
What it is not to implement a computation:
A critical analysis of Chalmers' notion of implemention

Matthias Scheutz
mscheutz@cs.tufts.edu

Department of Computer Science
Tufts University

Medford, MA 02155, USA

Abstract: In this paper, we introduce what can be called the “standard account of

implementation” and briefly mention some objections raised against it. Then we

carefully examine Chalmers' account of implementation and show that without a notion

of “legitimate grouping of physical states” all sorts of physical systems would implement

unintended computations. Specifically, we show how, despite Chalmers' attempts to

overcome the difficulties inherent in defining physical state types, his definition of

implementation still allows for unwanted implementations.

Introduction: the standard account of implementation

Over the years, several proposals of what it means to implement a computation have been

advanced by philosophers (e.g., see Stabler 1987; Dietrich 1990; Chalmers 1994, 1996;

Copeland 1996; Scheutz 1999, 2001). Since definitions of implemention are often cast in

more general terms so as to not be forced to make commitments to particular notions of

computation (or the notion of computation at all, for that matter), it is common to read

about the “function(s) being implemented/realized by a physical system” instead of “the

computation(s) implemented by a physical system”. Stabler (1987) presents, what could

be called the “standard account of what it is to realize a function”:

“We require first that the states of the system can be interpreted as representing the

elements of the domain and range of the function, and we require that (in certain

circumstances) if the system is in a state representing an element of the domain of the

function, physical laws guarantee that it will go into a state representing the

corresponding element of the range of the function.” (Stabler, 1987)

Formally, this can be written as follows:

Definition 1: Let S be a physical system and f a function. S computes f if, and only if,

1. there is an “interpretation” function I from a set PS of physical states of the

system onto the union of the domain and range of f, such that

2. physical laws guarantee that (in certain specifiable circumstances) if the system is

in a state i in PS, then the system will go into state o (in PS) such that I(o)=f(I(i)).

Figure 1. The standard account of physical realization of a function: i

and o are physical states of the physical system S, I is the interpretation

function that maps these states onto the union of the range and the

domain of f.

While this definition is very general in that it includes various other accounts of

implementation and physical realization as special cases, the standard account of

implementation, as it stands, does not quite work unfortunately. It has been pointed out

that it is “too liberal”, for it does not put any restriction on the interpretation function:

without any restrictions and constraints, every system can be viewed as implementing

every computation (e.g., see the well-known arguments advanced by Putnam 1988 and

Searle 1990 to that effect). Finding constraints that prevent the standard account of

implementation from being vacuous is crucial to computationalism, the view that mental

processes can be seen to be computational processes, as otherwise – if everything can be

viewed as computing every function – computationalism looses its explanatory force

(e.g., Chalmers 1994; Scheutz 1999).

One prima facie difficulty of the standard account is that “terms like ‘state’ and even

‘physical state’ tend to be used very loosely in this sort of context” (Stabler 1987, p. 3).

Stabler demonstrates potential problems with the standard account by defining a special

kind of physical state: assume the behavior F of a given physical system S can be

described in a physical theory P (as long as certain background conditions C obtain that

make this description applicable). Suppose further that an infinite sequence of times t1, t2,

t3, … is given. Infinitely many “physical states” can then be specified by stipulating that

the system is in state pi if and only if it satisfies its description F at time ti. If the pi are

then taken to be the computationally relevant states, the system will “compute” any

function f over the natural number. Define the interpretation I (for an arbitrary function f

over the natural numbers) to be

I(pi)=i/2 if i is 0 or even, f((i-1)/2) otherwise

Then S computes f by going through a sequence of states that are states by virtue of its

description F being true of S at the respective time (under conditions C). In a sense, S

does not really “compute f” but rather “enumerates” the pairs 〈i,f(i)〉 at any two successive

points in time:

“The trick used in this example is obviously to get the object to compute the function by

somehow building the function into the interpretation function. We could equally well

build the function into the specification of the computationally relevant states

themselves, or into the specification of the circumstances in which the computation takes

2

S – the physical

system S(i)=oi

I(i) f f(I(i))=I(o)

I I

place. It would be nice to explain exactly how these sorts of tricks can be excluded, but

this problem is hard and fortunately beyond the scope of this paper.” (Stabler, 1987, p. 4,

emphases are mine)

To see what needs to be done in order to “exclude tricks of this sort”, one needs to

analyze different kinds of “tricks” and hope to be able to detect “common patterns”. It is

clear that there must be “some restrictions on the interpretation function used in any

empirically substantial computational claim” (Stabler, p. 4). Intuitively, one obvious

problem with the above definition seems to be that states are picked out by particular

times to obtain infinitely many computational states that could correspond to the

infinitely many pairs of natural numbers that define f. But what if the computationally

relevant states have to be “somehow extracted” from a physical description of the

system?

“This raises a problem for the idea that an ordinary calculator might realize the addition

function on the natural numbers. The problem is that the addition function is infinite (in

the sense that it has an infinite domain): any pair of numbers can be added, and there are

infinitely many different pairs. To realize the addition function, then, a physical system

would have to have infinitely many computationally relevant physical states (since our

interpretation I maps a set of states onto the union of the domain and range of the

function). Obviously, the states which are commonly regarded as the relevant states of

the calculator are not infinite in number.” (Stabler, 1987, p. 5)

Besides the question, whether physical systems can realize infinite functions at all (e.g.,

using infinitely many states), it seems that one has to account at least for cases like the

calculator and revise the standard account to allow it to realize an infinite function using

finitely many states. The idea is that infinitely many computational states are not needed

to realize an infinite function if each argument of the function corresponds to a finite

sequence of computational states. In other words, each natural number (that is an

argument of f) would be “represented” by an input sequence of a finite number of

computational states, and by the same token, each value of f for a given argument would

correspond to an output sequence of finitely many states. The revised standard account,

which allows a system with only finitely many (computationally relevant) states to realize

an infinite function is presented by Stabler as follows:

Definition 2: [Revised standard account] Let S be a physical system and f a function. S

computes f if, and only if,

1. there is an “interpretation” function In, which maps a set of finite sequences of

physical “input” states of the system onto the domain of f, and an interpretation

function Out, which maps a set of finite sequences of physical “output” states onto

the range of f

2. physical laws guarantee that (in certain circumstances C) if the system goes

successively through the states of an input sequence seqi, it will go successively

through the states of the corresponding output sequence seqo where Out(seqo) =

f(In(seqi)).

