
2. There exists a (syntactic) isomorphic embedding O from disjoint intervals of the

“output domain” of S (where the interval length is >2*εdata for some εdata dependent
on S) to R

3. There exists a (syntactic) isomorphic mapping T from disjoint intervals of RealTime
(where the interval length is >2*εtime for some εtime dependent on S) to Time

4. There exists a function F that describes the physical property (=behavior) of S for the
given input-output properties over time (i.e., F is a mapping from the “ input
domain”×RealTime of S to its “output domain”×RealTime described in the language
and by the laws of P) such for all t∈Time and all x∈D the following holds: if
F(I -1(x),T -1(t))=<X,Z>, then <X,Z>=<O -1(x’),T -1(t’)> (where f(x,t)=<x’ ,t’>).29

Digital systems (according to definition 9) are physical systems that realize certain,
discrete functions with finitely many input and output values (depending on their physical
make-up). Only a finite set of discrete magnitudes corresponding to (some of the) input-
output values together with the temporal order of applying input at a certain time and
receiving output at some later time is retained (from the physical description of their
functionality). The specifics (of how these finite values relate to each other or what the
duration between any two points in time is) are ignored; hence the information about
them is lost. It is given up in exchange for a purely theoretical treatment of these
systems: the physical (engineering) level of description is left in favor of a mathematical
level of description, where one can study functions realized by digital systems and their
properties without recourse to the concrete using tools from mathematics and formal
logic.

27

The system S10 from above (which realizes AND3 as well as AND10) may elucidate
this shift from the concrete into the abstract realm. Only three out of the ten values S10

was designed for, found their use in AND3, and their choice was merely guided by
practical reasons; nothing theoretical forced it. In a sense, it was the set of all possible
inputs (and outputs, i.e., the practical constraints) together with the function E that
determined whether the gate functioned as a ternary or as a decimal AND-gate. The
input 1, for example, could be either mapped onto I(1)=[3,5] or onto
I* (1)=I(E(1))=I*(9)=[95,105] Volts, depending on the input encoding that is used. In
other words, the “embedding” E suggests that AND3 can be “realized” by AND10, where
this kind of “realizing” can be spelled out as “there exist embeddings I3,10 and O3,10 (in
the above case E) between the domains and ranges of AND3 and AND10, respectively,
such that for all x and y in the domain of AND3 the following holds:
O3,10

-1(AND10(I3,10(x),I3,10(y)))=AND3(x, y), so “comprising” would be a better term.
The fact that I* is composed of I and E (i.e., I*=E°I for some E) shows that and how one
can determine, on purely mathematical grounds, that S10 realizes AND3. It even provides
a strategy to determine the class of functions that a physical system S realizes under
definition 9: take the function f that S realizes according to definition 8. Then all possible
subsets of that function (up to renaming of the elements) will be realized by S according
to definition 9. Notice that instead of considering the relationship between a function and
a physical system, the relationship between two functions becomes the focus of attention,
as captured in the following definition:

Definition 10: A finite function f(x) with domain Df and range Rf is comprised by
discrete, finite function g(x) with domain Dg and range Rg if and only if the following
conditions hold:
1. There exists a bijective mapping I from Df into a subset of Dg

2. There exists a bijective mapping O from Rf into a subset of Rg

3. For all x∈Df: g(I(x))=O -1(f(x)).

Using definition 10, one can show that S10 realizes every ANDn for n<=10 by proving
that every ANDn for n<=10 is comprised by AND10, and in consequence, that S10 realizes
the function NOTn(ORn(NOTn(x),NOTn(y))) for all n<=10 (once its identity with ANDn is
proved for all n). The same technique can, furthermore, be used to prove that S10 will not
realize any ANDn for n>10 (assuming the given physical description of S10). And this
kind of negative result could never be obtained within the physical theory itself!

