
1

Architectural Mechanisms for Dynamic Changes of
Behavior Selection Strategies in Behavior-Based

Systems
Matthias Scheutz and Virgil Andronache

Artificial Intelligence and Robotics Laboratory
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN 46556, USA�

mscheutz,vandrona � @cse.nd.edu

Abstract— Behavior selection is typically a “built-in” feature of
behavior-based architectures and hence not amenable to change.
There are, however, circumstances where changing behavior se-
lection strategies is useful and can lead to better performance. In
this paper, we demonstrate that such dynamic changes of behav-
ior selection mechanisms are beneficial in several circumstances.
We first categorize existing behavior selection mechanisms along
three dimensions and then discuss seven possible circumstances
where dynamically switching among them can be beneficial.
Using the agent architecture framework APOC, we show how
instances of all (non-empty) categories can be captured and how
additional architectural mechanisms can be added to allow for
dynamic switching among them. In particular, we propose a
generic architecture for dynamic behavior selection, which can
integrate existing behavior selection mechanisms in a unified way.
Based on this generic architecture, we then verify that dynamic
behavior selection is beneficial in the seven cases by defining
architectures for simulated and robotic agents and performing
experiments with them. The quantitative and qualitative analyses
of the results obtained from extensive simulation studies and
experimental runs with robots verify the utility of the proposed
mechanisms.

I. INTRODUCTION

Agent architectures are blueprints of control systems of
agents. They depict the arrangement of control components
(i.e., where and how they are connected), and hence the func-
tional organization of the overall control system. In behavior-
based systems, a subset of these components is used to
implement behaviors, i.e., sequences of actions of an agent
that are intended to achieve a certain (sub-)task (such as a
follow wall behavior in a robot that would make the robot
move along a wall at a minimum distance). These components
are typically also referred to as “behaviors”. Since it is possible
that two different behaviors (i.e., the components) require con-
trol over the same effectors (such as turn left vs. turn
right, or go to campus vs. go home), behavior-based
architectures need to provide mechanisms to decide which
behavior gets to control the agent’s effectors at any given time.
This is the so-called action-selection problem [1], which we
will in the following refer to as the behavior selection problem,
given that behaviors (and not actions) are conceptually the

basic elements in behavior-based architectures.1

The mechanisms used for behavior selection are typically
fixed in behavior-based architectures. And while it may be
possible to adjust some of the mechanisms’ parameters to
make them more adaptive, they cannot be changed altogether.
A subsumption-based architecture [2], for example, cannot be
changed into a schema-based architecture [3] at the level of
the architecture. Switching among different behavior selection
strategies, however, may be desirable or even required at times,
to increase the system’s performance, or to enable the system
to achieve a given task in the first place. Looking at biological
creatures it seems that many animals have the capability of
modifying their behavior selection strategies, typically as a
result of some learning process, which then generally leads
to better performance at the given task [4]. Furthermore,
they seem to be able to switch dynamically among different
behavior selection strategies depending on which one leads to
the best results. Hence, it would seem natural to allow for a
dynamic change of behavior selection strategies in behavior-
based systems as well.

There are, however, four problems with dynamic changes
of behavior selection strategies: (1) current behavior-based
architectures do not support multiple simultaneous behavior
selection processes among which the system can switch; (2)
it is, therefore, not clear how to structure an architecture
to allow for dynamic switching among different behavior
selection strategies, nor is it clear (3) which behavior selection
strategy to include in the design of the system (among which
it will then be able to switch), and (4) it is generally an open
question under what circumstances it is beneficial to switch
between two conflicting strategies. Note that the first problem
is a prerequisite for the other three, since it is not possible
to investigate the utility of dynamically switching among
behavior selection strategies if they cannot be implemented
together within the same architecture.

In this paper, we propose a solution to the first two problems
and then show how to tackle the third and fourth. To solve
the first two, we use the architecture framework APOC,

1Note that since behaviors are typically defined to be sequences of actions,
a behavior could be comprised of only one action (and hence be as simple as
a single action).

2

in which we can define and hence study any combination
of behavior selection mechanisms.2 Specifically, we provide
translations of standard behavior selection mechanisms into
the APOC framework and discuss a general way in which
these mechanisms can be combined. To advance on the third
and fourth problems, we first isolate seven cases, where
dynamically switching among behavior selection strategies
might be beneficial, and analyze the circumstances that could
trigger these switches. We then verify that switching behavior
selection strategies are beneficial in various instances of the
seven cases in two simulation studies and three experiments
with a robot.

The paper is organized as follows. First, we briefly review
different behavior selection strategies and categorize them in
terms of whether the behavior selection is achieved by struc-
tural features of the architecture or by specialized components.
We then discuss seven scenarios in which dynamic changes
of behavior selection strategies might be useful for behavior-
based systems. After a brief overview of the architecture
framework APOC, we show how standard behavior selection
mechanism in behavior-based architectures can be formulated
within APOC. The previous theoretical discussion of the
potential utility of dynamically changing behavior selection
strategies is then complemented by experiments with simulated
and robotic behavior-based agents that show (1) how dynamic
changes in behavior selection strategies can be implemented
in behavior-based architectures and (2) that these mechanisms
lead to significantly better performance in a variety of tasks
compared to non-dynamic strategies.

II. ARCHITECTURAL MECHANISMS FOR BEHAVIOR
SELECTION

The “behavior selection” problem is a widely known prob-
lem among designers of behavior-based systems. Typically,
what is meant by “behavior selection” is the process by which
an agent decides what to do next, i.e., what behavior to
perform. It is important to distinguish two senses of “behavior”
in the context of behavior-based systems: (1) “behavior” as
that which is observable when an agent performs a task, and
(2) “behavior” as represented in an architectural component or
mechanism (possibly consisting of multiple components and
connections) that brings about or contributes to bringing about
a behavior in the first sense. Behaviors in the first sense may
or may not correspond to behaviors in the second sense (i.e.,
to architectural representations). It is, for example, possible
that an agent exhibits a behavior in the first sense that is
caused by the interplay of several behaviors in the second
sense under particular environmental conditions (e.g., “wall
following behavior” in a robot might result from the interplay
of forward movement and a behavior that moves the robot
back and reorients it slightly whenever the front sonars detect
an obstacle within a certain distance).3

2APOC is a general framework for the analysis, comparison, and evaluation
of agent architectures and has been developed in our lab over the last several
years.

3Such behaviors in the first sense that result from the interplay of behaviors
in the second sense and environmental conditions are often called “emergent”.
We will, however, refrain from using this term as it is fraught with conceptual
problems [5] and, moreover, is not needed for the explication of this work.

Several terms are used in the literature to refer to “behavior
selection”, although they often have different connotations
depending on when and where they are used. The most
commonly used term is “action selection” [1], [6], although
this term is less general than “behavior selection”, given
that not all behaviors might be easily decomposable into
sequences of actions in any natural way (e.g., a schema-based
implementation of formation maintenance in a team of robots
might not lend itself to a decomposition of the coordination
behavior in terms of discrete actions [7]). Also, the term
“action” is sometimes reserved for simple, atomic processes
and the term “behavior” is used to refer to more complex
processes composed of simpler ones ([8]). Finally, “behavior
selection” is sometimes used synonymously to “behavioral
coordination” or “behavior arbitration”, although there are
cases where all three terms denote different processes (e.g.,
“behavior coordination” might be what drives “behavior se-
lection” in particular circumstances, and “behavior arbitration”
might or might not be involved in “behavior selection”).

We will use the term “behavior selection” to refer to the
process in a behavior-based architecture by which a set of
components implementing behaviors (in sense 2) will lose
control of the agent’s effectors and another set of components
implementing possibly different behaviors (in sense 2) will
gain control of the effectors. By “controlling the agent’s
effector” we mean that the controller (i.e., the component
controlling the effectors) and the effectors are connected
via an exclusive link that allows for information flow from
the controller to the effector. “Losing control”, then, means
that the information flow is interrupted or inhibited, “gaining
control” means that information flow is established or enabled.

This definition of “behavior selection” is an instance of
an architecture-based definition [9] in that it makes direct
reference to architectural features (such as components and
connections among them). It has several advantages over other
definitions (e.g., [1]): (1) it avoids terminological problems
(it is indifferent about what the components controlling the
effectors implement, actions or behaviors); (2) it covers the
whole process from one component controlling the effectors
to another component gaining control (i.e., the selection and
arbitration of actions or behaviors); (3) it covers architectures
where behavior selection is implicit (in that structural features
of the architecture determine which behavior is selected at any
given time) as well as architectures where behavior selection
is accomplished by special components; (4) it allows us to
distinguish different mechanisms based on how links between
components and effectors are interrupted/inhibited or estab-
lished/enabled; and (5) it works for architecture specifications
at different levels of abstraction (i.e., it does not depend on
the degree to which an architecture is schematic). Note that
this definition only covers “behavior selection” for behaviors
in sense 2, and does not extend to “behavior selection”
for behaviors in sense 1, where factors extraneous to the
architecture might influence the observable behavior of an
agent (e.g., a robot that exhibits a turning behavior in sense
1 due to a slanted surface after having driven straight without
any architecture internal change to the selected “drive straight”
behavior).

3

Based on this definition, we can now categorize different
proposals for behavior selection mechanisms in a systematic
way based on whether they are cooperative or competitive,
implicit or explicit, and adaptive or non-adaptive, and discuss
their different properties.

A. Cooperative versus Competitive Behavior Selection

Following [10], cooperative behavior selection requires
mechanisms that achieve some sort of “behavior (or command)
fusion”, integrating information from different sources in the
architecture before it is passed on to the effectors to produce
the current behavior.

Examples are voting mechanisms [11], [12], superposition
techniques [3], [13], [14], fuzzy command fusion mechanisms
[15], [16], or multiple objective behavior coordination meth-
ods [17], [18], [19]. Note that in the extreme case cooperative
mechanisms never actually “select” behaviors, because the set
of components implementing the agent’s basic behaviors is
permanently connected to the integration component, which
in turn is permanently connected to the effectors (as in simple
schema-based architectures).

Competitive behavior selection mechanisms, on the other
hand, require the selection of a behavior based on the result
of some competition process among different components,
possibly followed by the arbitration of the current behavior
(if a behavior different from the current one was selected
during competition). Examples are priority-based [2], state-
based [20], [21], [22], [23], and winner-take-all competition
mechanisms [6], [24], [25].

Competitive and cooperative behavior selection mechanisms
are mutually exclusive in that the same set of behaviors cannot
use a cooperative and competitive mechanism at the same time.
However, it is still possible to use them together in the same
architecture as long as there is a way to decide which selection
mechanism gets to select behaviors at any given time (e.g.,
a hybrid architecture may consist of a cooperative behavior
selection mechanism in the reactive layer, and a competitive
mechanism in the deliberative layer, or vice versa).

We will present an example of an architecture with com-
petitive and cooperative behavior selection in Section VI.

B. Implicit versus Explicit Behavior Selection

Behavior-based architectures can also be distinguished
based upon how behavior selection is accomplished, i.e.,
whether it is implicit or explicit. Implicit behavior selection
uses structural features of the architecture to select behaviors
(e.g., through a hierarchical arrangement of control compo-
nents as in the competitive behavior selection of subsump-
tion architectures [2], or through the relative strengths of
inhibitory and excitatory connections among components as in
the cooperative example of Braitenberg vehicles [26]), while
explicit behavior selection uses specialized components (e.g.,
as the summation component in schema-based architectures
for cooperative behavior selection [3] or the global algorithm
which chooses a module in the ANA architecture [6], [27] for
competitive behavior selection).

