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Abstract

Many human social exchanges and coordinated activities crit-
ically involve dialogue interactions. Hence, we need to de-
velop natural human-like dialogue processing mechanisms
for future robots if they are to interact with humans in nat-
ural ways. In this paper, we discuss the challenges of design-
ing such flexible dialogue-based robotic systems. We report
results from data we collected in human interaction experi-
ments in the context of a search task and show how we can use
these results to build more flexible robotic architectures that
are starting to address the challenges of task-based human-
like natural language dialogues on robots.

Interactions in natural language dialogues are an essential
part of human social exchanges, ranging from social con-
ventions such as greetings, to simple question-answer pairs,
to task-based dialogues for coordinating activities, topic-
based discussions, and all kinds of more open-ended con-
versations. As a result, the ability of future social and ser-
vice robots to interact with humans in natural ways (Scheutz
et al. 2007) will critically depend on developing capabili-
ties of human-like dialogue-based natural language process-
ing (NLP) in robotic architectures. However, different from
other NLP contexts such as story understanding or machine
translation, natural language processing on robots has at
least the following six properties: real-time, parallel, spo-
ken, embodied, situated, and dialogue-based.

Real-time means that all processing must occur within the
time frame of human processing, both at the level of com-
prehension as well as production. It also means that con-
straints will have to be incorporated incrementally as they
occur, analogous to human language processing.

Parallel means that all stages of language processing must
operate concurrently to mutually constrain possible meaning
interpretations and to allow for the generation of responses
(such as acknowledgements) while an ongoing utterance is
being processed.

Spoken means that language processing necessarily oper-
ates on imperfect acoustic signals with varying quality that
depends on the speaker and the background noise. In ad-
dition to handling prosodic variations, this includes typical
features of spontaneous speech such as various types of dis-
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fluencies, slips of the tongue, or other types of errors that are
usually not found in written texts.

Embodied means that robots have to be able to process
multi-modal linguistic cues such as deictic terms accom-
panied by bodily movements, or other gestures that con-
strain possible interpretations of linguistic expressions. It
also means that the robot will have to be able to produce
similar gestures that are expected by human interlocutors to
accompany certain linguistic constructs.

Situated means that, because speaker and listener are lo-
cated in an environment, they will have a unique perspective
from which they perceive and experience events, which, in
turn, has an impact on how sentences are constructed and
interpreted. This includes the incremental integration of per-
ceivable context in the interpretation of referential phrases
as well as being sensitive to non-linguistic coordination pro-
cesses such as the establishment of joint attention.

Dialogue-based means that information flow is not unidi-
rectional, but includes bidirectional exchanges between in-
terlocutors based on different dialogue schemes which con-
strain the possible dialogue moves participants can make at
any given point.

While the above six aspects present significant challenges
for the development of robotic architectures with dialogue
capabilities, there are also several advantages to natural lan-
guage processing on robots that other NLP contexts do not
have. For example, spoken natural language exchanges typi-
cally consist of shorter sentences with usually simpler gram-
matical constructions compared to written language (thus
making parsing easier and more efficient). Moreover, the
employed vocabulary is much smaller and the distribution
of sentence types is different (including more commands and
acknowledgements, and few declarative sentences compared
to written language). Also, different from written texts, per-
ceptual context can be used to disambiguate expressions,
and most importantly, ambiguities or misunderstandings in
general can often be resolved through subsequent clarifying
dialogue. The option to request clarification also allows in-
terlocutors to handle new, unknown expressions naturally.

Since there are many different forms of dialogues that
have their own rules and conventions based on social norms
and etiquette (such as small talk, interviews, counseling
talks, etc.) and might, moreover, require tracking of vari-
ous non-linguistic aspects (such as contextual information,



interlocutor eye gaze and affective as well as other men-
tal states), we focus on task-based dialogues in the paper.
We start by briefly reviewing the shortcomings of current
dialogue-based NLU systems on robots, and then discuss
our attempts to address some of them. We next report re-
sults from human experiments that we conducted to collect
a dataset as the basis for the architecture development and
then give examples of the kinds of dialogue exchanges our
current system can handle.