11. Discussion

At this point I will interrupt the exposition, which could have continued to show how
mathematical tools are applicable, how metatheoretical results can confine various
classes of physical systems, how representations enter the picture, etc., but this is all part
of another story. My goal in this paper was to show how one could bridge the gap
between the concrete and the abstract, between physical systems and the computations
they implement. It should be apparent now what the notional pair “computation-

28

implementation” had to make way for: the notion “realization of a function” , i.e., what it
means for a physical system S described in a theory P to realize a function f. Beginning
with a definition of “realization of a function” that was closely tied to the theory
describing the system, more and more constraints were incorporated leading to more and
more restricted classes of physical systems (and thus restricted functions that are realized
by those systems). Stepwise abstraction over physical dimensions and magnitudes
eventually led to digitality, to the total abstraction over physical realizations. It enabled
us to talk about functions such as AND-gates, registers, and even von Neuman
computers, independent of their physical realization (while knowing at the same time,
how these functions could eventually be realized physically in digital systems). Digital
systems can, therefore, be viewed as implementations of the functions they realize, and
these functions, in turn, will be the “abstract” computations that are realized by physical
systems (i.e., digital systems). Note that even people who require that computations
exhibit some kind of algorithmic structure should be satisfied, since digitality, i.e., the
discreteness in space and time, lends itself naturally to algorithmic descriptions. In fact,
every (reasonably-sized) finite state automaton, for example, can be described as a digital
system (hence, implemented in a digital system described by some physical theory, e.g.,
circuit theory): just represent the FSA as a two-dimensional matrix (“ lookup table”),
where states are row indices, input characters column indices, and matrix elements
contain the “next state” for the respective indices. This matrix, in turn, can be
implemented using digital circuits (such as memories, counters, decoders, etc.).

The approach developed here differs significantly from the “state-to-state
correspondence view”: it does not require a notion of physical state, but determines
directly the function which is realized by a physical system. Furthermore, it does not
have to assume a particular computational formalism (to which the physical system
exhibits a state-to-state correspondence), but can be related to computations described by
any computational formalism (such as FSAs, TMs, PASCAL programs, cellular
automata, etc.) via the function that these computations give rise to (see figure 5). It
works for arbitrary levels of description of physical systems as well as different
computational formalisms (as long as they provide a criterion of how to specify the
function they compute). Thus, Putnam’s construction does not pose a threat, since
neither states/state types nor correspondence mappings have to be defined.

The main reason why the whole enterprise was guided almost exclusively by practical
considerations is my focus on functions realized by systems that we can recognize and
use (eventually as computers). Computing is an activity that can be recognized as such,
initiated, performed, analyzed, etc.; an activity that is employed for various purposes.
Searle’s wall, for example, might realize a very complicated function at the level of
fields, but we are not able (or at least not now) to utilize it for computation. That is not to
say that only systems computing “by virtue of their digitality” are fit for computation.
Various analog systems (and their physical properties) have been applied for fast, reliable
computations.30

29

Computation

 State to State
 Correspondence f

Physical system
described at a
given level

Figure 5 The difference between the state-to-state correspondence
view (left) and the “ functional realization model” (right): in the latter,
functions serve as mediators between physical systems and
computations.

In the end, what kind of system is useful for computation is decided by who is using
it: digital computers are built by us humans, because they are useful to us. Brains have
evolved in animals and are obviously of use for them. Different kinds of currently not
considered systems could be appropriate and applicable for computation. If
“computation” is to mean “computing a function” and if this, in turn, is interpreted as
“ finding the value of the function for a given argument” (not necessarily “effectively”),
then standard notions of computation are included as well as ones that do not rely on
“manipulations of representations” (such as analog computations performed by VLSI
chips, neural networks, etc.). Computational practice is certainly not limited to the
former kind.