Implicit and explicit behavior selection mechanisms are also
mutually exclusive analogous to competitive and cooperative
mechanisms. Yet, as with competitive and cooperative mech-
anisms, they can coexist in one architecture. A specialized
component for behavior selection, call it � , for example, may
be part of a hierarchical structure that determines the order
in which behaviors get to control the effectors (e.g., based on
inputs from the environment). If the behavior implemented in
� is selected, then behavior selection proceeds according to
the policy implement by � , otherwise it proceeds according
to the hierarchical structure. Note that in this case behavior
selection determined by the hierarchy has precedence over
behavior selection determined by � . We will present an
example of an architecture that combines both implicit and
explicit mechanisms in Section VII.

C. Adaptive versus Non-Adaptive Behavior Selection

Since behavior selection is typically a built-in feature
of behavior-based architectures (especially in architectures
with implicit behavior selection like subsumption), it is not
amenable to change in most architectures (e.g., [2], [6],
[1], [28] and many others). We shall call behavior selection
strategies that cannot be modified throughout the lifetime of
an architecture instance non-adaptive.

Some architectures, however, allow for the adjustment or
adaptation of behavior selection strategies [29], [30], [31]. We
shall call such architectures adaptive. Adaptation in these sys-
tems generally consists of either modifying internal parameters
which affect the choice of the behavior or modifying the set of
available behaviors from which a choice can be made based on
a triggering condition. Thus, any modification in the behavior
selection strategy in these architectures is achieved within the
context of a fixed strategy (and typically only parameters of a
specialized component are modified).

One adaptive approach with explicit behavior selection
proposed a “hybrid cooperative-competitive” behavior selec-
tion strategy [32]. Here, adaptation occurs through reinforce-
ment learning, during which fusion parameters of decision
components that integrate the outputs of two behaviors are
learnt. Analogous to the above mechanisms, modifications
of behavior selection strategies are achieved by varying two
parameters of specialized integration components.4

Finally, there are also proposals for implicit adaptive mech-
anisms (e.g., [33]), where a variant of Hebbian learning in
a neural network is used to learn the fusion parameters (i.e.,
the weights on connections from different behaviors that are
combined to yield the overall motor output).

While the previous two dimensions are concerned with
properties of the architecture layout, the distinction between
adaptive and non-adaptive behavior selection is pertinent to
the run-time instance of an architecture. Table I summarizes
the proposed categorization of behavior selection mechanisms
in common architectures along all three dimensions.

4Since the employed fusion mechanism only gives rise to competitive be-
havior selection in the limiting case (analogous to schema-based approaches),
it will be classified as “cooperative,” see also Section V-F.

4

TABLE I
EXAMPLES OF BEHAVIOR SELECTION STRATEGIES CLASSIFIED ALONG THE THREE PROPOSED DIMENSIONS: COMPETITIVE VS. COOPERATIVE, EXPLICIT

VS. IMPLICIT, AND ADAPTIVE VS. NON-ADAPTIVE.

Non-Adaptive
Competitive Cooperative

Explicit Agent Network [6] Lorenz [34], Schema [3], DAMN [12], Balch [13], Jenkins [14]
Bayesian Decision Analysis [20] Multiple Objective Behavior Coordination [17], [18], [19]

Foka [22], Probabilistic methods [21] Fuzzy fusion [15], [16], Action Voting [35]
Implicit Subsumption [2], Baerends [36] Braitenberg [26]

Adaptive
Competitive Cooperative

Explicit Alliance [30], Yamada [29] Hybrid Coordination[32], BeCA [31]
Implicit DAC [33]

III. WHY DYNAMIC CHANGES OF BEHAVIOR SELECTION
STRATEGIES?

What is common to architectures implementing behavior
selection strategies from any of the above categories is that
they use each strategy exclusively, i.e., only one strategy is
employed in any given architecture. And although architec-
tures with adaptive behavior selection strategies can modify
parameters (of their behavior selection strategy), thus changing
the strategy over time so as to improve the performance of an
agent in a given environment, they cannot use different pa-
rameter settings for different circumstances (e.g., they cannot
learn a good strategy for one environment, and then learn a
different strategy for another environment without “unlearn-
ing” the previous one). However, there are many situations,
where switching among different behavior selection strategies,
which we will refer to as dynamic behavior selection, can be
advantageous for behavior-based agents (in particular, robots).

In the following, we consider seven different cases, in which
dynamic behavior selection can be beneficial. Later, we will
verify for all of these cases the utility of dynamic behavior
selection in experiments with simulated and robotic agents
(see Sections VI and VII).

A. Case 1: Selection of Sensory Information

Selecting a subset of all available sensory information
for perceptual processing can be useful to reduce overall
processing and lead to better performance, especially in robots,
where sensory input is often unreliable. Sonar sensors, for
example, often produce erroneous readings, cameras fail in
dark environments, shaft encoder counts do not reflect the
actual distance traveled on slippery surfaces, etc. Fortunately,
many of these errors can be detected (at least to some degree)
by means specific to each sensory modality (e.g., frequent
wide variability in sonar values, low brightness levels in cam-
era images, discrepancy between motor encoder counts and
sonar readings relative to landmarks, etc). Behavior selection
can then be dynamically adjusted so that it will be based
only on the (more) reliable sensory inputs by automatically
eliminating sensory input that is not reliable, either temporarily
or permanently (e.g., in the case of a broken sonar sensor
that always returns the same reading). By the same token,
redundant or irrelevant sensor information, if detectable, can
be ignored.

B. Case 2: Emergency Responses

Embodied agents will typically need fast mechanisms to
deal with emergency situations. Such “global alarm systems”
[37] have to be connected to the sensors and effectors in such
a way that they can interrupt any behavior and take control
of the agent’s effectors. In other words, behavior selection
in a system with alarms might be competitive at the level
of the alarm mechanisms, but could be cooperative for other
behaviors (i.e., when the alarm is not activated), thus retaining
advantages of cooperative behavior selection. While alarms
are typically directly associated with emergency behaviors, it
is also possible to use alarms only to change the behavior
selection strategy temporarily until the state that triggered the
alarm has changed (e.g., a particular urgent goal has been
accomplished).

C. Case 3: Infeasible Behaviors

Combining behaviors based on sensory inputs via a fixed
mechanism can at times prompt the agent to attempt infeasible
behaviors. A simple example is illustrated in Figure 1, where
an agent (�) is trying to reach an item (black circle) in the
environment, which is partially blocked by obstacles (white
circles). While moving down and moving to the left are both
feasible behaviors, their straight-forward combination (e.g., as
it might occur in a schema-based system) produces a behavior
(diagonal move) which is not feasible given the current state
of the environment.

A

B

Fig. 1. Examples of an infeasible combination of feasible behaviors (go
left and go down for agent A) and a feasible behavior from combination
of infeasible behaviors (go right and go down for agent B) in order to
get to the goal state (black circle). White circles denote obstacles.

A possible (and simple) solution to the combination prob-
lem is to temporarily change the behavior selection strategy:
instead of combining behaviors, individual behaviors are given
priority.

5

D. Case 4: Extending the Behavioral Repertoire

The converse problem to “infeasible behaviors” is a situa-
tion where no sequence of individual behaviors can accomplish
an agent’s task (e.g., as in the case of agent � in Fig-
ure 1, whose basic behaviors are limited to move-forward,
move-backwards, turn-left, and turn-right). In
that case, temporary combinations of behaviors (e.g., via
behavior-fusion) might permit the agent to achieve the task
(e.g., � would combine move-forward and turn-right
to perform a diagonal movement).

E. Case 5: Mappings between Context and Behavior Selection
Strategies

The last two cases illustrated that it is sometimes beneficial
to switch between cooperative and competitive behavior se-
lection. In general, such switches will be context dependent,
and can, hence, be defined by a mapping between context
and a set of behavior selection strategies (or parameters of
behavior selection strategies), where the context will generally
include states internal to the architecture in addition to sensory
information. Specifically, instead of only having a single state
variable that determines which one of two behavior selection
strategy should become active, a mapping from a subset of
all agent state variables (including sensory states) to behavior
selection strategies generalizes this idea by allowing the agent
to decide at any given moment in time which behavior
selection strategy to use. For example, a mapping from sonar
sensor activations and an inner state variable for determining
the robot’s current activity (e.g., wandering or target following
mode) could be used to implement better obstacle avoidance
by making the behavior selection strategy (e.g., cooperative
or competitive behavior selection) dependent on the differ-
ent sensory readings in wandering mode (e.g., competitive
behavior selection could be used for any individually low
sensor reading, but competitive behavior selection could be
used whenever more than two sensors on different sides of
the robot are below a certain threshold).

Such mappings between contexts and behavior selection
strategies might be a way to represent solutions for whole
classes of problems in a very compact way. These mappings
could be either fixed or learned through experience, and might
improve the agent’s overall level of adaptivity without the
need for a deliberative layer (in which a planner operates on
a representation of the environment in order to find a solution
to a particular problem, i.e., finding a plan representing a
sequence of actions or behaviors to achieve the task).

In general, mappings from context to behavior selection
strategy could benefit many applications. For example, a
context-dependent preference mechanism could be imple-
mented based on such a mapping if several behavioral se-
quences exist to achieve a particular task (e.g., a robot as-
sembling cars might perform actions sequentially if run in
“demonstration mode”, even though these actions could be
performed in parallel). Or a learning mechanism could try to
establish the best behavior selection strategy for a given agent
state either by systematically trying out all available behaviors
(which would allow the agent in the above cases to associate

particular environmental setups with behavior selection strate-
gies) or by systematically varying the parameters of a behavior
selection strategy in the given state until the best strategy is
found (e.g., based on gradient ascent over some performance
measure).

F. Case 6: Attentional Mechanisms

Attentional mechanisms in animals and humans serve the
purpose of channeling sensory information and focusing pro-
cessing on salient or important stimuli. They can also redirect
processing resources dependent on the “focus of attention”,
for which they often require control of the agent’s effectors as
well (e.g., to be able to look in the direction of a loud noise).

Attentional mechanisms can be integrated into behavior-
based architectures by allowing them to control dynamic
switches among behavior selection strategies (which behavior
selection strategy they switch to can either be fixed or learned).

G. Case 7: Learning Behaviors

Often an agent can determine how well it is doing at a
given task based on some observable internal or external
state (e.g., how much energy is left that can be used for
locomotion or how close an agent is to a given goal state
based on sensory input). In general, if a performance measure
is available within the agent’s architecture, it is possible to
define a simple unsupervised, reinforcement learning com-
ponent that can learn a mapping from contexts to behavior
selection strategies based on the performance measure.5 In
the simplest case, the component could automatically switch at
random among different behavior selection mechanisms during
a “learning phase”, recording context performance pairs, and
then eventually always pick the best behavior selection mech-
anism based on the learnt associations for the given context.
Alternatively, learning could be triggered by other components
(or by repeated failure at achieving a task) and proceed in a
systematic fashion (e.g., low cost behaviors are always tried
first).

IV. THE APOC FRAMEWORK

The examples presented in the previous section are only a
few from a much larger set of possible useful applications of
dynamically changing behavior selection strategies, which can
improve an agent’s performance (as measured by quantifiable
variables dependent on the task at hand).