Previous Work
Although rapid progress in this field of research has been
made recently, no current systems are yet capable of these
types of dialog interactions. Moreover, most robotic sys-
tems lack one or more of the other essential requirements
such as incrementality of processing and real-time opera-
tion, the inclusion of contextual constraints on semantic pro-
cessing, the usage of a training grammar rather than an ex-
clusively rule-based grammar (created laboriously by hand),
and mechanisms for handling disfluencies and other distor-
tions of spontaneous speech.

For one, robotic systems that use natural language for
robot instruction either do not have natural language fully
integrated into the robotic architecture (e.g., (Michalowski
et al. 2007)) or are limited to simple instructions (e.g., (Firby
1989; Atrash et al. 2009)). And many systems use rule-based
grammars due to the difficulty of producing a well-trained
grammar on what is invariably the small amount of data
applicable to the domain. For one example, (Bos and Oka
2007) uses Nuance to produce first-order λ-expressions ac-
cording to a rule-based grammar. Disfluencies are not al-
lowed, and the system is nonincremental, in that it must pro-
cess the full utterance before proceeding further.

While there are several examples of incremental systems
(e.g., (Winograd 1972; Erman et al. 1980; Lowerre and
Reddy 1980) and more recently (DeVault and Stone 2003;
Allen et al. 1996; Varges and Purver 2006)), they usually
only process linguistic information. An exception is the sys-
tem by Schuler at al. (Schuler, Wu, and Schwartz 2009)
which integrates phonological, syntactic, and referential se-
mantic information into a single language model, thus en-
abling semantic information to boost probabilities for word
hypotheses of existing objects in the space. However, the
system has not been used on a robot and would require a
large amount of training data (often not available) in order to
be able to extract the relevant statistical information. Other
complete NLU systems that do not require large data sets for
training (e.g., TRIPS (Allen, Swift, and de Beaumont 2008))
are typically not incremental and have usually not been de-
signed with the challenges of NLP on robots in mind.

One approach to improving robustness is to allow for
partial parses. For example, (Rickert et al. 2007) uses
OpenCCG, a rule-based, non-incremental parser, to pro-
duce an unconstrained λ-logical semantic representation of
an input. When it is not able to form a complete seman-
tic parse, it produces partial parses for further processing,
rather than failing outright. In (Atrash et al. 2009), disflu-
encies are not specifically handled, but if a parse fails, the
speech recognizer output is passed to the goal manager as a

bag of words. (Kacalak and Majewski 2009) extracts known
words into commands rather than attempting to create a full
parse from input that may also contain unknown words, and
the word-recognition module allows malformed words to be
corrected.

Human Performance in a Search Task
It is difficult, if not impossible, to anticipate a priori the
wide variety of spoken task-based natural language inter-
actions that will be initiated by humans during interactions
with robots, even when the task is well-defined. Hence, we
conducted several human-human studies in a task where
two humans must coordinate their activities via remote au-
dio communication only (i.e., no visual links); their tran-
scribed interactions form the “Cooperative Remote Search
Task” (CReST) corpus (Eberhard et al. 2010; Scheutz and
Eberhard 2008a), which we use to identify natural interac-
tion patterns as well as potential pitfalls.

Dialogue-based natural language interactions are quite
different from natural language instructions as they would
be given in written form. For example, consider a written in-
struction for following a particular route such as “Continue
to walk straight, going through one door until you come to
an intersection just past a whiteboard.” (Kollar et al. 2010).
An interactive version of the same instruction from the cor-
pus is substantially more complex:
Instructor: OK, continue to walk straight.
Robot (continuing straight): OK.
Instructor: You should be seeing a door in

front of you.
Robot (looking out for a door): Yes.
Instructor: Good, go through that door.
Robot (moving through the door): OK, I’m

through the door.
Instructor: Alright. Keep going. There

should be a whiteboard.
Robot (looking for whiteboard): OK, I’m not

seeing it yet. Ah, there it is.
Instructor: Great, then you should see an

intersection, go there.
Robot (looking out for an intersection while

moving): Got it, OK.
Note that natural language instructions are given piecemeal
with the expectation of rapid feedback, and meanings as
well as goals are “negotiated” through a sequence of dia-
log moves and actions, rather than being fixed in a sequence
of instructions. As a result, perception, NLU, and behavior
have to be tightly intertwined. It is also expected that any
possible ambiguities (e.g., the presence of multiple doors)
can be resolved quickly online, hence there is no need to
provide abundant, fully self-contained information; rather
humans provide minimal information, happy to refine it or
add to it during the ensuing dialog-interaction. Among the
most frequently-occurring issues identified in the corpus1

are ungrammatical sentences, including incomplete referen-
tial phrases, missing verbs, corrections, and others; wrong