In a way, every system (described at some level L) that realizes a function could be
seen as a computer, namely a computer computing that very function. But most of those
“computers” are not useful for us; because we have no influence on their inputs and
outputs, we might not be able to measure them or even recognize them as such. Hence,
these systems do not qualify as “computers” (in a practical sense), although they could
still be of interest for cognitive science. It might well be the case that cognitive systems
are best described at level L and that at this level we cannot produce the right kinds of
inputs and outputs, design and assemble the right kinds of components, etc. (because of
technical problems). This result would be fatal for the artificial intelligence branch of
cognitive science, since it would preclude the construction of artificial cognitive systems
and very likely an understanding of cognitive systems in general). What makes us
believe that this is not the case is that certain cognitive systems (e.g., human brains) can
at some level be described as being digital (e.g., the symbol level). This abstraction over

Function
realized by the
system and
“described” by
the computation

30

the physical properties of human beings was essential to Turing’s definition of the “ ideal
human computer” where human capacities to calculate were phrased in purely symbolic
(i.e., digital) terms (token manipulation, rule application, etc., see also Haugeland, 1996).
Whether the description of the brain at this or at a lower level (and the functions realized
at that level) is essential to human cognition remains an empirical issue. It necessarily
affects CCM, since the class of functions realized by digital systems is exactly what is
commonly taken to be the extension of “computable” . Assuming that the brain can only
be described adequately at a level lower than the digital one, there are two possibilities:
either the notion of computation has to be changed to the class of functions realized by
systems described at that level, in which case CCM is true, otherwise CCM is false (if the
“digital level of description” is adequate for the brain, however, then CCM is true). In
any case, this is an empirical question that can only be decided by looking at the
functions that (parts of) natural brains realize.

12. Conclusions

The driving force of this paper stems from the significance of the notions of computation
and implementation for both cognitive science as well as the foundations of computer
science. The lack of a tenable notion of implementation, however, renders CCM
meaningless and shakes the fundaments of computer science. Since a general solution to
the “ implementation problem” in terms of a state-to-state correspondence theory of
implementation seems extremely unlikely, a different approach is required, I claimed, one
that starts with physical systems and their descriptions. The notions “computation” and
“ implementation” were given up in favor of various gradually refined notions of
“realization of a function” . These notions were developed from physical theories by
abstracting over various physical properties culminating in the notion “digital system”,
which singles out systems that can be practically used and possibly even built. The issues
at stake “do-ability” , “ feasibility” , “usability” , “practicability” , “reliability” , etc. are not
only essential to computer science, but also of crucial importance to CCM: if natural
cognitive systems do essentially exploit “errors” , “unmeasurable (maybe infinitesimal)
magnitudes” , “quantum effects” , etc., then they are essentially non-digital systems and
cannot be described solely in terms of functions realized by digital systems (although
some of their aspects might still be describable as being digital). However, this issue
cannot be resolved in principle, but only by empirical investigations into the functionality
of natural cognitive systems. The same empirical constraint is true with respect to the
extension of the class of digital systems: the class of functions realized by digital systems
depends crucially on (all possible) physical theories P. This is not a shortcoming, but a
virtue of the approach. Whereas the kinds of physical systems that could be used for
computing have to be determined theoretically (by looking at the restrictions posed by the
various definitions), the class of physically possible systems depends on physical theories
alone. I believe that the various notions of “realization of a function” provide a viable
alternative to the standard notions of computation and implementation for this very
reason. Furthermore, they open up a perspective which exposes the “computational”
confinements that go hand in hand with the abstraction over physical peculiarities.

31

Acknowledgements
Special thanks are due to Brian Cantwell Smith for his valuable comments during the
various phases of this paper. Also, I would like to thank an anonymous reviewer for
helpful suggestions to improve readability.