Prerequisite to employing dynamically changing behavior
selection strategies in an architecture, however, is a behavior-
based architecture that allows for multiple behavior selection
mechanisms to be present at the same time (during the lifetime
of the architecture instance). None of the behavior-based
architectures described in section 2 allow for the simultaneous
presence of multiple behavior selection mechanisms at the
architecture level. And while it may be possible to implement
different selection mechanisms on top of existing ones (e.g.,
an explicit cooperative scheme such as a voting scheme on

5The performance measure can be implicit in the architecture or explicitly
represented (e.g., as a numeric value).

6

top of an implicit competitive one such as subsumption), such
implementations do not add new architectural mechanisms to
an architecture, nor do they integrate existing mechanisms
in a systematic and efficient way–both of which are goals
of this paper. To be able to study different mechanisms
within one architecture, we will use the agent architecture
framework APOC, which provides a general formalism for the
definition of agent architectures. Within this formalism, we can
express all of the above discussed behavior selection schemes
and define new architectures that combine any number of
them within one architecture. Moreover, APOC provides a
formalism to deal with run-time modification of an architecture
(i.e., the instantiation of new and termination of existing
components), which is crucial for the implementation of the
full range of possible dynamic behavior selection strategies
that we discussed previously.6.

In the following subsections, we will provide an informal
summary of the relevant properties of the APOC architecture
framework. Section 5 will then show how behavior selection
mechanisms from each of the seven non-empty categories in
Table I can be expressed in APOC.

A. APOC Components

The APOC framework views agent architectures as net-
works of (typically heterogeneous) computational components
connected by four types of links called Activation, Priority,
Observer, and Component links (hence the name “APOC”).
Each component in APOC is an autonomous computational
unit with activation and priority levels. It can receive inputs
from and send outputs to other components via its links. Inputs
(from incoming links) are processed and outputs (to outgoing
links) are produced according to an update function F, which
determines the functionality that the component implements,
i.e., the mapping from inputs and internal component states
(e.g., the current activation and priority values) to outputs
and updated internal component states (e.g., new activation
and priority values). The update function thus provides the
specification for a computational process that, in an instanti-
ated component, continuously updates the component’s overall
state. The particular algorithm for implementing the update
function � has to be defined separately for each component
type employed in an architecture.

Different from components in other formalisms such as
schemas in RS [45] or the “augmented finite state machines”
(AFSMs) in the subsumption architecture [2], an APOC
component can also have an “associated process” (in addition
to the computational process updating the state of the compo-
nent), which it can start, interrupt, resume, or terminate. The
associated process can either be a physical process external
to the architecture (e.g., a process controlling the motors in
a wheeled robot), or a self-contained computational process
that takes inputs from the component and delivers outputs to
it (e.g., a process implementing a blob detection algorithm that
takes an image and returns all blobs of a particular color).

6More details about APOC can be found in [38], [39], [40], [41], [42],
[43], [44]

One way of utilizing the APOC component model is to view
it (i.e., the process updating the state of a component based on
the definition in the update function �) as a process manager
of the component’s associated process. This construal makes it
possible to separate information concerned with architecture-
internal processing, i.e., control information, from other infor-
mation (e.g., sensory information that is processed in various
stages). For behavior-based architectures, this separation is
particularly interesting as it makes the control flow involved in
behavior selection mechanisms explicit. Figure 2 summarizes
the basic structure of an APOC component.

Priority

associated

process

update function F

O-links

C-links

A-links A-links

O-links

C-links

P-links

P-links

Activation

Fig. 2. The basic structure of an APOC component showing bundles of
incoming and outgoing links of each of the four types as well as the priority
and activation levels together with the update function � and the associated
process.

Depending on how behaviors are modelled in APOC, i.e.,
whether they are expressed explicitly as part of the update
function � or implicitly as implemented in the associated
process, different architectural mechanisms in APOC can be
used to model the behavior selection mechanisms employed
in the literature. Typically, there are many ways in which
any given mechanism can be expressed in APOC. Since
we are interested in general mechanisms for dynamically
modifiable behavior selection strategies, we will not make
any assumptions about a particular rendition of a behavior
in APOC (e.g., whether it is implemented in the associated
process), but rather aim at general mechanisms that make use
of only a minimal set of APOC mechanisms. As a result, we
will exclude the priority mechanism, the involved P-links, and
the associated process, and, hence, only briefly the describe
the remaining three link types, which are used in the rest of
the paper.

B. The A-link

A-links are activation passing links, such as those used
for communication among components in many behavior-
based architectures (e.g., [1], [6]). The function of an A-
link is to transfer one unit of information (e.g., the activation
of a component) from a source component to a destination
component within a particular time interval (this “delay factor”
can be specified separately for each A-link).

As part of this transfer, an A-link can perform an (optional)
operation on the data (e.g., a weighting of a numerical value,

7

or a filter operation). This allows not only for the transduction
of data, but also for several learning mechanisms at the
architecture level. For example, by modifying the operator on
a link, neural-network-based learning (e.g., Hebbian and back-
propagation) can be implemented. By allowing modifications
to the delay factor on an A-link, associations can be learned
and priming can be obtained for information retrieval as in the
ACT-R cognitive architecture [46] (e.g., by decreasing transfer
time between two components which are active at the same
time).7 Finally, many learning mechanisms (such as chunking,
associative learning, etc.) can be implemented through run-
time instantiation and deletion of architectural components
in a generic way, as will be demonstrated for trial-and-error
learning in Section 7.

C. The O-Link

The O-link provides a “non-intrusive” way for components
to observe the state of other components.8 Analogous to
A-links, O-links have a delay factor associated with them.
Different from A-links, information flow does not depend on
the observed component (i.e., whether the component initiates
an information transfer), but solely depends on the observing
component.

D. The C-Link

Architectures in the APOC formalism are specified in
terms of type relationships among APOC components, which
provides a direct way of specifying abstract structures and
modules. In an implemented architecture, instances of these
types need to be created in the running virtual machine. To be
able to model the relationship between component types and
their instances, C-links are used to formally express the ability
of a component to instantiate another component or link, or
to remove an already existing instance of another component
or link at run-time. Figure 3 shows a simple example of type
specification and run-time component instantiation.

C C CC C

T1 T2

T3

I1 I2 I1 I2

I3

I1 I2

I4 I3I3

Fig. 3. From left to right: the type diagram of an architecture in APOC
with three components, its initial instantiation, the state after an instantiation
request by component I2 through a C-link, and its state after an instantiation
request by component I1 through a C-link.

T1, T2, and T3 represent three component types, with types
T1 and T2 utilizing the functionality implemented by type
T3. Components I1 and I2 are instances of types T1 and T2
respectively, while components I3 and I4 are instances of type

7Several other learning mechanisms, e.g., ART network-based learning [47],
or Q-learning can be defined within the APOC framework, see also [43].

8Components are observed to the extent that their state is observable–at the
very least the activation and priority values can be observed in all components,
but additional states might be observable dependent on the component’s
specification.

T3. When the architecture is first instantiated, components I1,
I2, and I3 are instantiated. After the first explicit request for
execution from I2, I2 is connected to the existing instance I3.
The next request from I1 then results in the instantiation of
I4.

V. BEHAVIOR SELECTION MECHANISMS IN APOC

There are many ways in which behavior-based architectures
can be expressed in the APOC framework. A sequential ar-
chitecture (with a single computational process), for example,
could be viewed as a single APOC component, where the
architecture’s functionality is entirely encoded in the update
function � . However, this is clearly not an interesting use of
the APOC formalism. The utility of APOC lies in its ability
to capture the interaction among multiple components that
operate in parallel, as is typically the case in most behavior-
based architectures. For such architectures, behaviors in sense
(2) (i.e., as architectural components) can be represented
as APOC components, and APOC links can be used to
implement the information and control flow among these
components (possibly involving additional components that
implement behavior selection policies or behavior arbitration
mechanisms).

In the following we will show how architectures with
implicit and explicit, cooperative and competitive, adaptive and
non-adaptive behavior selection strategies can be cast in the
APOC formalism in a unified way. Figure 4 shows how each
of the mechanisms described in this section can be expressed
in APOC.

A. Non-Adaptive Implicit Competitive Behavior Selection:
Subsumption

The subsumption architecture [2] is a layered system, in
which individual layers work on individual goals concurrently
and asynchronously. Layers consist of components, each com-
ponent being the representation of a behavior. Each behavior
is implemented as an augmented finite state machine (AFSM).

Subsumption architectures can be translated into the APOC
framework in straightforward manner:

1) Augmented finite state machines (AFSM)–the basic
components of subsumption architectures–are mapped
onto APOC components by directly incorporating the
input-output mapping defined by the state table of the
AFSM into the update function � of the APOC com-
ponent

2) The position of an AFSM in a subsumption architecture
(i.e., the layer in which it resides) is modelled by
activation values of APOC components

3) Message passing links (including environmental/data
inputs) are modelled as A-links

4) Inhibitor connections are mapped onto A-links together
with simple, specialized APOC components implement-
ing AND gates to decide whether to pass on information
or whether to block it

5) Reset connections are modeled as special A-link inputs
to an APOC component (� ensures that the component
resets its state when these lines are active)

8

Water Seeking
Behavior

Food Seeking
Behavior

M
ot

or
s

Se
ns

or
s

Inhibitor links
"I see
Food"

Supervisor
Node

Water Seeking

Food Seeking

M
ot

or
s

Se
ns

or
s

"I see
Water"

"Have

Water"
Enough

Food"

"Have
Enough

Conflictor Links

Module

Module

Water−seeking
Motor Schema

Food−seeking
Motor Schema

Water−seeking
Perceptual Schema

Food−seeking
Perceptual Schema

Σ

Se
ns

or
s

M
ot

or
s

Food Seeking
Behavior

Water Seeking
Behavior

Manager
Mode

Se
ns

or
s

Arbiter M
ot

or
s

Feeding
Behavior

Drinking
Behavior

I

I I

I I

Drinking
Motivation

Feeding
Motivation

Collision

Forward
Move

Avoid

Se
ns

or
s

M
ot

or
s

I = inhibitory node

Water
Detector

Water Seeking
Layer

Food Seeking
Layer

Food
Detector

Sensory Input
Layer

Motor Command
Layer

M
ot

or
s

Se
ns

or
s

Se
ns

or
s

Coordination

Water Seeking

Food Seeking

Behavior

Behavior

Node

M
ot

or
s

C−link
O−link

A−link

Subsumption (A) ANA (B)

Motor Schema (C) DAMN (D)

L−Alliance (E)

BeCA (F) Hybrid Coordination (H)

DAC (G)

Feeding
Knowledge
Source

Drinking
Knowledge
Source

Feeding
Motivation

Drinking
Motivation

Blackboard M
ot

or
s

Se
ns

or
s

Communication

Fig. 4. Sample architectures with food and water seeking behaviors from each of the seven occupied categories in Table I modelled in APOC as discussed
in Sections V:A through V:H.

9

6) Suppressor connections are also implemented as addi-
tional A-link inputs, which carry their originating com-
ponent’s activation value (i.e., position in the hierarchy)–
according to this value the APOC component decides
whether its outputs need to be suppressed

B. Non-Adaptive Explicit Competitive Behavior Selection: Ac-
tion Network

Based on Minsky’s “Society of Mind” [48], the Agent
Network Architecture (ANA) is viewed as a set of competence
modules [6]. Competence modules are connected through three
types of links: successor, predecessor, and conflictor links.
Two general conditions are imposed on the architecture: (1) all
components in the network have the same activation threshold,
and (2) if no active components are found in the network, the
activation threshold is lowered by 10%.