1The CReST corpus, including transcriptions of all interactions
coded for disfluencies and dialogue moves, together with POS tags
and dependency and CCG parse annotations, will be made avail-
able for research purposes free of charge.



word substitutions for intended target words such as “block”
and “book” for “box”; underspecified directions, referents,
and directives which assume shared task-knowledge, knowl-
edge of subgoals, perspectives, etc.; frequent “ums”, “uhs”,
and other disfluencies and pauses indicating cognitive load;
and frequent coordinating confirmations and acknowledg-
ments as dialogue moves including prosodically different
“okays”, “yeahs”, etc.

Despite attempts to address individual challenges of robot
NLP, no existing system successfully manages the real-time,
parallel, spoken, embodied, situated, and dialogue-based
NLP described above. Almost all current robotic architec-
tures suffer from insufficient NLP speed, inability to sys-
tematically handle the disfluencies that come up naturally
in spontaneous speech, and from limitations on the dialogue
side, including feedback via gestures and integration of dia-
logue schemes to ensure appropriate feedback is given.

Tackling Task-Based Dialogue HRI
The dialogues in the corpus are typical examples for the
kinds of coordinating natural language interactions humans
exhibit in limited domains like cooperative search tasks. The
ten most frequent word types in the entire corpus (exclud-
ing acknowledgments) are the, box, I, a, ’s, there,
you, on, and, and that. The 151 most frequent words
cover 60% of the tokens, 280 words reach 80% coverage,
and 712 reach complete coverage. Yet, despite their seem-
ingly very limited nature (based on vocabulary), the dia-
logues present a major challenge for HRI. It is clear that
meanings are not constructed from sentences alone but from
interactions that serve particular purposes and accomplish
particular goals. Perception, action, and language process-
ing in humans are obviously all intertwined, involving com-
plex patterns of actions, utterances, and responses, where
meaningful linguistic fragments result from their context to-
gether with prosodic, temporal, task and goal information,
and not sentence boundaries. Consequently, we need to de-
velop new models of interactive natural language process-
ing and understanding for HRI that process language in very
much the same interactive, situated, goal-oriented way as
humans. In particular, we need to integrate the timing of ut-
terances, back-channel feedback, perceivable context (such
as objects, gestures, eye gaze of the participants, posture,
etc.), as well as background and discourse knowledge, task
and goal structures, etc., if we want to achieve human-level
performance on robots. This poses both functional chal-
lenges and architectural challenges.

Functional challenges include (1) mechanisms for provid-
ing appropriate feedback that humans expect even while an
utterance is still going on, using different kinds of acknowl-
edgment based on dialogue moves; (2) new algorithms for
anaphora and reference resolution using perceptual informa-
tion as well as task and goal context; and (3) mechanisms for
handling various kinds of disfluencies and incomplete and
ungrammatical utterances, including robust speech recogni-
tion, parsing, and semantic analysis.

Architectural challenges include (1) real-time process-
ing of all natural language interactions within a human-
acceptable response time (e.g., typically acknowledgments

have to occur within a few hundred milliseconds after a re-
quest); (2) integration of various natural language process-
ing components (including speech recognition, parsing, se-
mantic and pragmatic analyses, and dialogue moves) that
allows for parallel execution and incremental multi-modal
constraint integration; and (3) automatic tracking of dia-
logue states and goal progress to be able to provide mean-
ingful feedback and generate appropriate goal-oriented dia-
logue moves.

While each of the above functional challenges is a re-
search program in its own right and we are nowhere close
to addressing any of them in a satisfactory manner, it is still
possible to make progress in parallel on the architectural
challenges, i.e., on defining appropriate functional compo-
nents in the architecture with appropriate data structures and
information flow among them to facilitate the integration of
the algorithms that will meet the functional challenges.