Note that the revised standard account has made two crucial transitions: an explicit

transition from (potentially) infinite sets of physical states to finite such sets, and another

3

tacit transition from “physical states of the system” to sets of “physical input states of the

system” and “physical output states of the system”. This is especially noteworthy as the

latter account implicitly excludes so-called “inner states” of the system (which the former

implicitly included): only the input-output mapping matters in the revised standard

account as succinctly expressed by the formula Out(seqo) = f(In(seqi)). Put differently,

the physical system is considered a black box, whose “inner mechanisms/workings” (as

described by a physical theory) are abstracted over. Thus, while the revised standard

account can answer the “what” question (i.e., “what function does a physical system

realize”), it will not be able to answer the “how” question (i.e., “how does a physical

system realize the function”), because it only takes input and output states from the

physical theory (in which the system is described) ignoring the rest – hence, to account

for the “how” question as well, more of the physical description of the system (than

merely sets of input and output states) needs to be retained in the definition of “physical

realization of a function”.

There are other modifications to Definition 2 that become necessary upon further

analysis. For example, it has been pointed out by Kripke (1981) that a physical machine

can only “approximately” or “imperfectly” realize an infinite function, for one, because

time is limited (“it will run out of time”) and also because it will make errors (“nothing is

perfect”):

“ […] the machine is a finite object, accepting only finitely many numbers as inputs and

yielding only finitely many as outputs—others are simply too big. Indefinitely many

programs extend the actual behavior of the machine. Usually, this is just ignored

because the designer of the machine intended it to fulfill just one program […] Second,

in practice it is hardly likely that I really intend to entrust the values of a function to the

operation of a physical machine, even for that part of the function for which the machine

can operate. Actual machines can malfunction: through melting wires or slipping gears

they may give the wrong answer. How is it determined when a malfunction occurs? By

reference to the program of the machine, as intended by its designer, not simply by

reference to the machine itself.” (Kripke, 1981, p. 33-35)

Kripke’s objection to the general idea of a physical system realizing an infinite function

rests on the claim that “indefinitely many programs extend the actual behavior of the

machine” and that reference to intention of the designer (of a computing device) is

needed to fix one particular program. To counter objections of that sort, Stabler suggests

modifying part 2 of Definition 2 by adding the counterfactual clause “if the system

satisfied conditions of normal operation N for long enough”:

2’. Physical laws guarantee that (in certain circumstances C and if the system

satisfied conditions of normal operation N for long enough) if the system goes

successively through the states of an input sequence seqi, it will go successively

through the states of the corresponding output sequence seqo where Out(seqo) =

f(In(seqi)).

By adding this clause, reference to the designer’s intentions is replaced by conditions of

normal operation, thus avoiding the problems that the former raises for the functionalist

(see Stabler, 1987, p. 19). Stabler, being aware that introducing counterfactuals can

4

cause more (additional) problems than they can solve (e.g., see Putnam’s discussion of

Lewis’ notion of causation in his 1988), argues that the kinds of counterfactuals involved

in the conditions of normal operation are supported by physical laws:

“The counterfactuals needed by such accounts [e.g. realization of simple computations

such as the identity function realized by a wire] are of a sort that can be supported by our

understanding of physical laws. There is no reason to suppose that the more complicated

counterfactuals needed to support claims about the functioning of organisms will be

different in kind. […] we need only consider what would be the case if the antecedents

of our counterfactuals held, and as in our examples [e.g., the wire example mentioned

above] sometimes our understanding of physical laws can guide us quite clearly in that

consideration.” (Stabler, 1987, p.18, remarks in brackets are mine)

Although it would be preferable to dispense with counterfactuals in an account of

physical realization altogether (e.g., see Scheutz 1999), it seems that counterfactuals will

always enter the picture if a notion of “normal operation” is involved (e.g., “if the system

had been in condition C at time t, then…”). And such a notion of normal operation

seems to take care of problems regarding potential malfunctions of a system (i.e.,

malfunctions with respect to the program that was supposed to describe the systems

behavior, as noted by Kripke). Moreover, Stabler uses counterfactuals also to address

Kripke’s first objection, namely that finite systems cannot realize infinite functions. His

strategy to determine which infinite function a system realizes is to “couterfactually

extend the life-time of a physical system”: if the system satisfied conditions of normal

operation N for long enough, then it would be able to compute all pairs of a (particular)

infinite function f.

Thus, with the modified standard account of implementation (2 + 2’), we are now in a

position to analyze Chalmers' notion of implementation.

An Analysis of Chalmers’ Definition of Implementation

Chalmers' (1994) basic conception of how a computation is connected to the physical is

an instance of the standard account of implementation where computations are set in

correspondence with reliable causal transitions between physical states—f(�)=“reliably

causes” (where ‘�’ is the formal state transition relation in the “computation”, an

automaton, for example). To be precise, Chalmers actually provides two definitions of

implementation, an informal and a (more) formal one, which he holds equivalent. It is

worthwhile examining both, since they are not only cast differently, but also differ

semantically. The first informal definition (which itself consists of two phrasings) reads

as follows:

“A physical system implements a given computation when the causal structure of the

physical system mirrors the formal structure of the computation.