Each component in the ANA architecture is modelled by a
corresponding APOC component. A unique activation thresh-
old has to be chosen for the entire network. The activation
threshold modification function is then set to bring about a
10% decrease in threshold every time no active components
are found.

A special component is implemented with observer and
activation links to all other components. The function of this
component is threefold: (1) to compute the average activation
after each time-step, (2) send this activation back to each
component, which can then perform its own normalization,
and (3) observe active components within the network and
decide if a lowering of the activation threshold is necessary.

Incoming activation links are then structured to form seven
categories of ANA links: predecessor links (excitatory), suc-
cessor links (excitatory), conflictor links (inhibitory), sensor
links / activation by state (excitatory), goal links (excitatory),
protected goal links (inhibitory), average activation link.

In addition, several global parameters of the ANA architec-
ture need to be fixed:

1) � , the mean activation value after each timestep
2) � , the initial value of the global threshold,
3) 	 , the constant determining the weighting of environ-

mental sensor inputs and successor links,
4)
 , the constant determining the weighting of goal inputs

and predecessor links, and
5) � , the constant determining the weighting of protected

goal inputs and conflictor links

C. Non-Adaptive Explicit Cooperative Behavior Selection:
Motor Schema-based Systems

In schema-based approaches [7], [49], motor schemas op-
erate as “concurrent, asynchronous processes each of which
instantiates a behavioral ‘intention”’ [50]. This principle can
be directly expressed in APOC:

1) Each perceptual and motor schema is modelled by an
APOC component, with the computation that defines
the schema in the update function � of the component
(or the associated process).

2) Motor and perceptual schemas are connected by A-, O-,
and C-links.

3) Sensors trigger, via C-links, the instantiation of the
respective perceptual-motor schema combination.

4) A component (the “summation component”) performing
the fusion part of all schemas for the effector output is
needed, which is always instantiated and also connected
to the output of motor schema components via A-links

D. Non-Adaptive Implicit Cooperative Behavior Selection:
DAMN

DAMN [12] is a voting scheme in which a central arbiter
tallies votes from all behaviors to select the best behavior.
Modelling DAMN in APOC requires the following steps:

1) Each behavior is modelled by an APOC component,
with the computation that defines the behavior in the
update function, � of the component or its associated
process, based on the complexity of the behavior.

2) Each motor controller is modelled by an APOC com-
ponent, with the motor control being part of the update
function, � . Thus, for each motor controller the update
function will send commands to the controlled effector.

3) The arbiter is implemented in a specialized APOC
component.

4) Votes are passed to the arbiter through incoming A-links.
5) Commands are passed to motor controllers through A-

links.

E. Adaptive Explicit Competitive Behavior Selection: L-
Alliance

In L-Alliance [30], adaptation is provided through the
variation of several parameters during two phases: a “learning
phase” and an “adaptive phase”. In the learning phase, agents
learn about their capabilities and those of their teammates
without concern for task completion. In the adaptive phase,
agents are still able to modify their behavior selection strategy,
but the changes are directed strictly towards goal achievement.

One global parameter, the activation threshold, needs to be
fixed for all components. All other parameters are local to
each component (and can, therefore, be computed as part of
the update function �):

1) Sensory feedback: a binary parameter indicating whether
the behavior associated with the component is applicable
to the current sensory configuration

2) Inter-robot communication: a binary parameter indicat-
ing whether another agent has sent a message regarding
the behavior associated with this component.

3) Suppression from active behavior sets: a binary param-
eter indicating whether another behavior is currently
active in the agent

4) Learned robot influence: a binary parameter whose value
is based on a threshold function. In the active learning
phase it indicates whether another agent is attempting
the behavior associated with the current component. In
the adaptive learning phase, it indicates that the agent’s
“boredom level” is above a threshold or that the agent
believes that it can achieve a task in less time than
another agent currently attempting that task.

10

5) Robot impatience: a real-valued parameter indicating
the time the agent is willing to allow another agent’s
messages to influence its own motivation.

6) Robot acquiescence: two real-valued parameters indicat-
ing the time before the agent yields the task to another
and the time before the agent gives up on the task when
left on its own.

All the above parameters are then combined according to
the update rule of the component (following the definitions of
the L-Alliance architecture) to compute a motivational factor.
Behaviors associated with components whose motivations ex-
ceed the threshold will then compete for execution based on
a predefined behavior selection policy (such as “shortest job
first” or “pick behavior at random”).

F. Adaptive Explicit Cooperative Behavior Selection: Behav-
ior Column Architecture

The Behavior Column Architecture (BeCA) is an archi-
tecture that consists of a network of blackboard-based cog-
nitive and motivational components [31]. Each BeCA com-
ponent is made up of subcomponents: internal (or “elemen-
tal”) behaviors (which are knowledge sources), a blackboard,
activity state registers of the internal behaviors, the inter-
face/communication mechanisms, and the competition/control
mechanism.

Either a whole BeCA component or each of the individual
subcomponents can be modelled by an APOC component. In
the latter case, internal behaviors are condition-action rules
which map in a straightforward manner to update functions in
APOC components. Internal behaviors connect to the black-
board via O-links (to observe the current state of the problem
solving process) and A-links to place new solution elements
to the blackboard. The activity state registers are connected
to internal behaviors through O-links and observe their state.
Environmental and system information is fed to a BeCA
component through A-link connections to the communication
component, which, in turn, is connected through A-links
to the blackboard (to store environmental information) and
to other components in the system. The competition/control
mechanism is connected to each internal behavior through an
O-link which observes the activation of the component, and
an A-link, which can activate or inhibit the behavior.

The adaptive part of its behavior selection mechanism
comes from parameter modifications in internal behaviors.
Two quantities can be modified: the strength of connections
between internal behaviors and conditions (the efficacy with
which a behavior can satisfy internal perceptions, external
perceptions, and drives), and a combination factor between
internal and external signals. Both types of modification are
performed as part of the update function � of the APOC
component representing an internal behavior.

The limiting case of cooperative behavior selection is
competitive behavior selection as described in the hybrid
coordination scheme [32], [51], [52], which collapses the
competitive-cooperative distinction.9 In this approach, behav-

9Note that viewing competition as a special case of cooperation is true
of any schema-based approach, where gain values of all but one schema are
(possibly only temporarily) set to 0.

iors are grouped in sets of two, with one behavior being
designated as dominant. The two behaviors send their outputs
(consisting of a directional vector and an activation value) to
a “hybrid component”, which combines them in a manner
preferential to the dominant behavior. A similar process is
applied recursively to hybrid components until an overall
unique output vector is generated as the overall behavior of
the system.

The hybrid coordination architecture can be directly ex-
pressed in APOC: both behaviors and hybrid decision compo-
nents are modelled as APOC components, where both desired
action vectors and activation values are passed through A-
links.

An important contribution of this approach is that the
hybridization process is applied “on top” of an existing
architecture. We will pursue a similar direction in the next
section, where we introduce a generic architecture for the
dynamic modification of behavior selection strategies. How-
ever, whereas hybrid coordination requires communication to
consist of an activation value and a (directional) vector (thus
making it difficult, if not impossible, to use with behavior
selection mechanisms which use different information for
communication among components or are not limited to vec-
tors and activation values such as subsumption components),
our approach will be designed to work with any kind of
behavior representation.

G. Adaptive Implicit Cooperative Behavior Selection: DAC

The DAC system [33] uses a neural-network based approach
to implement controllers for a robotic agent. In DAC, each
behavior is implemented through a neural network. When any
node in a layer has an activation value of 1, it automatically
triggers a motor response. In the original system presented, the
two behaviors are connected through an inhibitory element
which gives preference to the avoidance behavior over the
approach one.

Due to the use of neural networks for control, the DAC
architecture exhibits implicit behavior selection. The adaptive
component of DAC is also implicit, as DAC architectures
adapt by modifying neural network weights as a result of
environmental interaction. The changes are made through a
modified Hebbian learning algorithm.

DAC can be modelled in APOC as follows:
1) Each sensor maps onto an APOC component.
2) The Target Detector and Collision Detector each map

onto an APOC component.
3) Each neuron maps onto an APOC component.
4) All connections among nodes are performed through A-

links, where links within a neural network implement,
in their operator part, the learning mechanism.

VI. DYNAMIC BEHAVIOR SELECTION MECHANISMS IN
SIMULATED AGENTS

The above examples illustrate how existing models of
adaptive and non-adaptive behavior selection can be expressed
within the APOC formalism in a unified way. As can be
seen from these descriptions, a common characteristic of

11

current architectures with adaptive behavior selection is that
the adaptation process does not involve structural changes
of the agent architecture. Rather, parameters of specialized
components that function as arbiters are modified to change
behavior selection strategies. However, architectural mecha-
nisms that modify the layout and connectivity of an agent
architecture allow for a wider class of adaptive mechanisms,
and in particular, for switching among different behavior
selection mechanisms, i.e., for dynamic behavior selection,
as we will demonstrate in this section. Specifically, we will
provide a mechanism for switching among different behavior
selection strategies that works both for implicit and explicit
behavior selection mechanisms, and thus allows for any of
the eight possible kinds of behavior selection mechanisms
we distinguished in Section II to occur at any place in the
architecture.10

First, we motivate a mechanism for dynamic behavior
selection that can switch between explicit cooperative and
competitive behavior selection. We then show the utility of
this mechanism in several simulation experiments with virtual
agents that have to perform a two-resource foraging task
in a simulated environment. Specifically, we compare agents
that can switch between competitive and cooperative behavior
selection strategies to agents that use a fixed strategy (either
cooperative or competitive). Finally, we distil a generic archi-
tecture from this mechanism that allows for switching among
multiple implicit and explicit behavior selection strategies.

A. Switching between Cooperative and Competitive Behavior
Selection

Consider two behavior-based architectures with explicit
behavior selection for the same task. The first, call it �������� ,
uses � behaviors implemented in components �������������������������!
and a cooperative behavior selection policy implemented in
component " ������� (left in Figure 5), while the second, call
it � ����#$� , uses %'&)(behaviors implemented in components
�*���+�������, -����������. and a competitive behavior selection policy
" ����#$� (on the right in Figure 5)–without loss of generality
we assume that they have the �/&0(2143 behavior components
� � �+������� in common. Behavior components receive their
input from the environment and their states are observed
(via an O-link) by the policy components ("5������� and "6���7#$� ,
respectively). The policy components then configure the fusion
components 8 (via an A-link) according to the observed states
of the behavior components based on the employed policy: in
the case of cooperative behavior selection, a special signal
is sent to the fusion component (indicating that it should
combine inputs from all lines); in the case of competitive
behavior selection, the input line number which is connected
to the output of the selected behavior is sent.11 The fusion
components receive as input all outputs from the behavior
nodes and either combine them all (according to the employed
fusion method in the case of cooperative behavior selection),

10Note that only 7 of these eight kinds, as depicted in Table I seem to have
been used in the literature so far.

11Note that other configurations are possible based on the policy, e.g., a
subset of input lines could be selected.

or select one based on the input from the policy component
(for competitive behavior selection).