Over the last decade, we have started to address natural
language dialogue interactions on robots in our distributed,
integrated, affective, reflective, cognitive (DIARC) archi-
tecture (Scheutz et al. 2007). DIARC is implemented in
the agent development environment (ADE), a framework for
implementing architectures that provides infrastructure sup-
port for deploying functional components of the architecture
across multiple hosts, discovery of available services (pro-
vided by other components), and mechanisms for improved
reliability and, when necessary, recovery from component
failures. The DIARC architecture features tight multi-level
integration of goal management and action selection with
low-level sensor and effector components providing access
to a wide variety of hardware (mobile robots, humanoid
torsos, cameras, 3D imagers, microphone arrays, etc.). The
priority-based goal manager supports concurrent pursuit of
multiple goals in independent action script interpreters, as
long as there are no conflicts; when two goals require access
to the same resource, the conflict is resolved in favor of the
one with the highest priority.

Of greatest relevance to the present context, however,
are DIARC’s natural language processing capabilities. For
example, we developed and implemented algorithms for
human-like incremental reference resolution on a robot
(Scheutz, Eberhard, and Andronache 2004), which we sub-
sequently extended to allow for dialog-like HRI with simple
forms of backchannel feedback such as nodding or saying
“okay” (Brick and Scheutz 2007). We also integrated NLP
components tightly with action execution (Brick, Schermer-
horn, and Scheutz 2007), a pre-requisite for the robot’s abil-
ity to start actions quickly (e.g., nodding). More recently, we
demonstrated algorithms for automatically converting nat-
ural language instructions into formal goal interpretation
(expressed in a fragment of the “computational tree logic”
CTL∗) and action interpretation for achieving the goal (ex-
pressed in propositionalized first-order form in “proposi-
tional dynamic logic” PDL). The conversion into logical
forms is effected by combining lexical items with syntac-
tic annotations from a combinatorial categorial grammar
(CCG) and semantic annotations from the two logics ex-
tended by λ-expressions. Repeated λ-conversions then lead
to λ-free temporal and dynamic formulas that represent



the goals and actions specified in the natural language in-
struction, respectively. We also have developed algorithms
for handling disfluencies, in particular, lexical disfluencies,
abandoned utterances, repetitions, as well as some repairs
and corrections, in the context of spoken instruction under-
standing (Cantrell et al. 2010). Much of the above work was
directly based on our CReST corpus.

We will now present three example dialogues to illus-
trate different aspects of typical human-like dialogues cur-
rently possible in our DIARC architecture (Scheutz et al.
2007). All dialogues have been performed on different types
of robots.

Handling Disfluencies
There are several basic types of disfluencies in CReST: rep-
etitions, insertions, abandoned utterances, and repairs.

Repetitions of exact words or word sequences may be one
word:
Director: so two doorways and then

you’ll you’ll be staring straight
at a platform

or several words in length:
Director: is that a new is that a new green

box that you didn’t tell me about
Insertions may be words (lexical) or nonwords (nonlexi-

cal). Nonlexical insertions include, e.g. “uh”, “um”. Lexical
insertions can be similar to repetitions but are not exact:
Director: how many box how many blue

boxes do we have
Repairs, a subclass of insertions, denote instances in

which one word is replaced by another. This example shows
a simple one-word correction – replacing “at” with “by”:
Searcher: one green box at the corner at

by the end of the hallway
In the next example, an aborted word (i.e. a nonword) is

inserted:
Searcher: and gre- green box in the right

hand cubicle
Abandoned utterances may or may not be followed im-

mediately by a distinct sentence. In the first example, the
speaker abandons an utterance and does not start a new one:
Director: so pink boxes should uh only

be in -
while in the next example an utterance was abandoned and
a new one was started:
Searcher: so to my - I’m just like next to

the door frame like right in front
of it and there’s a desk to my
left

Although lexical insertions and abandoned utterances can
seem similar, insertions tend to be similar to the following
phrase, whereas abandoned utterances tend to be followed
by a completely separate thought.

In somewhat rarer cases, an entirely wrong word is used:
Director: and then there should have been a

blue box by the cardboard box at
the end of the hallway but you
said there wasn’t so that’s the
misplacement that they spoke of
earlier

Searcher: I didn’t see one at the end of
that hardware

Director: yeah there definitely wasn’t
blue one at the end of that
hallway with the cardboard box

Surrounding context clearly indicates that “hardware” re-
ferred to a “hallway”, yet the misspeak is never acknowl-
edged (and possibly never noticed) by either participant.