In a little more detail, this comes to:

A physical system implements a given computation when there exists a grouping of

physical states of the system into state-types and a one-to-one mapping from formal

states of the computation to physical state-types, such that formal states related by an

5

abstract state-transition relation are mapped onto physical states-types related by a

corresponding causal state-transition relation.” (Chalmers, 1994, p. 392)

There is a little ambiguity in the two phrasings as to what the exact meaning of “mirrors”

is supposed to be. Prima facie one would expect “mirrors” to mean something like “is

isomorphic to,” as “mirrors” usually indicates sameness in structure:

Definition 3: [Isomorphism two algebraic structures with one relation] Let M1=〈D1,R1〉

and M2=〈D2,R2〉 be two structures with domains D1 and D2, respectively, where relation R1

is defined over D1´D1 and relation R2 is defined over D2´D2. These structures are then

said to be isomorphic if there exists a bijective function f from D1 to D2 such that for all

x,yÎD1:

[isoÞ] R1(x,y) Þ R2(f(x),f(y))

 [isoÜ] R1(x,y) Ü R2(f(x),f(y))

Yet, the second phrasing does not seem to imply structural sameness, since it requires

only [isoÞ] (i.e., that “formal states related by an abstract state-transition relation are

mapped onto physical states-types related by a corresponding causal state-transition

relation”), but not the other direction [isoÜ] (i.e., that physical states-types related by the

corresponding causal state-transition relation have to be mapped onto formal states

related by an abstract state-transition relation, too). Hence, with “mirrors” Chalmers

seems to mean only [isoÞ]. At a different place in the text, however, he suggests [isoÜ]

when he writes “... that the formal state-transitional structure of the computation mirrors

the causal state-transitional structure of the physical system” (1994, p. 393). So, it seems

that “mirrors” is to be understood as “isomorphic to,” and, indeed, he later writes: “the

relation between an implemented computation and an implementing system is one of

isomorphism between the formal structure of the former and the causal structure of the

latter” (1994, p. 396).

Hence, the mapping between physical state types and computational states has to be

bijective (one-to-one and onto) and preserve the abstract state transition relation as well

as the causal state transition relation in order to give rise to an isomorphism between

computational and physical state types. Note that the existence of a grouping of physical

states of the system into state types is required as a necessary prerequisite for the mapping

to work and that there are no restrictions imposed on the grouping; its mere existence is

sufficient.

Before we discuss Chalmers’ second (formal) definition, a remark on the use of the

term “state” seems appropriate. The term “state” in this context is sometimes used in the

sense of “token of a particular state type”, although this is at best ambiguous and

misleading. “Automaton state”, for example, could denote a state in the set of states in

the definition of the automaton as well as a state in a particular run of the automaton—the

former is a type, the latter a token.1 In physical systems, “physical state” refers to the

particular physical makeup of a system at a time (under certain environmental

conditions): if the system is described in terms of a system of differential equations

1 Example: �The automaton transits from state A to state B on input a producing output b� for the type and �After

five inputs the automaton is in state A� for the token interpretation.

6

Om(t)=Fm(I1(t),…,In(t),P1(t),…,Pk(t)) (for finitely many m), then by fixing the time

parameter (e.g., at t17) one obtains the state of the system (i.e., by fixing the

environmental conditions I1(t17),…,In(t17), one obtains P1(t17),…,Pk(t17) as well as

Fm(I1(t17),…,In(t17),P1(t17),…,Pk(t17)) for all m). For example, physical states in field

theory would correspond to the value of all field parameters at a given time. This notion

of state is independent of how often it is instantiated by the system (if at all).

Yet, some philosophers still use “state” as if it referred to a unique particular physical

occurrence, a constellation of a physical system which obtains only once at a particular

moment in time, and thus once in the life-time of the system.2 While nothing can be

identical to this particular occurrence (and it, therefore, does not make sense to say things

like “this occurrence is the same as x”), the above usage of “state” supports a notion of

“sameness” (e.g., the system was in the same state at time t17 and t17). Thus, a physical

state is not a (concrete) token of some physical state type, but rather a type itself.

To avoid terminological (and consequently conceptual) confusion, we will use the

term “instantiation of a state” (or maybe “state token”, e.g., see Melnyk, 1996) to refer to

a unique physical occurrence, and the term “state” in all other cases. The term “physical

state type” will be used to stress that a particular physical state has been obtained by type

formation from “simpler states (state types)”.

After having explicated the overall structure of “implementation” in the first

definition, Chalmers spells out the details in a more formal definition in which he uses a

finite state automaton (FSA) as a representative for other computational formalisms:

“A physical system P implements an FSA M if there is a mapping f that maps internal

states of P to internal states of M, inputs to P to input states of M, and outputs of P to

output states of M, such that: for every state transition relation (S,I)�(S’,O’) of M, the

following conditional holds: if P is in internal state s and receiving input i where f(s)=S

and f(i)=I, this reliably causes it to enter internal state s’ and produce output o’ such that

f(s’)=S’ and f(o’)=O’.” (Chalmers, 1994, p. 393)

Note that nothing in this definition requires that the mapping f be one-to-one, the reason

being that imposing injectivity on f does not seem justifiable in the light of multiple

realization arguments. Just consider an OR-gate, where the potential, which is supposed

to correspond to “1”, fluctuates between 4.5 and 5.5 Volts (where 5 Volts would be the

“ideal” voltage). In this case, there is a whole set of physical states, which are all

different from each other, yet “similar enough” to be rightfully taken to correspond to

“1”, as practice shows. Hardware designers do it all the time; they produce functioning

machines whose computational description works both as explanation and prediction of

the machine’s behavior. Yet, such a correspondence between one computational state

and many physical states would be excluded by the restriction that f be one-to-one.

This is where the idea of a grouping of physical states (mentioned in the former

definition) comes to reconcile two seemingly incompatible ideas: 1) that no one-to-one

correspondence can be established at the level of physical states (for the above and

similar reasons), and 2) that the computational description is supposed to mirror the

causal structure of the physical system. By relating not the physical states themselves,

2 A reason for this conceptual conflation might be that some physical systems might assume or instantiate any state

(type) only at most once. For example, the construction in Putnam (1988) is essentially based on a physical principle

that guarantees that (open) physical systems are always in different physical states at different times.

7

but more complex types of these states (formed by the “particular grouping” of states into

types), it becomes possible to establish a one-to-one and onto relationship between these

types and computational states, which is the prerequisite of an “isomorphism” (the

mathematical term expressing structural identity, i.e., “mirroring”).

Chalmers, although never explicitly, seems to suggest that it is possible to obtain a

bijective mapping f* from f that will give rise to an isomorphism between the physical

system and the formal computation by collecting all those states s to form a state type [si]

that are mapped onto the same automaton state type Si according to f: “The state-types

can be recovered, however: each [si] corresponds to a set {s|f(s)=Si} for each SiÎM. From

here we see that the definitions are equivalent. The causal relations between physical

state-types will precisely mirror the abstract relations between formal states.” (Chalmers,

1994, p. 393) One would define f* from physical state types onto computational state

types such that f*([si])=Si for each SiÎM. This mapping is one-to-one because the

physical state types have just been defined as such, and it is, furthermore, onto (ensured

by the “for every state transition relation”-clause in the definition), but it is not

isomorphic, since even though [isoÜ] holds (because of the “conditional”), [isoÞ] does

not necessarily hold. I.e., there can be reliable state transitions from all physical states

[si] upon input i into states [s'i] producing output o' for which corresponding states

f*([si])=Si, f*([s'i])=S'i, f(i)=I, f(o')=O' exist without there being a state transition

(S,I)�(S’,O’) in M.