It is easy to see how a particular architecture with coop-
erative behavior selection, a schema-based architecture, for
example, could be specified as an instance of � ������� : the A-
links between the behavior components and the fusion compo-
nent contain the gains (with which all behavioral outputs will
be scaled) and the policy component configures the fusion
component to always combine all outputs from the behavior
components (alternatively, the gains can be stored in the fusion
component or the behavior components as well).

Similarly, an architecture with competitive behavior selec-
tion like the subsumption-based architecture, for example, can
be specified straightforwardly as an instance of �������� : all
components reside in the same layer, and the fusion component
simply selects the output of the behavior component based
on the policy component (which always selects only one of
the behavior components, e.g., based on internal states of the
behavior components).

A−link
O−link

. .
 .

Pcoop

Σ

E
ff

ec
to

rs

Bm

B

B

i

j

P
Σ

E
ff

ec
to

rs

comp

B

B

BB i

j

n

. .
 .

. .
 .

1
Se

ns
or

 P
ro

ce
ss

in
g

Se
ns

or
 P

ro
ce

ss
in

g

Fig. 5. Architectures with cooperative behavior selection (left) and compet-
itive behavior selection (right).

Given both architectures, it is now possible to merge them
into a combined architecture that allows for switching between
the two policies (see Figure 6). The combined architecture
contains all behavior components � � ��������� . , one fusion com-
ponent 8 , the two policy components "5����#$� and "6������� , and
an additional decision component � , which is used to decide
when to switch between the two policies. Note that � can take
environmental inputs as well as inputs from internal sensors
to decide when to switch behavioral strategies (depending on
the kind of employed dynamic behavior selection strategy as
discussed in Section III).

We will now more closely examine two cases of switching
between competitive and cooperative strategies in the context
of a two-resource foraging task, where agents are in constant
need of two resources food and water, which they have to find
and consume regularly in order to survive. This kind of task
has been used by several researchers to study and compare
behavior selection mechanisms (e.g., [1]). For foraging then,
we assume that all agents have behavioral components for
FOOD-SEEKING (� �) and WATER-SEEKING (��9).

B. Switching from Cooperative to Competitive Behavior Se-
lection

Consider a type of foraging agent with a combined architec-
ture :6;<(>=�?�@A(�%2BC� , which by default uses cooperative behavior

12

B i
Pcomp

P
Σ

E
ff

ec
to

rs

coop

D

A−link
O−link
C−link

B1

Pcomp

Pcoop

A−link
O−link
C−link

. .
 .

. .
 .

. .
 .

B j

Bn

Pcomp

Σ

E
ff

ec
to

rs
B1

B i

B j

. .
 .

D

. .
 .

. .
 .

P
Σ

E
ff

ec
to

rs

coop

B i

B j

Bn

D

Se
ns

or
 P

ro
ce

ss
in

g
Se

ns
or

 P
ro

ce
ss

in
g

Se
ns

or
 P

ro
ce

ss
in

g

Fig. 6. An architecture for switching between cooperative and competitive
behavior selection strategies.

selection "6������� as described above (e.g., using a schema-based
approach), where the relative contribution of each behavior
depends on its activation. The activation, in turn, reflects the
agent’s proximity to resources associated with the behavior
(e.g., “food” for FOOD-SEEKING, see also [27]). Now consider
the case, in which an agent’s water level drops below a certain
critical threshold. In this circumstance, a competitive behavior
selection strategy "5���7#$� , which ignores food and focuses
entirely on water, is better than the default cooperative strategy.
Hence, �D� could implement an alarm mechanism (case (2) in
Section III), which switches to competitive behavior selection,
whenever internal energy or water levels drop below critical
values. Depending on which level drops below the threshold
first, "6���7#$� will send a signal to 8 to use either the input
from � � or ��9 –if both drop at the same time, "5����#$� could
pick one at random, or suppress the one that seems farther
away based on environmental input (the architecture is shown
on the bottom left in Figure 7).

C. Switching from Competitive to Cooperative

Now consider an agent that uses a combined architecture
:6;!(�=�?+@E(>%2B 9 , which by default is competitive (e.g., using a
subsumption-style approach). Depending on which resource
the agent needs more, food or water, either the FOOD-SEEKING
or the WATER-SEEKING component will be selected by "F���7#$� .
Component �G9 , in this case, does not have to monitor internal
energy and water levels (as with the :6;!(�=�?+@E(�%2B � architecture),
because behavior selection already guarantees that the agent
will go after the resource it needs most (in terms of the
:6;!(�=�?+@E(>%2B � architecture, behavior selection in :6;<(>=�?�@A(�%2BC9
achieves a “permanent alarm mode”). However, if on the
way to a resource that is needed another close-by resource
can be picked up (i.e., without a big detour), then it might
be beneficial to do so. To accomplish this, component �
implements a decision mechanism that allows the agent to
turn on cooperative behavior selection if the activation of

Pcoop Pcoop

Seeking
Food

Seeking
Water

Σ

E
ff

ec
to

rs

Pcoop

D2

Se
ns

or
 P

ro
ce

ss
in

g

Seeking
Food

Seeking
Water

Σ

E
ff

ec
to

rs

Pcomp

Se
ns

or
 P

ro
ce

ss
in

g

A−link
O−link

Seeking
Food

Seeking
Water

Σ

E
ff

ec
to

rs

Pcoop

D1

Se
ns

or
 P

ro
ce

ss
in

g

Seeking
Food

Seeking
Water

Σ

E
ff

ec
to

rs

Pcoop

Se
ns

or
 P

ro
ce

ss
in

g

Fig. 7. Architectures for food- and water seeking agents with non-adaptive
cooperative behavior selection H6I�I�J-K�LNMPORQTS+K (top left) and competitive be-
havior selection H6I�UVJ-K�ORQTORQTS+K (top right), and with dynamic switching from
default cooperative to competitive WYXZQ�O\[7]^QT_a`�b (bottom left), and from
default competitive to cooperative WYXZQTO\[�]^QT_C`+c (bottom right).

the behavior representing the most needed resource is much
lower than the activation of the behavior representing the
not-so-much needed resource (e.g., in the spirit of case (5)
in Section III). For example, the influence of the WATER-
SEEKING component is taken into account, even if food is
needed, but the activation of the water-seeking behavior is
over twice that of the food-seeking behavior, indicating that
resources might be in the vicinity (the architecture is shown
on the bottom right in Figure 7).12

D. Simulation Environment and Setup

To test the utility of switching between competitive and
cooperative behavior selection mechanisms, we defined and
implemented a basic agent model, which we then equipped
with four different architectures. Agent types � � and �*9 have
the two dynamic architectures :5;!(�=�?+@A(�%2BY� and :6;!(�=�?+@E(�%2B 9 ,
respectively, which are combinations obtained from merg-
ing the following non-adaptive architectures (as described in
Section VI-B): agent type ��d has a schema-based architec-
ture with non-adaptive explicit cooperative behavior selection
"6������� (top left in Figure 7), and agent type �*e has a sub-
sumption architecture with non-adaptive implicit competitive
behavior selection (top right in Figure 7).

All agent types process sensory information, which comes
from their vision sensors, by computing “force vectors” from
the agent’s current position to the perceived resources. For
each resource type, i.e., food and water, a force vector is
computed (�6f�����g and �Zhjilknm�o , respectively), which is the sum,
scaled by 3^pAq r2q 9 , of all vectors r from the agent to the objects
of each type within sensory range (set to 300). The activation
of each of the two behavior components is then determined in
terms of the length of � (i.e., q �5f�����gCq and q �Zhjilknm�oCq).

12Depending on the perceptual system this indication of the proximity of
water or food may or may not be accurate.

13

In the schema-based architecture, the force vectors are
mapped into motor space in the 8 component by the trans-
formation function s�tnuwvGxyB f�����gz � f�����g 1{B hjilknm�o|z � hjilknm�o ,
where each B f�����g and B hjilknm�o are the gain values determining
the relative contribution of each behavior component to the
overall agent’s behavior. In the subsumption architecture, 8
suppresses the output of the behavior, which corresponds to
the resource type that is less needed depending on internal
energy and water levels.13

As environment we used an unlimited continuous surface,
which can be populated with the four agent kinds as well
as food and water sources, which pop up within a 800 unit
by 800 unit area and disappear after a predetermined period
of time, if not consumed by agents. Agents are in constant
need of food and water as moving consumes energy and water
proportional to their speed–even if they do not move, they will
still consume a certain amount of both. When the energy/water
level of an agent drops below a certain threshold } , agents
“die” and are removed from the simulation (they also die and
are removed if they run into other agents). After a certain
age ~'x{�a�-� (measured in terms of simulation cycles), agents
reach maturity and can produce a variable number of offspring
depending on their current energy and water levels (from 0 to
4).

All architectures for the simulation experiments were im-
plemented using the SimAgent toolkit [53].

E. Experiments and Results

We performed several experiments, which we can categorize
into four main sets depending on whether new resources
appeared at a low or a high frequency at random locations
(i.e., with a probability of 0.25 for food and 0.15 for water,
or a probability of 0.5 for food and 0.3 for water per cycle,
respectively), and whether environment were homogeneous or
heterogeneous (i.e., consisted of one or more kind of agent).

In the first two sets, we examined the viability of each agent
kind in low and high resource environments, respectively. For
each of the 8 experiments part of these two sets, we ran 40
simulations of 10000 cycles each with 10 agents (of a given
kind), 15 food and 15 water sources placed initially at random
locations in the environment. As a measure of an agent type’s
performance, we used the number of surviving agents at the
end of each simulation run, averaged over the 40 runs (to
eliminate effects of initial positions). As can be seen from the
results in Table II, each agent kind can survive on its own in
both low and high resource environments, although the average
survival rate for agent kinds other than �� is very low in
low resource environments. While the performance difference
among �*9 , � d , and �<e is not statistically significant, the dif-
ference between � � and the other agents is highly significant
(p � 0.001 using a two-tailed t-test). Therefore, the dynamic
behavior selection strategy implemented by � � is by far better
than those implemented by the other agent kinds (including the
dynamic architecture implemented by ��9 agents).

13Note that ��� agents do not use their internal energy and water levels for
behavior selection or any processing for that matter.

Sets 3 and 4, then investigated the potential of dynamic
behavior selection in competitive environments. For this pur-
pose, we ran again 8 experiments with environments initially
containing two agents kinds of 10 agents each randomly placed
in the environment, one with dynamic behavior selection, the
other without (again, we used 15 randomly placed food and
15 randomly placed water sources). As in the homogeneous
case, we averaged the number of survivors of each agent kind
after 10000 simulation cycles over 40 runs. But different from
the previous two sets, each set now contains 8 experiments,
comparing each dynamic to each non-dynamic agent for low
and high resource environments.

Table III shows the results for �� agents, Table IV shows
the results for � 9 agents. As expected from the individual ex-
periments, � � agents outperform both kinds with non-dynamic
behavior selection in both low and high resource environments
(p � 0.001 using a two-tailed t-test). This time ��9 is also
significantly better than � d and �<e (p � 0.05) in all cases,
which indicates that dynamic switching from competitive to
cooperative behavior selection as implemented by �|9 agents
is relatively better than any of its constituent non-dynamic
behavior selection strategies (as there is a significant difference
between them in heterogeneous environments while there is no
significant difference in homogeneous environments).

Finally, it should be mentioned that the thresholds for
switching from cooperative to competitive behavior selection
in � � and for switching from competitive to cooperative
behavior selection in ��9 could be learnt (e.g., through an evo-
lutionary method like mutation across generations or through
reinforcement learning within the life-time of each agent,
where the expected future benefit obtained from switching
behavior selection strategies is used to lower or raise the
threshold).