Rule-based algorithms for each of these disfluency types
have shown some success. However, these methods are typ-
ically targeted at offline NLP, and rely on transcription fea-
tures that are not usually provided by real-time speech rec-
ognizers, such as identifying aborted words by looking for
those that end with hyphens. Our method, given a possibly
disfluent utterance, is to produce only a partial parse with
whatever can be made sense of, similar to other robotic sys-
tems noted above. Having been trained on correct (i.e. non-
disfluent utterances), the parser, when faced with disfluent
utterances, may do any of several things in order to discard
such disfluences:

Attach extra nodes to the root. Each root node is
viewed as a separate phrase; attaching disfluent words to the
root creates semantically incomplete phrases that are subse-
quently discarded. In “to go to go into a room”, the disfluent
initial nodes “to go” were both left unconnected to the rest
of the graph, leaving only the relevant parts of the utterance.
This is shown in Figure 1(a).

Attach extra nodes to a nearby node. Given the con-
nection rules, this will often result in correct semantic out-
put. For example, “you are um at a closed um door” should,
regardless of the nonlexical fillers, result in at(listener,x)
where x is known to be a door that is closed. Figure 1(b)
shows how this works for the first occurrence of “um”: the
parser connected “at” as a pred child of “um”, which in turn
was listed as a pred child of “are”. The definition of “are”
indicated that it should take a predicate and a subject, and
attach the subject to the predicate. The system created an
empty definition for “um” which allowed it to attach the sub-
ject it was handed by “are” to its own predicate child “at”,
resulting in the correct definition.

Leave extra nodes unattached. In Figure 1(b) the second
“um”, between “a” and “closed”, was simply not attached to
any node and was thus discarded.

Note that in none of these cases is it necessary to explicitly
identify the disfluency. Instead, these actions are chosen by
the parser as it attempts to incrementally parse the input.
With well-formed input, the same rules lead to correct parse
trees, whereas disfluencies end up “falling out” of the parse
as a side effect of the parsing process, as described above.

Handling multi-modal natural spoken dialogues
The next example is an interaction that takes place between
an autonomous mobile robot with a humanoid torso and
a human interlocutor. They engage in a simple dialogue
that explores the robot’s perceptual capabilities (such as its
ability for perspective taking). In this case, it is important
that acknowledgments include both verbal and non-verbal
components, because the robot’s humanoid features trigger
expectations that it will behave in a human-like way, us-
ing multiple channels to convey information (e.g., produc-
ing head motions in conjunction with utterances to indicate
agreement or disagreement).
Human: Hello robot.
Robot: Hello.
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Figure 1: Graphical examples of disfluent dependency graphs. Arcs represent head-child relations, with the arrow pointing from
the head to the child. Children of the root node are considered to be heads of distinct phrases or utterances.

Human: Come over here.
The robot uses sound source localization to determine the
location of the human speaker to resolve the indexical “here”
as part of the action move-to(here) (i.e., the meaning of
“here” in this context is the location of the speaker).
Human: Do you see a green, no, red box?
Robot: (shakes head) No, I don’t see

anything red.
The robot handles the repair “green, no, red” correctly and
searches for a red box. Since it does not see a red box, and,
in fact, sees nothing red, it generates a head motion together
with an utterance stating as much.
Human: Look to the left.
Robot: (looks to its left)
Human: Now do you see it?
Robot: (nods head) Yes, I see a red one.
The robot takes the instruction to look to the “left” to mean
“left from its perspective” and turns its head in that direc-
tion.2 It ignores the word “now” at the beginning of the fol-
lowing sentence and resolves the pronoun reference of “it”
to refer to the “red box” from the previous sentence. Upon
noting the red box now in its visual field, it nods and gen-
erates its own anaphoric reference using “one” instead of
“box”.
Human: Is the red box to the left of the

blue box?
Robot: (nods head) Yes, it is.
Human: Well, ah, is it to the right of

the blue box?
Robot: (shakes head) No, it is not.
Again, the robot handles anaphoric reference correctly and
also handles fillers (“well”) and disfluencies (“ah”).
Human: Point to the blue box.
Robot: (points to the blue box) It’s

over there.
Human: (moves out of robot’s visual field)

Look at me.
Robot: (looks at the human)
Human: Thank you.
Robot: (smiles) You’re welcome.
The robot accompanies its pointing action with verbal feed-
back using the indexical “there”, which in this case indi-
cates the location of the pointing action. Moreover, it re-
solves the indexical reference of “me” in “look at me” and

2Of course, it is possible that the interlocutor had a different
perspective in mind; the same is possible, of course, in human-
human interactions, and may require subsequent synchronization
of the two agents’ assumptions.

uses sound localization again to resolve the destination of
the “look” command (i.e., the location of the speaker, who
has moved out of the robot’s field of vision – had the speaker
remained within the robot’s visual field, the robot could
have used vision to orient its head to face the speaker). See
http://www.youtube.com/watch?v=NinDDNc7sCM.