To see why Chalmers’ definition fails to capture his view about “mirroring” (i.e.,

isomorphism between physical and formal structures), let us examine how his definition

works in detail, starting with a simple physical system P1 (e.g., described in circuit theory

—see Figure 2) for which we can easily specify physical states types: switch Sw1 is

connected to light bulb Lb and battery Ba by copper wires.

Figure 2. The simple physical system P1 consisting of a battery, a

switch, and a light bulb.

Input to P1 consists in switching Sw1 from either “up” to “down” or vice versa (the states

are named ‘1u’ for “Sw1 upwards”, ‘1d’ for “Sw1 downwards”). The internal states of P1

are the states of Sw1 (‘u’ for “up”, ‘d’ for “down”). Finally, output produced by P1 are

the states of the Lb which is either lit or or not lit (‘+’ for “light on”, “-” for “light off”).

Now consider the following automaton M1=〈Q,S,G,d,q0,F〉, where Q={A,B} is the set of

inner states, S={a,b} the input alphabet, G={0,1} the output alphabet,

d={〈〈A,a〉,〈B,1〉〉,〈〈B,b〉,〈A,0〉〉} the transition function from states and inputs to states and

outputs, q0=A the start state, and F={A,B} the set of final states (which in this case does

not really matter). The automaton is depicted (in the standard fashion) as a graph in

Figure 3, where nodes denote states and edges denote transitions between states, both

labeled accordingly (the format for edge labels is “input/output”). For the rest of the

8

Sw1

up

 Lb Ba
down

paper, we will represent automata using graphs instead of the more tedious mathematical

notations.

Figure 3. The automaton M1 with inputs from {a,b} and outputs

from{0,1}.

Automaton M1 transits from state ‘A’ on input ‘a’ to state ‘B’ outputting ‘1’, and from

state B on input ‘b’ to state ‘A’ with output ‘0’. It follows that P1 implements M1

according to Chalmers’ definition; just map (every occurrence of) “u” to ‘A’, (every

occurrence of) “d” to ‘B’, (every occurrence of) “1d” to ‘a’, (every occurrence of) “1u” to

‘b’, (every occurrence of) “+” to ‘1’, and finally (every occurrence of) “-” to ‘0’. The

resulting mapping obviously satisfies all conditions of the definition, because it supports

counterfactuals, or in Chalmers’ terms “strong conditionals”: “If a system is in state A,

then it will transit into state B [on input ‘a’], however it finds itself in the first state”.

(Chalmers, 1996, p. 316—capitalization of state names and the remark in brackets are

mine). Both of Chalmers’ requirements for counterfactual support, that the transition be

lawful and reliable, are satisfied by P1 according to accepted physical theories (i.e.,

circuit theory). In particular, it is important to stress the reliability of state transitions of

all systems devised in this paper, because Chalmers holds that it is the reliability of state

transitions which ultimately distinguishes “implementation” in his sense from that of

Searle (1992) or Putnam (1988): “The added requirement that the mapped states must

satisfy reliable state-transition rules is what does all the work.” (Chalmers, 1994, p. 396)

Note, however, that P1 also implements a slightly modified autonomon M'1, which can

be obtained from M1 by dropping the edge from B to A, i.e., d'={〈〈A,a〉,〈B,1〉〉} in M'1.

This is because Chalmers only requires that all state transitions in the automaton have a

corresponding physical state transition ([isoÜ]) without requiring that all physical

transitions also have a corresponding automaton state transition ([isoÞ]). Yet, this

reduced automaton seems to more naturally correspond to (and thus be implemented by)

a physical system P'1, where the switch can be pressed only once (e.g., because it is

permanently locked after pressing it), rather than a system like P1 where the switch can be

pushed up and down any number of times. In fact, since the causal potentials of P'1 and

P1 are quite different, their causal structure should not be able to mirror the same formal

structure of the computation (i.e., M'1). Yet, any formal computation with the same

number of states but a “less complex” state transitional structure than that of the

implementing physical system can be seen as being implemented (by the physical

system) according Chalmers as long as there is a corresponding physical state transition

for every formal state transition (for details, see Scheutz 2001). The problem here seems

to be Chalmers' idea that physical systems can implement many (simple or simpler)

computations at the same time without rendering the notion of implementation (or

9

BA

a/1

b/0

computation, for that matter) vacuous. Hence, we will next investigate how his definition

can allow for the simulataneous implementation of multiple computations.

In the examples so far, every automaton state type corresponded to one and only one

physical state type in a direct way, hence there was no need for a complex grouping of

physical states types. Now, consider the physical system P2 consisting of two switches

Sw1 and Sw2 connected to a light bulb and a battery by a copper wire (as depicted in

Figure 4). Input to P2 consists in switching one of Sw1 or Sw2 from either “up” to

“down” or vice versa. The four possible input states are, analogous to the previous

notation, denoted by ‘1u’, ‘1d’, ‘2u’, and ‘2d’. The internal states of P2 are the four

possible states of the switches (denoted by ‘uu’, ‘dd’, ‘du’, and ‘ud’, where the first letter

indicates the state of Sw1 and the second that of Sw2). Output of the system is again the

state of the light bulb (denoted as before).

Figure 4. The physical system P2 consisting of a battery, two switches,

and a light bulb.

The abstract structure of P2 for the above-defined input, inner, and output states, can be

depicted as state-transition diagram, which also defines an automaton, call it M2. The

structure of this automaton is isomorphic to the causal structure of P2 for the given

physical states, hence, P2 implements M2.