F. A Generic Architecture for Dynamic Behavior Selection

The results of the simulation experiments demonstrate that
switching between cooperative and competitive behavior se-
lection can be highly beneficial. We can now generalize
the above approach to a generic architecture for dynamic
behavior selection, which accommodates implicit and explicit
competitive and cooperative behavior selection mechanisms.
In a first step, we allow for an arbitrary number of policy
components in the architecture in Figure 6. In a second step,
we add C-links from policy components to behaviors, allowing
policy components to terminate and (re-)instantiate links from
behavior components to the 8 component. This way implicit
behavior selection obviates the need to reconfigure 8 (via
an A-link from a policy node) and, moreover, reduces the
resource requirements at the architectural level (by reducing
the number of links that need to be updated). In some
circumstances, it will be possible to allow policy components
to even terminate (temporarily) the behavior component itself
(e.g., in the case of � � agents when one resource drops
below the critical level). The advantage of this move is again
the reduction of the required computational resources in the
running virtual machine (e.g., fewer memory requirements and
shorter update times of the architectures, both of which are

14

essential if computational resources are limited as is the case
in embedded behavior-based systems like autonomous robots).
Figure 8 shows a schematic of the generic architecture.

A−link
O−link
C−link

Bm

Σ

E
ff

ec
to

rs

D

2P
B2

B1

. .
 .

Pn

. .
 .

P1

Se
ns

or
 P

ro
ce

ss
in

g

Fig. 8. A generic architecture for dynamic changes among multiple behavior
selection strategies.

It is worth noting that this generic architecture necessarily
leaves open the functional specification of the decision com-
ponent � , which is an important strength of the proposed
architectural approach to dynamic modifications of behavior
selection strategies: there is no unique decision method that
equally applies to all tasks and moreover fixes the best
strategy for switching among behavior selection mechanisms.
This can be best seen from the experiments with � 9 agents
where dynamic behavior selection is not better than non-
dynamic behavior selection in homogeneous environments,
but is significantly better than non-dynamic behavior selection
in heterogeneous environments. In other words, whether and
to what extent a decision mechanism for switching among
different behavior selection strategies is successful, does in
general not depend on the architectural mechanism alone, but
may also depend on external factors, such as the makeup of
the environment, in which the task is to be performed: while
there are cases (e.g., the �� agents) where an architectural
mechanism � is “absolutely better” (i.e., in all considered en-
vironments), there are other cases (e.g., the � 9 agents) where
mechanisms � is only better in a subset of the considered
environments. Consequently, it is crucial for a generic archi-
tecture for dynamic behavior selection mechanisms (such as
the one proposed here) to allow for different kinds of decision
components depending on the given task and environment as
otherwise fixing the functional specification of � will limit its
generality.

VII. DYNAMIC BEHAVIOR SELECTION MECHANISMS IN
ROBOTS

Since behavior-based architectures are primarily intended
for robotic agents, where real-time performance is critical,
we demonstrate the utility of dynamic behavior selection for
combinations of the seven cases (discussed in Section III) on
a robot in three different sets of experiments:

1) Experiment 1: the robot learns to constrain the set of
behaviors used for behavior selection based on relevant

sensory inputs for a given environment (demonstrating
Cases 1,2, and 7)

2) Experiments 2: the robot changes combinations and
sequences of behaviors to overcome deadlocks (demon-
strating Cases 4 and 5)

3) Experiment 3: the robot uses attentional mechanisms to
detect a lack of progress towards its goal and changes
its behavior selection strategy to overcome the problems
(demonstrating Cases 3 and 6)

The task is the same for all three sets: the robot needs to
locate and reach a target location (“orange ball”) as quickly
as possible in an obstacle environment without bumping into
obstacles (i.e., boxes and chairs, see Figure 9).

Fig. 9. The robot on its way to the target location (orange ball).

A. Experimental Setup

All robotic experiments were performed on a Pioneer
2DXE robot from ActivMedia, which was equipped with
a SONY PTZ camera, an onboard framegrabber, and
an onboard PC running Linux. The generic architecture
used in all experiments (left in Figure 10) consists
of a :5��%���������"|�^�^?P�^���+(�%2B , an �<?P=�(���% "|�^�^?P�^����(>%2B ,
and a :6�C������ra(�������� �D��?N(���(���% :6�A��=���� part. The
:5��%���������"|�^�^?P�^����(>%2B part processes sonar, visual, and
bumper sensor information (received from the robot’s
16 sonar, camera, and 10 bumper sensors, respectively)
in components ��3 through ��3�� , �lr , and �P� and makes
the information available to other parts of the system.
For visual images, for example, the centroids of color
blobs are computed and converted into directional vectors.
The �*?N=�(���%�"|�^�^?P�^���+(�%2B part implements all behaviors
as well as the employed behavior selection strategies (a
schema-based cooperative mechanism, by default), while
the :6�C������rC(��������4�D��?N(���(���%�:6�A��=���� implements additional
control methods dependent on the specific functionality to be
tested in each of the three experiments. All architectures were
implemented in ADE, a JAVA-based APOC development
environment under development in our lab, in which

15

bb

b1

. .
 .

pa

p1

d1 d2

bv

b16

Σ Σ

bb

b1

. .
 .

d3

bv

p2

p3b16

bb

b1

. .
 .

p5

p4

d5d4

bv

b16

Σ
Sensory

Processing
Action

Processing
Sensor

Sonar
Sensors

Camera

Effectors

Supervisory Decision
System A−link

O−link
C−link

Fig. 10. Architectural description for the robotic experiments. From left to right: the generic architectural set-up and the individual architectures for experiments
1, 2, and 3.

architectures specified in the APOC formalism can be
directly implemented [38], [39], [40].

B. Experiment 1

In this experiment, the robot repeatedly moves through the
obstacle environment starting in the same area in an effort
to learn how to traverse it as quickly as possible. On each
run, components processing the largest sonar sensor values
are systematically deleted for a fixed period of time in order
to determine whether their absence makes a difference in
the robot’s progress towards the target location (as measured
in terms of the size of the identifiable target location in
the visual image). If no difference is detected, the sensor
component gets permanently deleted for the particular route
(Case 1), otherwise the component is re-instantiated. An alarm
mechanism connected to the bumper sensors ensures that
the robot will not inflict any damage if relevant sensors get
temporarily deleted (Case 2). Over time, the robot learns to
remove irrelevant sensor components for a given route, which
frees up system resources and leads to better performance at
traversing the environment (Case 7).

Target

Obstacle

Target

Obstacle

Fig. 11. The two scenarios used for the first robot traversing experiments.

The architecture implementing the cooperative behavior
selection strategy that dynamically restricts and widens the
pool of contenders is shown in Figure 10 (second from the
left). The :6�C������ra(����������D��?N(��+(���%�:6�A��=���� structure consists
of two APOC components, �E3 and ��� . �E3 collects sonar

information and forms a composite “picture” of the environ-
ment. ��� analyzes the environment, decides which components
are expendable and deletes them from the architecture. The
�<?P=�(���%4"|�^�^?P�^����(>%2B consists of two components: ��3 , which
sets up 8 to compute an overall direction towards the goal,
and an alarm mechanism ��� , whose function is to prevent the
robot from hitting obstacles and which, therefore, overrides ��3
when the robot is in a perilous situation. It should be noted
that although sensor components are deleted for the duration
of a particular route, they can be re-instantiated if another
task requires them. Thus, the experiment illustrates one way
of learning fixed action patterns (such as the egg retrieval of
the greylag goose) at the architecture level, where only the
minimal sensory information necessary to perform the action
pattern is processed.

Figure VII-B shows two typical scenarios for this exper-
iment. For each of these two scenarios, we first performed
10 runs without learning to get the baseline results for the
traversal times. Then we performed 10 runs each allowing the
system to delete at most one sensor component and another
set of 10 runs each, in which the system was allowed to delete
up to two components. For all runs, we measured the elapsed
time between starting the traversal and arriving at the target
location. Table V summarizes the results.

TABLE V
THE AVERAGE TIMES TO TARGET AND CONFIDENCE INTERVALS FOR EACH

OF THE 10 RUNS WITH 0, 1, AND 2 COMPONENTS DELETED FOR THE TWO

TRAVERSING SCENARIOS OF ROBOT EXPERIMENT 1.

Scenario 1 Scenario 2
Mean Conf.Int. Mean Conf.Int.

Baseline 37.06 (30.50,43.61) 21.27 (17.84,24.70)
1 deleted 24.38 (21.68,27.07) 17.64 (16.98,18.29)
2 deleted 20.55 (20.33,20.76) 18.92 (18.00,19.84)

As can be seen from the results, the dynamic architecture
modification is beneficial in both scenarios. The traversal times
in the runs with one component deleted are in both cases
significantly lower than in the two baseline runs (p � 0.05 using
a t-test). Hence, both task performance and computational
resource utilization are improved by dynamical behavior selec-
tion (as fewer components need to be instantiated in memory
and updated). Moreover, in the first scenario, the run with

16

two deleted components is also significantly better than the
run with one deleted component, thus further improving both
performance and reducing resource requirements. However,
the increased speed and reduced number of components can
also lead to collisions that otherwise would not have occurred.
The robot bumped in 6 out of the 10 runs with two deleted
components into obstacles in the first scenario (triggering the
alarm mechanisms connected to the bumper sensors to back
it up). In the second scenario, on the other hand, all runs
were completed without collisions. And even though the differ-
ence between the baseline runs and the runs with two deleted
components is not significantly different (in fact, the traversal
time is slightly higher in the case of two deleted components),
there is again a reduction of the computational requirements.
Therefore, depending on the structure of the environment and
safety concerns, it might be necessary to determine the largest
number of components that can be deleted without risking
collisions, which can be done by comparing the outcome of
several “trial-and-error” runs for different numbers of deleted
components.

It is worth pointing out that in the first scenario only 6
out of the 10 baseline traversals completed. In the other 4
runs, the robot got stuck in a “local minimum”, which is
quite common for schema-based cooperative behavior selec-
tion approaches. One effective solution that was proposed to
overcome these minima is to add an “avoid-past schema” to
the architecture [54]. This schema effectively keeps track of
all recent locations the robot has visited and adds a repulsive
force to the overall force vector for each of these locations,
which eventually causes the robot to be repelled by them,
thus overcoming local minima. Unfortunately, the “avoid-past”
schema is computationally and architecturally demanding in
that past locations have to be stored and their representations
need to be updated relative to the robot’s movements, which
requires at the very least additional (typically proprioceptive)
input to determine (approximately) the robot’s movement be-
tween two architecture update cycles. The proposed dynamic
behavior selection mechanism, on the other hand, does not
need architectural extensions to achieve the same effect in the
above scenarios. On the contrary, it reduces the instantiated ar-
chitecture by (temporarily) deleting those components that are
not necessary for and potentially interfere with the completion
of the traversal.

C. Experiment 2

In this experiment, the robot eventually encounters a narrow
passage on its way to the target location, which it has to pass
(see Figure 12). If the target is placed in the center after the
passage (left in Figure 12), the robot will typically be able to
go through using its standard cooperative behavior selection
mechanism. If, however, the target is placed off to one side
(partly hidden behind an obstacle as in the right two figures
in Figure 12), the robot will either fail to go through the
passage or lose track of the ball. Various factors (such as
wheel slippage, noise in the sonar values when it gets too
close to an obstacle, and others) cause the robot to be unable
to center in on the ball directly. By dynamically reconfiguring

the relative contributions of different behaviors (in this case
motor schemas) based on the context, i.e., whether or not the
robot sees the target (Case 5), it is possible to extend the
robot’s behavioral repertoire and recombine behaviors (Case
4) to overcome the deadlock.