Notes

1 It is important to notice the different implications of those attacks: whereas CCM could still be true for the
former under a new, “revised” notion of computation, it will remain untenable for the latter unless a better
notion of implementation is provided. As with almost every important and often used notion in computer
science, “ implementation”, too, has a variety of different meanings which I discuss in Scheutz (1997).
Here I will restrict myself to the reading suggested in the text, i.e., the relation between an abstract
computation and a physical system realizing that computation.
2 Since this paper is primarily concerned with the development of a positive account of implementation, I
will restrict myself to a conceptual criticism of Putnam’s arguments and objections to it. An analysis of
Copeland’s notion of implementation reducing it to a state-to-state correspondence view can be found in
Scheutz (1998), a detailed study of various versions of the state-to-state correspondence view and their
respective problems in Scheutz (1997).
3 There are various extensions of Putnam’s result that limit the range of possible responses: it can be proved
for finite state machines with input and output, for Turing machines with only input, for state machines
with (countably) infinitely many states, and, finally, for state machines that can read countably infinite
strings of characters, see Scheutz (1997).
4 At the level of fields, the question what exactly counts as an individual is a highly debated issue. It is not
all that clear that Quantum Field Theory, for example, even contains individuation criteria for particles.
5 Gödel (1958), for example, thought that human intuition, especially mathematical intuition, could exceed
Turing computability, and his hunch is shared by influential logicians and scientists such as Feferman and
Penrose.
6 Notice that what is an electric component (e.g., resistors, capacitors, transistors, vacuum tubes, copper
wires, etc.) is assured to be already determined and given. In particular, I will be talking about those
electronic objects that I can buy in a store and weld into a board with copper connections on one or both
sides to build things like radios, amplifiers, pocket calculators, and the like. Of course, a star has also a
resistance (and, to some degree, resembles a resistor) and so does a molecule, but neither of them has the
right size to be of use for a device that I can build, and this is all that matters if I want to listen to my
favorite radio show or quickly calculate the accumulated interest in my bank account.
7 Besides the fact that all kinds of objects can be described by the theory of “electric circuits” , one could
even doubt that it is clear what “object” means in this case. In other words, one could question the very
notion of “object” and argue that circuit theory does not provide sufficient criteria for the individuation of
its basic objects. Then the above level cannot be taken for granted, and one has to dig deeper into the
metaphysical stuff to find substance and defining properties of objects (e.g., see Smith, 1996). From a
pragmatical point of view, however, I believe that this step is not necessary: there are ways to find out if
something is a (standard) “resistor”, say, and even if a “ thing” is not clearly a resistor, if it has the
appropriate resistance (and that can be measured) and the appropriate shape, form, size, etc. it could be
used as one.
8 Actually, one reason to pursue this particular line of construction was exactly to avoid arguments about
notions such as “counterfactual” , “(natural) law” , “ law-likeness” , “obeying a law” , etc. A consent on what
it means to “obey a physical law” or “ to be a law of nature” is simply presumed.
9 It seems to be a characteristic property of levels of description that if at a given level n a “what” -question
can be answered, the corresponding “how”-question has to be answered at a lower level (if it can be
answered at all).