Now suppose switch Sw2 is never pressed; then it can readily be seen that P2

implements M1, too. Starting in state “du”, the automaton can only transit between “du”

and “uu”: ignoring Sw2 simply turns M2 into M1. Once Sw2 is used, however, there is no

mapping that can relate the above-defined states in M2 to states in M1, since whether input

“1u” turns the light on or off depends on the state of Sw2. We will sketch only part of the

argument (since it is rather long and tedious given the number of possible mappings that

one has to consider): take “du” to be the start state, which has to be set in correspondence

with ‘A’. Then either “1u” or “2d” or both have to be mapped onto ‘a’, and as a

consequence, either “uu” or “dd” or both will correspond to ‘B’. Suppose we map “1u”

to ‘a’ and “uu” to ‘B’. Then “1d” has to correspond to ‘b’. But this is not possible. To

see this, suppose that “ud” will be mapped onto ‘A’ (since both, “ud” and “dd” must

correspond to some automaton state). Then “2d” will have to correspond to ‘b’, and

consequently “1d” to ‘a’. Contradiction. So, “ud” cannot be mapped onto ‘A’, thus they

must be mapped onto ‘B’. But then, the transition “1d/+” turns the light on, as opposed

to ‘b/0’ which turns the light off in M1. So this is not possible either. Hence, “1d” cannot

correspond to ‘b’. It follows that “uu” cannot correspond to ‘B’ and “1u” not to ‘a’.

Thus, “2d” must correspond to ‘a’, and so on…

10

 Lb Ba
Sw2

Sw1

Figure 5. The causal structure of physical system P2, which defines the

isomorphic automaton M2.

In the end, we establish that for the above-defined state types P2 does not implement

M1. However, if other state types are considered, then there exists a mapping f under

which P2 implements the automaton M1: take the output to be the state of the light bulb

together with the state of Sw2 (resulting in the four distates “+u”, “-u”, “+d”, and “-d”,

where the first letter denotes the state of the light bulb and the second the state of Sw2).

The idea here is to introduce extra output states so that the effect of pressing switch Sw2

can be ignored. This combination is physically legitimate, because all states are

physically specifiable and support counterfactuals (it should thus be acceptable for

Chalmers). In fact, every state will be acceptable as long as it can be specified within the

physical theory that is used to describe the physical system (in this case circuit theory).

Figure 6 depicts the causal structure of the two-switch system for the new states:

Figure 6. A graph of the states and transitions in the two-switch

system P2 after inputs, outputs, and states have been redefined. States

encircled by a dashed line are mapped onto the same automaton state.

For the following, assume in addition that the input alphabet of M1 contains the symbol

‘c’ (this does not change the automaton, since ‘c’ is not used in any transition in M1—see

also below). Define f to be the following function:

Inner states f(du)=A f(dd)=A f(ud)=B f(uu)=B

Input states f(1u)=a f(1d)=b f(2u)=c f(2d)=c

11

 du

1u/+u

 uu
1d/-u

1u/-d
 dd ud

1d/+d

2d/-d
 2u/+u

2d/+d

2u/-u

 du

1u/+

 uu
1d/-

1u/-
 dd ud

1d/+

2d/-

2u/+
2d/+

2u/-

Output states f(+u)=1 f(-d)=1 f(-u)=0 f(+d)=0

It can be seen that for “(A,a)�(B,1)” and “(B,b)�(A,0)” (i.e., for every state transition)

the conditional of Chalmers’ definition of implementation (i.e., “if the system were in

state ..., it would transit into ...”) is true: take the first transition “(A,a)�(B,1)”. Two

states of P2 correspond to state ‘A’, “du” and “dd”. Suppose P2 were in state “du”. Since

the only input corresponding to ‘a’ is “1u”, then P2 would transit reliably into state “uu”

(corresponding to ‘B’) and produce output “+u”, which corresponds to ‘1’. Similarly, if

the system were in state “dd”, then P2 would transit reliably into state “ud”

(corresponding to ‘B’) and produce output “-d” (corresponding to ‘1’). The same holds

true for the second transition. Hence, according to Chalmers’ definition, P2 implements

M1 under f (even if it does this in an admittedly strange way).

Together, we get that P2 implements M1 (under the above-defined function f) and P2

also implements M2 (which has a different, more complex transition structure than M1).

Assuming that automata are the appropriate formalism to reflect the causal structure of a

physical system, one can reach two (not necessarily exclusive) conclusions: 1) physical

systems can have multiple causal structures, which depend on the grouping of physical

states (i.e., the level of description for a given set of physical states), or 2) Chalmers’

definition has to be modified to reflect the causal structure of the system determined by

the given set of physical states.

The former does correspond to our intuition that the same physical system (i.e., the

same spatio-temporal region) can be described at different levels according to different

notions of physical state appropriate for that level. Note, however, that one is limited to

groupings (that is, combinations) of the given physical states in the above case, which

are, of course, limited to groupings that allow for reliable transitions between them.

The latter conclusion points in another direction: if computational descriptions are to

“mirror” the causal structure of physical systems, then the causal topology of a set of

physical states alone should be necessary and sufficient to specify the “corresponding”

computational description. Although this approach does not leave any room for

groupings of states into state types within the definition of implementation, it can still

account for all of the potentially different computational descriptions obtained from

Chalmer’s definition by simply considering the groupings of states (implicit in Chalmers’

definition) as states of a physical system (e.g., the same system at a different level of

description). That way the second leaves open the possibility that physical systems might

have more than one causal structure (depending on possible groupings of its states), while

removing the burden from the theory of implementation to decide which of these

groupings are legitimate and returning it to the theory that delivered these states in the

first place (for an elaboration of this line of thinking, see Scheutz 2001).

A Challenge for Chalmers’ Notion of Implementation

Unfortunately, Chalmers neither provides criteria for the formation of (basic) physical

types nor for more abstract types, but is rather satisfied with the mere existence of a

grouping of types into more complex types. In his second definition, he simply notes that

12

his “[…] definition uses maximally specific physical states s rather than the grouped

state-types” (Chalmers, 1994, p. 393). What exactly “maximally specific physical states”

are is left open. Since time is left out in his definition, it must obviously enter here as

part of the “physical state”, but it is not clear how. This too, makes it seem as if there

need not be any resemblance between different physical states that can be grouped

together to form a type as long as the function f maps them onto the same Si, which opens

doors to all kinds of wild implementations (aka Stabler).