38 cm

76 cm

38 cm

76 cm

38 cm

76 cm

Target Target Target

Fig. 12. The robot’s trajectory for different setups for robot experiment 2:
with centered target behind the passage way (left) and the target off to one
side, without (middle) and with supervisory control (right).

The architecture implementing the context-dependent dy-
namic modifications of the relative contributions of each
behavior in the cooperative behavior selection strategy is
the second subfigure from the right in Figure 10. The
:6�C������ra(����������D��?N(���(���%�:5�Y��=���� consists of a single compo-
nent, �a , which processes the visual information available to
the system and chooses which of two decision components will
be instantiated in the architecture. The �*?N=�(���%¡"|�^�^?P�^���+(�%2B
section thus consists of two decision components: one com-
ponent, �w� , configures 8 to use a constant attraction to the
ball, while the other, �w , increases the attraction of the ball
over time (for a given time interval, after which it is reset to
its original value). The later implements an adaptive behavior
selection strategy, as it will change the relative contribution of
ball attraction and obstacle repulsion until either the robot can
advance through the passage or the time limit of the adaptation
process is reached (i.e., the point at which it is assumed that
adaptation is not able to resolve the impasse).

Again, we performed 10 baseline runs with the non-dynamic
architecture, where the ball was placed off-center on the other
side of the passage and the robot failed to traverse the passage
in all 10 runs. With dynamic behavior selection, the robot
only failed to traverse the passage in two out of 10 trials.
This shows that the addition of components �a and �w , which
establish the context-mapping and allow for dynamic switches
among configurations of gain values for motor schemas, is
another effective way to overcome local minima. Note that
this benefit can be achieved using minimal computational and
architectural requirements. Moreover, the dynamic behavior
selection mechanisms can be added to an existing schema-
based architecture with only minor modifications.

D. Experiment 3

The third experiment uses the setup of experiment 2, except
that the opening between the two obstacles is now too small for
the robot to be able to pass through safely. On a typical run, the
robot will proceed towards the ball using the standard coop-
erative mechanism. Once the obstacles are reached, the robot

17

will be locked into oscillatory behavior regardless of where the
ball is placed on the other side (i.e., it will move towards and
away from the obstacles without making any progress towards
the target location). In this case, even the dynamic behavior
selection mechanism from the above experiment that helped
align the robot properly for traversal will fail, as the passage
is too narrow for traversal and the repulsive forces exerted by
the obstacles consequently cause the robot to turn away.

This is were an attentional mechanism proves useful (Case
6): by noticing that no progress is made towards the target
(comparing different perceptions of the target and robot move-
ments over time), the mechanism switches behavior selection
to competitive mode to avoid impossible actions (Case 3) and
turns off visual input, which effectively leads the robot to move
around the obstacle. Once the target reappears, the supervisory
mechanism re-enables visual input and full cooperative behav-
ior selection.

38 cm

Target

Fig. 13. The environment for robot experiment 3 showing the robot’s path
with dynamic behavior selection.

The architecture implementing the performance-based at-
tentional control, which can switch among different behavior
selection strategies, is shown in the rightmost subfigure of
Figure 10. Here, the :6�C������rC(����������D��?N(���(���%�:6�A��=���� consists
of two components: �a¢ , which observes the vision sensor and
identifies the contents of the image seen by the robot, and
�C� , which monitors the progress made by the robot towards
achieving its goal. If the progress is unsatisfactory, �C� inter-
rupts the decision component which is currently active (��¢)
and starts the inactive one (�w�).14 Thus, �<?N=�(���%�"|�^�^?P�^���+(�%2B
consists of two components with different characteristics: �E¢
is a component which uses cooperative decision making to
choose a behavior, whereas �2� is a competitive decision maker.

As with the other experiments, we performed 10 baseline
runs without dynamic behavior selection for both the basic
schema-based architecture and the architecture augmented
with the mechanism from experiment 2. In both cases, the
robot got stuck at the entrance to the passage without ever
getting around the obstacles. When dynamic behavior selection
was used, the robot was able to move around the obstacle
in all 10 runs, showing that attentional mechanisms that can
detect deadlocks are useful for controlling dynamic changes

14Note that while in the present setup the threshold for switching from
cooperative to competitive behavior selection is fixed, it could, as in the
simulation experiments, be learnt using reinforcement learning.

of behavior selection strategies.15

VIII. DISCUSSION

Currently, there are no systematic studies available that
investigate the potential of dynamic modifications of behav-
ior selection mechanisms, which may be partly due to the
fact that behavior-based architectures do not easily or not
at all support the coexistence of multiple behavior selection
mechanisms. This was the main reason for using the APOC
framework, in which the proposed mechanisms for behavior-
based architectures with different behavior selection strategies
can be described and discussed in a unified way.

More importantly, the APOC formalism allows us to define
new efficient integration methods of behavior selection strate-
gies within one architecture that are not possible in any of
the discussed design methodologies (e.g., a subsumption-based
architecture does not support the run-time instantiation of
schemas based on sensory information; conversely, a schema-
based architecture does not support the hierarchical layering
possible in subsumption architectures).

“Efficient integration” here is a crucial factor, as it may be
possible in some cases to achieve dynamic changes among
behavior selection mechanisms simply by running several
architectures (each of which employs a particular behavior
selection strategy) in parallel and using another architecture
solely to decide which of these architectures gets to control
the agent’s effectors.

Consider, for example, an agent that is part of a group box-
pushing task in an environment in which it needs to feed and
avoid predators. This is a combination of the tasks in [1] and
[29]. The two systems, a modified free flow hierarchy and
a case-based system, can operate independently in an agent,
requiring merely an additional component to decide which
behavior (as recommended by the two subsystems) to use.
Figure 14 shows a schematic of such a system, which could
be implemented by running three independent architectures in
parallel:

Modified Free−flow
Hierarchy

Task Accomplisment
Sub−System:
Case−Based Reasoning

Decision Node

Survival Sub−system:

Effectors

Fig. 14. An architecture with two different behavior selection mechanisms
obtained by combining two independent behavior selection architectures via
a separate decision system, thus duplicating behavior representations and
behavior processing.

15Note that while the robot will typically be able to move around obstacles
in the environments used for our tests, there are environments where it will get
stuck, e.g., because moving around the blocking obstacle is not possible. In
that case, the supervisory component will consider the attempt to surround the
obstacle a failure and switch back to the standard behavior selection strategy,
thus effectively restarting the target localization process.

18

Obviously, such a setup is less than ideal: it will not only
be resource-intense in terms of computational time and space
(and may, therefore, not be feasible on an autonomous robot),
but it will also reduce the flexibility of adjusting architectural
parameters across subarchitectures and increase the complexity
of the architectural design if multiple behavior selection strate-
gies are to be employed at different places in the architecture at
the same time (e.g., competitive selection at the lowest motor
control layer, cooperative selection at an intermediate behavior
control layer, and a mixture of both at an even higher reflective
layer). By implementing the systems within one architecture,
it is possible to reuse all components implementing behav-
iors (without duplicating them as in Figure 14), while only
adding the structural mechanisms required for each individual
behavior selection strategy together with the decision com-
ponent that switches between behavior selection mechanisms
(as proposed in Section 6). By overlaying several structural
features, each of which implements a particular behavior
selection strategy, it is possible to build complex systems
that can achieve a high degree of adaptivity along several
dimensions at the same time. For example, by integrating the
structural features of the behavior selection mechanisms of
the three robotic architectures presented above it is possible
to define a combined architecture that inherits all properties
of the individual systems (e.g., the robot can learn to reduce
sensory information, while being able to drive through narrow
passages, and giving up attempts to pass them if they are too
narrow in favor of driving around the obstacle).

IX. CONCLUSION

In this paper we introduced a taxonomy for behavior selec-
tion mechanisms that allows for a distinction between adaptive
or non-adaptive, explicit or implicit, cooperative or competitive
behavior selection strategies, each of which seems advanta-
geous in different circumstances. We argued that behavior-
based architectures should allow for a combination of different
behavior selection strategies to be able to study and compare
the properties of different mechanisms and furthermore to
allow agents to choose (or learn to choose) at run-time the
strategy that works best in a given situation. Specifically,
we isolated seven possible scenarios for the application of
dynamic modifications of behavior selection strategies and
demonstrated the utility of architectures with dynamic behav-
ior selection for all seven cases in experiments with simulated
and robotic behavior-based agents.

These demonstrations are intended to lead the way for
the investigation of additional, more complex architectural
mechanisms for dynamic behavior selection to explore and
pinpoint the kinds of situations, in which dynamically modifi-
able behavior selection mechanisms play out their strengths to
the fullest. We believe that such studies will ultimately have
to involve investigations of the tradeoffs between computa-
tionally expensive, highly versatile deliberative systems, which
can implement a large class of behavior selection strategies by
virtue of general reasoning and planning mechanisms based on
explicit representations of the task domain, and much cheaper,
architectural mechanisms that are by far not as general as

deliberative ones, but sufficient for the given tasks and, more
importantly, computationally much less demanding.

REFERENCES

[1] T. Tyrrell, “Computational mechanisms for action selection,” Ph.D.
dissertation, University of Edinburgh, 1993.

[2] R. A. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23,
1986.

[3] R. C. Arkin, “Motor schema-based mobile robot navigation,” Interna-
tional Journal of Robotic Research, vol. 8, no. 4, pp. 92–112, 1989.

[4] K. Lorenz and P. Leyhausen, Motivation and Animal Behavior: An
Ethological View. New York: Van Nostrand Co., 1973.

[5] W. Wimsatt, “Aggregativity: Reductive heuristics for finding emer-
gence,” Philosophy of Science, vol. 64 (supplement), no. 4, pp. 372–384,
1997.

[6] P. Maes, “How to do the right thing,” Connection Science Journal, vol. 1,
pp. 291–323, 1989.

[7] R. C. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT Press,
1998.

[8] R. Cooper and T. Shallice, “Contention scheduling and the control of
routine activities,” Cognitive Neuropsychology, vol. 17, no. 4, pp. 297–
338, 2000.

[9] A. Sloman and P. Terrier, “Interview on human-like agents and affect,”
EACE Quarterly (European Association for Cognitive Ergonomics),
vol. 3, pp. 23–30, August 1999, 2.

[10] P. Pirjanian, “Behavior coordination mechanisms - state-of-the-art,”
Institute for Robotics and Intelligent Systems, School of Engineering,
University of Southern California, Tech. Rep. IRIS-99-375, 1999.

[11] K. Rosenblatt and D. Payton, “A fine-grained alternative to the sub-
sumption architecture for mobile robot control,” in Proceedings of the
IEEE/INNS International Joint Conference on Neural Networks, 1989.