Handling dialogues with task-based knowledge
The next example also builds on the search task (Scheutz
and Eberhard 2008b) and demonstrates the kinds of natu-
ral task-based dialogues found in the human experiments. In
particular, the example shows how the robot can determine
what objects to look out for and what facts about the en-
vironment to report based on its knowledge of the task. It
also demonstrates how the robot can quickly react to a given
instruction by changing its behavior based on a tight integra-
tion between natural language understanding and action ex-
ecution (Brick, Schermerhorn, and Scheutz 2007) while pro-
viding the necessary feedback to the human commander. At
this point in the interaction, the robot has been going down
one corridor and has stopped outside of a doorway:
Human: Is there a hallway?
Robot: I see a hallway.
Human: Okay, go down there.
Robot: Okay.
The robot drives down the newly-encountered hallway. As it
is driving down it notices a doorway, which it reports to the
team leader, also acknowledging its position:
Robot: Okay, I’m now in the hallway.

There is a doorway on the left.
Human: Good, go through that doorway.
Robot: Okay.
The robot enters the room and notices several yellow blocks,
some of which are in boxes. Since these are task-relevant, it
reports them to the team leader:
Robot: I’m now inside the room. There

are yellow blocks in boxes.
Human: Get a yellow block from a blue box.
Robot: Okay.
The robot verifies that there is a yellow block in a blue box,
approaches it, and gets it from the box. See the video at
http://www.youtube.com/watch?v=Lr3pNDJ3XIA.

Discussion
While the above examples demonstrate some encouraging
progress, there is still a long road ahead with many obsta-
cles that need to be overcome before robots will be able to



engage in human-like natural language dialogues. Some of
the obstacles such as speech recognition have been known
for a long time. After years of significant efforts and great
progress, there is unfortunately still no speech recognizer
that can provide sufficiently high recognition rates in typ-
ical human environments that are not carefully controlled
for background noise. Similarly, most current parsers need
large amounts of training data to be able to perform well on
novel problems. However, such training data is usually not
available for HRI domains and collecting it is often not fea-
sible (and even when it is feasible, it is unclear how much of
the data will transfer to different tasks in different environ-
ments). There are also open questions about dialogue sys-
tems that are currently not fully understood, for example, the
different types of dialogue moves in task-based dialogues
and the resultant interaction schemes that humans will nat-
urally follow. Moreover, it is currently unclear to what ex-
tent robots will have to build and maintain mental models of
their human interlocutors to be able to reach human-like dia-
logue competence. Beyond the above linguistic issues, there
are other important open questions related to a robot’s phys-
ical appearance and capabilities. It is, for example, unclear
whether people will even seriously engage in human-like di-
alogues with robots that have very different physical forms
(e.g., wheels, no heads, etc.) and very different physical ca-
pabilities. And it is an open question how super-human ca-
pabilities (e.g., being able to follows tens of conversations
at the same time) would be received should those become
possible at some point. Clearly, additional HRI experiments
will be needed to stake out the territory of human-robot dia-
logue, human receptivity to it, and the best ways for robots
to meet human expectations.

Conclusion
In this paper, we demonstrated the challenges faced by a
robotic natural language understanding system that is in-
tended for natural human-like dialogue interactions with the
robot in HRI contexts. And we briefly introduced our DI-
ARC architecture which is starting to address some of these
challenges. Specifically, we reported results of several sim-
ple natural dialogues that DIARC can handle together with
a brief high-level description of the processes involved in
handling them. Clearly, this is only a start and there is a
great deal of work ahead of us before we can claim to have
reached natural human-like spoken language interactions.
However, by starting with limited domains and tasks (such
as instruction tasks), it is possible to make progress right
now toward a not-too-distant future point where the resul-
tant architecture will be ready for transition into real-world
application domains.
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