Consider system P1, augmented by the temporal attributes “on weekdays” and “on

weekends”, so that pushing the switch upwards/downwards on weekends can be

distinguished from pushing it upwards/downwards on weekdays. The same distinction is

made with respect to internal states: the switch can be in up/down position on weekdays

and on weekends. Note that the system, call it P1,4, automatically changes states Fridays

and Sundays at midnight, without further ado. The internal states of P1,4 are then “switch

down on weekdays” (denoted by ‘¯d’), “switch up on weekdays” (denoted by ‘­d’),

“switch up on weekends” (denoted by ‘­e’), and finally “switch down on weekends”

(denoted by ‘¯e’). The time-dependent input states are “push Sw1 upwards on

weekdays” (denoted by ‘S­d’), “push Sw1 downwards on weekdays” (denoted by ‘S¯d’),

“push Sw1 upwards on weekends” (denoted by ‘S­e’), “push Sw1 downwards on

weekends” (denoted by ‘S¯e’). The output states of P1,4 are denoted by ‘1d’ for “light on

on weekdays”, ‘0d’ for “light off on weekdays”, ‘1e’ for “light on on weekends”, and

‘0e’ for “light off on weekends”. Figure 7 depicts the causal structure of P1,4 (note that

the e/e-transitions account for the automatic change in states resulting from the influence

of real-time):

Figure 7. A graph of the causal structure of the physical system P1,4.

This construction can be generalized to allow a switch system P1,n to implement an

arbitrary FSA (with m states, k different input and l different output symbols) by ensuring

that P1,n has enough states and edges that can be mapped onto the graph of the FSA. The

following theorem, christened the “Slicing Theorem” because it generates additional

states by “cutting off temporal slices” of existing ones, states the requirements and its

proof exhibits the construction:

Theorem 4: [Slicing Theorem] P1,2k implements any FSA with k transitions (for k>1).

Proof: Consider the physical switch system with n=2k internal states (for k>1) depicted as

a graph with n nodes below. Each node is labeled with a (bold) natural number from 0 to

13

 ¯d
S­d/1d

e/e
S¯e/0e

 ­d ­e ¯e

e/e
S¯d/0d S­e/1e

e/e

e/e

n-1, and edges from node i to i+1 are labeled with i/i and edges from node i+1 to i are

labeled with ‘i+1/i +1 ’ (e.g., the edge from node 3 to node 4 is labeled with ‘3/3’). There

are e/e-transitions from node i to i+2 (for i<n-2) as well as e/e-transitions from n-2 to 0

and from n-1 to 1. Each of the two original states of the switch system can be in k

different states within an arbitrary given time interval I (e.g., if k=24, let I be one day and

consequently consider switch states at each hour interval of the day).

Figure 8. A graph depicting the physical system P1,2k (dotted lines

indicate states that lie within the same time interval).

Pick an arbitrary FSA M with k transitions, input alphabet S and output alphabet G

(where cÎS and dÎG are symbols that do not occur in any transition). Notice that M can

have at most k+1 nodes (but must have at least one node).3 Without loss of generality, we

can assume that the transitions are enumerated: �0,�1,…,�k-1. Define the following

mapping f for P1,n: for each transition (S,a)�i(T,b) (where S, T are states and aÎS-{c}

and bÎG-{d}) for i<k, let f(2i)=S, f(2i+1)=T, f(2i)=a, f(2 i)=b, f(2i+1)=c, f(2 i +1)=d (all

transitions from 2i+1 to 2i are neglected). Then it can be checked that under this

mapping P1,n implements M. The way this mapping works is simple: every transition of

M is associated uniquely with a transition from node i to i+1.

Figure 9. Transitions in P1,2k that are mapped onto all k automata

transitions.

Thus, for every transition (S,a)�i(T,b) in M, the following is true: if P1,n is in internal

state 2i, it can only receive input 2i and produce output 2 i (given the time-dependence of

all inputs and outputs, 2i and 2 i are the only states defined for that particular period of

time, namely the time interval in which the switch system can be in states 2i and 2i+1—

3 There could be more nodes, if some of them are unreachable from the start state. In that case, one needs to divide

the time interval further to obtain new states which can be mapped onto the unreachable ones, but this presents no

difficulty.

14

 0
0/0 2/2

 1 2 3
1/1 3/3

e/e

e/e

 n-2 n-1/ n-1

n-2/ n-2

 n-1

e/e

e/e

e/e
e/e

e/e

e/e

… … …

 …

 0 0/0 2/2 1 2 3 n-2
n-2/ n-2 n-1… … …

 …

(*) other inputs/outputs that may be mapped onto a/b by f cannot be received/produced in

that time period and need, therefore, not be taken into consideration). Given that P1,n is in

internal state 2i and receives input 2i (such that f(2i)=S and f(2i)=a), this reliably causes it

to enter internal state 2i+1 and produce output 2 i such that f(2i+1)=T and f(2 i)=b.

There is an obvious weak spot in the above argument, marked by ‘(*)’. One could

argue that even though other input/output states are not applicable (because they have

been just so defined), they should not be excluded a priori, but be taken into

consideration in the proof. In other words, if there are other inputs, even though they are

not available at the respective state of the system, that are mapped onto a, say, then the

definition of implementation should take care of them, but this is not the case. Take, for

example, the following automaton:

Figure 10. An automaton which could be used to argue against the

validity of the Slicing Theorem.

Define f according to the above construction for the three transitions:

(S,a)�i(T,b) f(..)=S f(..)=T f(..)=a f(..)=b

(A,#)�0(B,1) f(0)=A f(1)=B f(0)=# f(1)=1

(A,*)�1(C,1) f(2)=A f(3)=C f(2)=* f(3)=1

(B,#)�2(C,1) f(4)=B f(5)=C f(4)=# f(5)=1

In checking whether the switch system so defined implements the automaton under f, one

runs into the case where the switch system is in state 0 and receives the pendant to input

‘#’, i.e., input 0 or input 4. Even though the latter is not possible if the system is in state

0, according to f, it maps onto input ‘#’ in the automaton, and is, thus, a legitimate

candidate for an input. It follows that the antecedent of the conditional (in the definition

of implementation) is (“theoretically”) true for internal state 0 and input 4, but that the

consequent is false, because the system will not (reliably) transit into state 1 producing

output 1. In fact, it will remain in state 0, because it did not receive any input in the first

place. Hence, one could conclude that the theorem is not valid for cases such as the

above.