32

10 With “ field axioms” I mean the set of axioms that describe properties of voltages and amperes with
respect to “(voltage/current) addition” and “(voltage/current) multiplication” . These axioms are necessary
in order to define the “mathematical” properties of volts and amperes… Note that I left out quotation
marks around all formulas in favor of readability.
11 It is an interesting fact that we are completely used to talking about “quantitative physical properties” in
terms of numbers, so used that it seems impossible to leave numbers out: all physical properties have a
qualitative and a quantitative aspect (e.g., 100 kg or 20 m/sec). One likely reason is that the language of
physics is built upon the language of mathematics, i.e., the language of (real/complex) analysis. There are,
however, other ways of defining quantitative aspects in physics (e.g., nominalizing physics in the sense of
Field).
12 Cummins (1989) defines a notion called “a device satisfying a function” , which priama facie looks very
similar to my “a physical system realizes a function” . There are two main differences, however: first,
Cummins defines the relation of satisfaction only for functions that have the same input and output domain
as the physical system, and second, he requires that input-output criteria for a given device can be specified
which will determine if a given state of the system is an output value and if so, which state the
corresponding input value was. His definition does not use a physical description of the device (which
would eventually lend itself to a functional specification), but involves counterfactuals (to specify “state-
transitions”), and at the end falls prey to Putnam’s construction (since it does not specify the level of
description of the physical device).
13 One could “relax” the mapping by requiring that D only be a subset of the input domain of S, thereby
allowing the system to also realize functions that are “ less complex” (in very much the same manner that
the identity function over the Reals contains the one defined over the Rationals which in turn contains the
one defined over the Integers). See section 10.
14 It is worth pointing out that parameters differ from inputs in an essential way: they are normally adjusted
until a desired value is reached (e.g., the volume of the amplifier before the guitarist starts to play), and
then they remain set to this value, whereas the input will continue to change. This is, of course, only a
rough cut, but it hints at the role of parameters in reconstructing the concept of “program” from physical
peculiarities of certain systems.
15 Adding adjustable parameters to physical systems actually marks a crucial step in my endeavor of
representing the computational story. Once the transition from realizing one function to realizing multiple
functions has been made, it is only natural to ask: “What class of functions does a system realize?” . In the
extreme case this class might turn out to be the whole class of functions itself (for a given definition of
“realization of a function”). Those systems (the existence of which has to be argued for, of course) could
then be called “universal” (with respect to the given definition).
16 This idea could eventually give rise to a very different approach to computation, an approach that is
essentially built upon the temporality of physical processes. Abstraction would, of course, be possible in
many directions (e.g., towards digitality, see the next section), but duration and temporal order, being
central, defining concepts, could never drop out during an abstraction process. This view on computation
might come closer and do more justice to the behavior of what are called “embedded systems” (but I will
not dwell on this here). Interestingly, operating or real-time system designers have been making a living
out of coping with real-time constraints for quite some time.
17 Note that if d were totally unconstrained, very strange time lags would be allowed in principle.
Fortunately this is not the case, since the physics of the system (of components in this case) will put
restrictions on the time-dependencies between input and output (such that there will be no “ jumps” , no
“points of discontinuity” , etc., the function will rather be “smooth” , “continuous” , etc.): time dependencies
will be law-like. More precisely, d(x), being extracted from F, cannot be a “strange” function without
rendering the whole system abstruse, if not absurd.
18 Interestingly, the proof of Putnam’s Realization Theorem relies on the so-called “Principle of Non-
Cyclical Behavior” , which is true of systems that are not shielded from environmental influences.
19 Two notational remarks: I used ‘ f(X)’ (for a set X and a function f) to mean ‘ { f(x)|x∈X} ’ , ‘<X,Y >’ to
denote the Cartesian product of X and Y. Also, if time errors depend on inputs x, this can be accounted for
by using error function terms (such as εtin(x) and εtout(x)) instead.

33

20 Note that there are really two output errors involved: the first is determined by the exactness of the
measurement of the output—this is the one we have considered so far. The second is determined by the
physical system itself, by the degree to which the system deviates from its formal description (e.g.
imperfection and/or impurities of the material). Although the (overall) output error is really a combination
of both individual errors, for theoretical purposes one error term that comprises both suffices (e.g., one
could take the product of both error terms), especially, since it might not be clear which error actually
contributes more/most to the overall error.
21 The “construction” of the syntactic isomorphism is more complicated in this case, since intervals of a
certain length need to be defined for input, output, and time domain. Then axioms for the discreteness of f
need to be added, etc. to allow for an appropriate formal treatment.
22 One could require the weaker F(I -1(x),r)⊆<O -1(f(x)),r’> to make the error resulting from an inaccurate
description (“ idealization”) of the physical system itself explicit.
23 Reliability is really a tricky issue. On the one hand, it is guaranteed by the laws of physics qua laws (i.e.,
that is exactly what it is to be a law: to be reliable), on the other hand, certain physical laws describe
processes only up to probabilities. In those cases, “reliability” is automatically reduced to “(high)
probability” . In any case, how reliable a system will be at the end depends on the theory P that describes
its nature and functionality as well as on practical constraints (such as material, size, environmental
influences, etc.).
24 Haugeland (1982), p.214, argues that digits do not necessarily have to represent anything.
25 Again, <X,Z>⊆<O(x’),T(t’)> would be the weaker requirement (see footnote 13).
26 Notice that the functional definition of g resembles the scheme of recursion where recursion is defined
over time (this is no coincidence, but I will not be able to explicate the connection here).
27 Note that all definitions assumed only one input domain D and one output domain R, but, of course, they
can be straight-forwardly extended to complex domains Dn and Rm.
28 Note that the order of the ternary elements induced by this mapping will be 0<2<1, although nothing
depends on the order in this case. However, there will be other cases where the order matters (e.g., in
certain ADDER circuits).
29 For those circuits whose output at t+1 only depends on their input at t, one can generally ignore the
additional time place in the function and just consider finite one-place functions (e.g., the way AND-gates
are normally defined), as long as it is understood that the output of the circuit occurs one “time step” after
the input has been applied.
30 It does not matter how a system realizes a function, i.e., if it computes using representations or if the
result is obtained by the laws of physics (e.g., the distribution of charge in silicon), as long as the system is
digital from the outside: a digital system can be treated as a “black box” with digital inputs and outputs, the
inner organization does not matter for computation.