[12] J. K. Rosenblatt, “DAMN: A distributed architecture for
mobile navigation,” in Proc. of the AAAI Spring Symp.
on Lessons Learned from Implememted Software Architectures
for Physical Agents, Stanford, CA, 1995. [Online]. Available:
CITESEER.NJ.NEC.COM/ARTICLE/ROSENBLATT97DAMN.HTML

[13] T. Balch and M. Hybinette, “Social potentials for scalable multirobot
formations,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA-2000), San Francisco, CA, 2000.
[Online]. Available: CITESEER.NJ.NEC.COM/BALCH00SOCIAL.HTML

[14] O. Jenkins, M. Mataric, and S. Weber, “Primitive-based movement
classification for humanoid imitation,” in Proceedings, First IEEE-
RAS International Conference on Humanoid Robotics (Humanoids-
2000), Cambridge, MA, September 2000. [Online]. Available:
CITESEER.NJ.NEC.COM/JENKINS00PRIMITIVEBASED.HTML

[15] J. Yen and N. Pfluger, “A fuzzy logic based extension to payton and
rosenblatt’s command fusion method for mobile robot navigation,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 25, no. 6, pp. 971–
978, June 1995.

[16] A. Abreu and L. Correia, “Fuzzy behaviors and behavior
arbitration in autonomous vehicles,” in Portuguese Conference
on Artificial Intelligence, 1999, pp. 237–251. [Online]. Available:
CITESEER.NJ.NEC.COM/ABREU99FUZZY.HTML

[17] M. K. Starr and M. Zeleny, “Mcdm-state and tuture of the arts,” in
Multiple Criteria Decision Making, ser. Studies in the management
sciences, M. K. Starr and M. Zeleny, Eds. North-Holland Publising
Company, 1977, vol. 6, pp. 5–30.

[18] T. Huntsberger, H. Aghazarian, E. Baumgartner, and
P. Schenker, “Behavior-based control systems for planetary
autonomous robot outposts,” in Proceedings of Aerospace
2000, Albuquerque, NM, 2000. [Online]. Available: CITE-
SEER.NJ.NEC.COM/HUNTSBERGER00BEHAVIORBASED.HTML

[19] P. Pirjanian, T. Huntsberger, A. Trebi-Ollennu, H. Aghazarian,
H. Das, S. Joshi, and P. Schenker, “Campout: a control architecture
for multirobot planetary outposts,” in Proceedings of the SPIE
Conference on Sensor Fusion and Decentralized Control in Robotic
Systems III, Boston, MA, November 2000. [Online]. Available:
CITESEER.NJ.NEC.COM/PIRJANIAN00CAMPOUT.HTML

[20] S. Kristensen, “Sensor planning with bayesian decision theory,” Ph.D.
dissertation, Aalborg University, 1996.

[21] S. Thrun, “Probabilistic algorithms in robotics,” AI Magazine,
vol. 21, no. 4, pp. 93–109, 2000. [Online]. Available:
CITESEER.NJ.NEC.COM/THRUN00PROBABILISTIC.HTML

19

[22] A. F. Foka and P. E. Trahanias, “Predictive autonomous
robot navigation,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2002. [Online]. Available:
CITESEER.NJ.NEC.COM/536649.HTML

[23] D. Goldberg and M. J. Mataric, “Reward maximization in
a non-stationary mobile robot environment,” in Proceedings of
the Fourth International Conference on Autonomous Agents,
C. Sierra, M. Gini, and J. S. Rosenschein, Eds. Barcelona,
Catalonia, Spain: ACM Press, 2000, pp. 92–99. [Online]. Available:
CITESEER.NJ.NEC.COM/GOLDBERG00REWARD.HTML

[24] M. N. Nicolescu and M. J. Mataric, “Extending behavior-based
systems capabilities using an abstract behavior representation,”
in Working Notes of the AAAI Fall Symposium on Parallel
Cognition, North Falmouth, MA, November 2000. [Online]. Available:
CITESEER.NJ.NEC.COM/NICOLESCU00EXTENDING.HTML

[25] M. Nicolescu and M. J. Mataric, “A hierarchical architecture for
behavior-based robots,” in Proceedings, First International Joint Confer-
ence on Autonomous Agents and Multi-Agent Systems, Bologna, ITALY,
July 2002.

[26] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Cam-
bridge, Mass: The MIT Press, 1984.

[27] P. Maes, “A bottom-up mechanism for behavior selection in an artificial
creature,” in Proceedings of the First International Conference on
Simulation of Adaptive Behavior, 1991, pp. 238–246.

[28] B. Blumberg, “Action selection in hamsterdam: Lessons from ethology,”
in Proceedings of the 3rd international conference on the simulation
of Adaptive behaviour, Brighton, UK, 1994. [Online]. Available: CITE-
SEER.NJ.NEC.COM/ARTICLE/BLUMBERG94ACTIONSELECTION.HTML

[29] S. Yamada and J. Saito, “Adaptive action selection without explicit
communication for multi-robot box-pushing,” IEEE Transactions on
Systems, Man and Cybernetics, Part C, pp. 398–404, August 2001.

[30] L. E. Parker, “L-alliance: Task-oriented multi-robot learning in behavior-
based systems,” Advanced Robotics, Special Issue on Selected Papers
from IROS ’96, vol. 11, no. 4, pp. 305–322, 1997.

[31] C. Gershenson and P. P. Gonzalez, “Dynamic adjustment of the moti-
vation degree in an action selection mechanism,” in Proceedings of ISA
’2000, Wollongong, Australia, 2000.

[32] M. Carreras, J. Yuh, and J. Batlle, “An hybrid methodology for rl-based
behavior coordination in a target following mission with an auv,” in
OCEANS 2001 MTS/IEEE Conference, 2001.

[33] R. Pfeifer and P. Verschure, “Distributed adaptive control: a paradigm
for designing autonomous agents,” in [55]. Cambridge, MA: MIT Press,
1992, pp. 21–30.

[34] K. Z. Lorenz, The Foundations of Ethology. Springer-Verlag, New
York, 1981.

[35] J. Hoff and G. Bekey, “An architecture for behavior
coordination learning,” in Proceedings of the IEEE International
Conference on Neural Networks, vol. 5, Perth, Australia,
November 1995, pp. 2375–2380. [Online]. Available: CITE-
SEER.NJ.NEC.COM/HOFF95ARCHITECTURE.HTML

[36] G. Baerends, “The functional organisation of behaviour,” Animal Be-
haviour, vol. 24, pp. 726–735, 1976.

[37] A. Sloman, “Damasio, Descartes, alarms and meta-management,” in
Proceedings International Conference on Systems, Man, and Cybernetics
(SMC98), San Diego. IEEE, 1998, pp. 2652–7.

[38] V. Andronache and M. Scheutz, “Ade - an architecture development
environment for virtual and robotic agents,” to appear in the International
Journal of Artificial Intelligence Tools.

[39] ——, “Integration theory and practice: The agent architecture framework
APOC and its development environment ADE,” in Proceedings of the
AAMAS, 2004.

[40] ——, “Ade - a tool for the development of distributed architectures for
virtual and robotic agents,” in Proceedings of the Fourth International
Symposium ”From Agent Theory to Agent Implementation”, 2004.

[41] M. Scheutz, “Apoc - an architecture for the analysis and design of
complex agents,” in Visions of Mind, D. Davis, Ed. Idea Group Inc.,
2004, p. forthcoming.

[42] M. Scheutz and V. Andronache, “Growing agents - an investigation of
architectural mechanisms for the specification of “developing” agent
architectures,” in Proceedings of the 16th International FLAIRS Con-
ference, R. Weber, Ed. AAAI Press, 2003.

[43] V. Andronache and M. Scheutz, “APOC - a framework for complex
agents,” in Proceedings of the AAAI Spring Symposium. AAAI Press,
2003.

[44] ——, “Contention scheduling: A viable action-selection mechanism for
robotics?” in Proceedings of the Thirteenth Midwest Artificial Intelli-

gence and Cognitive Science Conference, MAICS 2002, S. Conlon, Ed.
Chicago, Illinois: AAAI Press, April 2002, pp. 122–129.

[45] D. M. Lyons and M. A. Arbib, “A formal model of computation for
sensory-based robotics,” IEEE Transactions on Robotics and Automa-
tion, vol. 5, no. 3, pp. 280–293, June 1989.

[46] J. R. Anderson, D. Bothell, B. M. D., and C. Lebiere, “An integrated
theory of the mind,” to appear in Psychological Review.

[47] G. Carpenter and S. Grossberg, “The art of adaptive pattern recognition
by a self-organizing neural network,” IEEE Computer, pp. 77–88, March
1988.

[48] M. Minsky, The Society of Mind. New York, NY: Simon & Schuster,
1985.

[49] R. Murphy, Introduction to AI Robotics. MIT Press, 2000.
[50] R. Pfeifer and C. Scheier, Understanding Intelligence. Cambridge,

Massachusetts: MIT Press, 1999.
[51] M. Carreras, J. Batlle, and P. Ridao, “Hybrid coordination of re-

inforcement learning-based behaviors for auv control,” in EEE/RSJ
International Conference on Intelligent Robots and Systems, 2001.

[52] M. Carreras, J. Yuh, and J. Batlle, “High-level control of autonomous
robots using a behavior-based scheme and reinforcement learning,” in
15th IFAC World Congress on Automatic Control, 2002.

[53] A. Sloman, “Sim agent help file,” 1999.
[54] T. Balch and R. Arkin, “Avoiding the past: a simple but effective strategy

for reactive navigation,” in Proceedings of the 1993 IEEE International
Conference on Robotics and Automation, Atlanta, GA, May 1993, pp.
678–685.

[55] F. J. Varela and P. Bourgine, Eds., Towards a Pratice of Autonomous
Systems: Proceedings of the First European Conference on Artificial
Life. Cambridge, MA: MIT Press, 1992, the ECAL 91 took place in
Paris on December 11-13, 1991.

20

TABLE II
RESULTS OF THE INDIVIDUAL PERFORMANCE OF ALL FOUR AGENT KINDS IN LOW AND HIGH RESOURCE ENVIRONMENTS.

Resources Switching 1 Switching 2 Cooperative Competitive
Mean Conf.Int. Mean Conf.Int. Mean Conf.Int. Mean Conf.Int.

Low 7.25 (6.15,8.35) 0.45 (-0.05,0.95) 0.50 (0.01,0.99) 0.58 (0.15,1.00)
High 13.33 (12.43,14.22) 5.42 (4.79,6.06) 4.20 (2.70,5.70) 3.75 (2.60,4.90)

TABLE III
RESULTS OF THE COMPETITION OF � b AGENTS WITH ��� AND �Z£ AGENTS, RESPECTIVELY.

Resources Switching 1 Cooperative Switching 1 Competitive
Mean Conf.Int. Mean Conf.Int. Mean Conf.Int. Mean Conf.Int.

Low 5.80 (4.49,7.11) 0.00 (0.00,0.00) 5.33 (4.16,6.49) 0.05 (-0.05,0.15)
High 11.92 (10.76,13.09) 0.00 (0.00,0.00) 11.42 (10.46,12.39) 0.25 (-0.26,0.76)

TABLE IV
RESULTS OF THE COMPETITION OF � c AGENTS WITH ��� AND �Z£ AGENTS, RESPECTIVELY.

Resources Switching 2 Cooperative Switching 2 Competitive
Mean Conf.Int. Mean Conf.Int. Mean Conf.Int. Mean Conf.Int.

Low 1.03 (0.43,1.62) 0.00 (0.00,0.00) 1.65 (0.87,2.43) 0.38 (0.09,0.66)
High 3.07 (2.01,4.14) 1.45 (0.58,2.32) 5.02 (3.36,6.69) 2.60 (1.63,3.57)