Whether this kind of argument is valid or not, is left for the reader to decide. Even if

the objection is correct and the theorem has to be restricted to cases where no two

transitions use the same symbol, a strange aftertaste remains: the simple switch system

will still implement a restricted, yet infinite class of automata. Besides: every language

accepted by an automaton with k transitions without such a restriction can be obtained as

15

 A

#/1

*/1

 B

 C

#/1

a homomorphic image of the language of an automaton with k transitions with the

restriction.

Before we discuss the consequences of the Slicing Theorem for general theories of

implementation, note that this result can also be extended to CSAs, “which differ from

FSAs only in that an internal state is specified not by a monadic label S, but by a vector

[S1, S2, S3,...], where the ith component of the vector can take on a finite number of

different values, or substates. [...] Input and output vectors are always finite, but the

internal state vectors can be either finite or infinite. The finite case is simpler, and is all

that is required for practical purposes” (Chalmers, 1994, p. 394). We will, hence, assume

internal states to be finite. The implementation conditions are then:

“A physical system P implements an CSA M if there is a decomposition of internal

states of P into components [s1,s2,...], and a mapping f from the substates s j into

corresponding substates S jof M, along with similar decompositions and mappings for

inputs and outputs, such that for every state-transition rule ([I1,...,I k],

[S1,S2,...])�([S’1,S’2,...],[O1,...,O l]) of M: if P is in internal state [s1,s2,...] and receiving

input [i1,...,i k]4 which map to formal state and input [S1,S2,...] and [I1,...,I k] respectively,

this reliably causes it to enter an internal state and produce an output that map to

[S’1,S’2,...] and [O1,...,O l] respectively.” (Chalmers, 1994, p. 394)

Chalmers points out that “a natural requirement for such a decomposition is that each

element correspond to a distinct physical region within the system [...] the same goes for

the complex structure of inputs and outputs”. Again, he claims (wrongly) that “state-

transition relations are isomorphic in the obvious way”. Furthermore, he is convinced

that his CSA model prevents the notion of implementation from the threat of vacuity:

“What counts is that a given system does not implement every computation [...] This is

what is required for a substantial foundation for AI and cognitive science, and it is what

the account I have given provides” (1994, p. 397). This can be contrasted with the

following theorem:

Theorem 5: [Extended Slicing Theorem] Pm,2k implements any CSA with k transitions and

m different substates of each state (for k>1 and m>0).

Proof: Since the general proof is rather lengthy, but not difficult in principle, we will

sketch it for a CSA M with 8 states which are vectors of three components (substates) that

can each assume one of the two values ‘0’ and ‘1’. M will read inputs which are vectors

of two components and deliver outputs that are vectors of one component, both substates

take values from {0,1}.5 Since there are 4 possible inputs and 8 possible inner states

(output states do not have to be counted separately, because whenever input and inner

state are the same, the output has to be the same, too), M could have at most 4×8×8=256

transitions. We will show that P3,256, a 3-switch system with three parallel switches/light

4 I corrected the misprint in Chalmers� article by substituting �k� for �n�.
5 For example, the CSA could compute the �carry� in an addition: it would take the input as binary number and add it

to the number represented by the current state, then transit into a state which represents the sum (modulo 8) and

report if a carry over has occurred during the addition (by outputting 1, otherwise 0). To illustrate this, assume the

automaton is in state [1,0,1] and receives input [1,1]. This makes it transits into state [0,0,0] and with output [1].

Had it been in state [1,0,0], then the output would have been [0] and it would have transited to state [1,1,1].

16

bulbs connected to a battery and 256 internal states, implements M. First, consider the 3-

switch system over some time interval Int, which is further divided into eight subintervals

of equal length.6 The first switch can be in states onInt1/2, offInt1/2, onInt2/2, offInt2/2, the second

in states onInt1/4, offInt1/4, onInt2/4, offInt2/4, onInt3/4, offInt3/4, onInt4/4, offInt4/4, the third in states

onInt1/8, offInt1/8, onInt2/8, and so on (“Int1/2” designates the first half, “Int1/4” the first

quarter, “Int2/4” the second quarter, etc. of Int). Consider only transitions from “off” to

“on” states. Then within Int, there are eight possible combinations of transitions for the

three switches. Since there are also eight possible transitions between any two

combinatorial states, one of the eight transitions can be mapped onto the one in M: if M

transits between states [S1,S2,S3] and [S1’,S2’,S3’] on input [I1, I2] outputting [O1], this

corresponds to the 3-switch system transiting from state [offIntX/2,offIntY/4,offIntZ/8] to state

[onIntX/2,onIntY/4,onIntZ/8] on input [aInt,bcInt] outputting [abcInt] (where even values of the

numerators X, Y, Z in the interval states correspond to the “0” value for automata

substates, and those with odd values to the “1” value such that IntZ/8ÍIntY/4ÍIntX/2).

The transition [1,1],[1,0,1]�[0,1,1],[0], for example, would correspond to [aIntbcInt],

[offInt2/2,offInt3/4,offInt6/8]�[onInt1/2,onInt2/4,onInt4/8],[abcInt]. Note that inputs and outputs of the

automaton have to correspond to combined inputs and outputs (indicated by

concatenating the respective characters) in the 3-switch system.

Figure 11. Transitions in the 3-switch system that are mapped onto all

n automata transitions.

A physical state transition corresponding to a combinatorial state transition can then be

defined as the transition taking place by pressing all 3 switches of the system during

subinterval IntZ/8 of Int. Physical states are defined correspondingly for this interval,

inputs and outputs are combined states of switches and light bulbs (as described above).

The rest of the construction proceeds as in the construction of the Slicing Theorem (e.g.,

the division of the a cyclic interval I into k parts in order to account for k transitions—in

the case of M 32 such parts are needed, since there are 4 four different inputs for each of

the 8 possible combinatorial states; e.g., if the cyclic interval is one day, then the

automaton could spend three quarters of an hour in one of the Int states). The main

difference between the above construction and the previous one for the Slicing Theorem

is that substates are mapped onto distinct spatial regions (i.e., the switches), and that the

complex state transitions between substates is preserved. It follows, then, that P3,256

implements M in the sense of Chalmers’ definition. As a consequence, generalizing the

above construction, every CSA with at most m different substates of each combinatorial

state is implemented by an m-switch system.