References

Chalmers, D. J. (1996), ‘Does a Rock Implement Every Finite-State Automaton?’ , Synthese, 108, pp. 310-
333.

Chalmers, D. J. (1997), ‘A computational Foundation for the Study of Cognition’ (unpublished manuscript)

Copeland, B. J. (1996), ‘What is Computation?’ , Synthese, 108, pp. 335-359.

Cummins, R. (1989), Meaning and Mental Representation, Cambridge, MA: MIT Press.

Endicott, R. P. (1996), ‘Searle, Syntax, and Observer Relativity’ , Canadian Journal of Philosophy, v26, pp.
101-122.

Gandy, R. (1980), ‘Church’s Thesis and Principles for Mechanism’ , in Proceedings of the Kleene
Symposium (J. Barwise, H. J. Keisler and K. Kunen, eds.), New York: North-Holland Publishing
Company.

Gödel, K. (1958), ‘Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes’ , Dialectica,
12, pp. 455-475.

34

Haugeland, J. (1982), ‘Analog and Analog’ , Mind, brain, and function. Norman: University of Oklahoma
Press.

Haugeland, J. (1996), ‘What is Mind Design?’ Mind Design II. Cambridge, Massachusetts: MIT Press.

Melnyk, A. (1996), ‘Searle’s Abstract Argument Against Strong AI’, Synthese, 108, pp. 391-419.

Putnam, H. (1967), ‘Psychological Predicates’ , reprinted as ‘The Nature of Mental States’ , The Nature of
Mind. D. Rosenthal (ed.) New York: Oxford University Press (1991).

Putnam, H. (1988), Representation and Reality, Cambridge: MIT Press.

Scheutz, M. (1997), ‘Facets of implementation’ (unpublished manuscript)

Scheutz, M. (1998), ‘Do Walls Compute After All? – Challenging Copeland’s Solution to Searle’s
Theorem Against Strong AI’ , in Proceedings of the 9th Midwest AI and Cognitive Science Conference
1998, AAAI Press, pp. 43-49.

Searle, J. (1992), The Rediscovery of Mind, Cambridge, Massachusetts: MIT Press.

Smith, B. C. (1996), The Origin of Objects, Cambridge, Massachusetts: MIT Press.

Smith, B. C. (1998), The Age of Significance. Vol 1. (forthcoming)

Turing, A. M. (1936), ‘On Computable Numbers, with an Application to the Entscheidungsproblem’ .
Proceedings of the London Mathematical Society, Series 2, 42, pp. 230 –265.

Van Gelder, T. J. (1998), ‘The Dynamical Hypothesis in Cognitive Science’ (target article forthcoming in
The Behavioral and Brain Sciences)