6 For k substates, each of which can assume any of n different values, one would have to consider nk different

subintervals.

17

 S
1

a/a

b/b

 S
3

 S
2
’

 S
3
’

 S
1
’

 S
2

c/c

This kind of result that one physical system can implement “too many” computations

is exactly what Chalmers tried to avoid when he proposed his definition against the

background of Putnam’s construction showing that every ordinary open system

implements every finite state automaton without input and output (Putnam 1988; see also

Scheutz 1999). In a sense, the Slicing Theorems strengthens Putnam’s program against

charges such as “wrong notion of causality”, “input/output missing”, “wrong level of

description”, “unnatural physical types”, etc. All of these, except perhaps for the last

one, are dismissed by the Slicing Theorems. This adds evidence to the claim that

Putnam’s construction, as he notes at various places (e.g., Putnam, 1988, pp. 95),

essentially points out the lack of appropriate state and type formation rules, and

consequently contradicts Chalmers’ belief that physical states are not the main problem at

hand: “there does not seem to be an objective distinction between ‘natural’ and

‘unnatural’ states that can do the relevant work. [...] I will not pursue this line, as I think

the problems lies elsewhere” (Chalmers, 1996, p. 312). While Chalmers may be right

that the distinction between “natural and unnatural states” does not do relevant work, his

position that “the problem lies elsewhere” seems wrong given the results from the Slicing

Theorems. Interestingly, the construction exploited in the Slicing Theorems differs in at

least five crucial aspects from Putnam’s construction:

1) While Putnam’s construction shows how to implement a particular “run” of a

computation, i.e., a particular sequence of state transitions, the above construction models

the complete state-transitional structure of the automaton. That is why it only needs a

finite (i.e., bounded) number of states to perform arbitrarily long computations (i.e., all

possible computational sequences), whereas Putnam’s construction requires an

unbounded number of states (depending on the length of the respective computational

sequence). It exploits the fact that at some level of description physical configurations

can be viewed as recurrent (whereas Putnam used the “Principle of Non-Cyclic

Behavior” to obtain new physical states).7

2) Tokens of state types such as “switch up on Mondays” can be easily individuated

(we can check if it is—currently or at some other time—Monday and we can check

whether the switch is in position “up” or “down”). These input states have the predictive

capacity that Putnam’s construction was criticized for; it is known ahead of time, what

tokens of these types will look like and how they can be produced (as necessary

requirement if one wants to control the input to a system!).

3) State transitions are reliable. Pressing switches is certainly as reliable an action as

any reliable one can imagine (unless the switch is defective, etc., which can be accounted

for by adding conditions of normal operations to the definition of implementation as in

the case of Definition 2). The same holds of the light bulbs being lit or not lit under the

respective circumstances: given a setup corresponding to the wire diagram, the respective

light bulbs will be lit reliably if the switches are in a position such that current can flow

(and neither the battery, nor the wires, nor the light bulbs are defective). Transitions from

one time interval into the next are obviously reliable as well, as they happen without

7Note that plausibility of the principle of non-cyclical behavior was one of the main points of attack of Putnam�s

argument, see, for example, Chrisley (1994). Without this principle, Putnam�s construction cannot work.

18

further ado (and rely on the physical laws regarding the permanence of objects which are

not subject to internal decay processes and/or external influences).

4) State transitions support counterfactuals. To see this, note that input occurs only

“within time slices”, i.e., whenever a switch is pressed down on Monday, say, the system

will reliably change state into “switch down on Monday”. If it is pushed up again, the

system will return to state “switch up on Monday”. It can never be case that the system

receives input on Monday and ends up in a state on Tuesday. Thus, any counterfactual of

the form “had the system been in state p, on input in it would have transited into state q

producing output out” is true for any time slice, and since input driven state changes

cannot occur across time slices, it is vacuously true for those.

5) Because of the above and the laws of physics (i.e., circuit theory), the relevant

state transitions (i.e., those that are input driven) are causal, not only according to a

physical notion of causation, but to the stronger, counterfactual supporting notion that

people like Chalmers and Chrisley, for example, require. It could be objected that

temporal successions of one and the same physical state, i.e., state s at time tn and state s

at time tn+1, cannot be said to be causal transitions. Granted! But this is true only of

“irrelevant” state transitions (i.e., e,e-transitions). In automata theory, e,e-transitions are

supposed to model transitions in a system that happen without further ado: no input is

necessary, no output is produced, the automaton transits without input from one inner

state to another—that is why this transitions are called e,e-transitions in the first place.

The same is true of transitions between two time slices: no input is necessary, no output

is produced, the system transits from one inner state into another without any external

influence. In that sense these transitions are not caused by anything. That is why we

limited the claim that state transitions are causal to relevant transitions, i.e., the ones that

are causal. Only relevant transitions are mapped onto automata transitions, thus all

transitions that are “mirrored” in the automaton are causal.

It seems that the only objection left to the above construction is the nature of the

involved physical states, since the main charges (see Chalmers, 1996, or Chrisley, 1996)

against Putnam’s Theorem that his notion of implementation is not based on reliable,

counterfactual supporting, causal state transitions (i.e., that his notion of causality does

not support counterfactuals) does not mutatis mudandis transfer to the Slicing Theorems.

One conclusion to be drawn from the Slicing Theorems would be to disallow temporal

individuations of physical states. That way one could savor Chalmers’ notion of

implementation and explain what went awry in the above construction. This, however,

seems to me too strong a restriction as there might be cases where temporality is crucial

in individuating physical states: consider a shared memory between two processors such

that the first processor accesses the memory during even clock cycles and the other

during odd clock cycles. To understand what is going on in such a memory (e.g., when

the value of a memory location has changed “between two successive states without

further ado” from the perspective of one processor) one would probably introduce notions

like “even state” and “odd” state to refer to states at certain clock cycles.

There is a better reply to the objection that the unwanted results of the Slicing

Theorems result from temporally individuated states. Instead of individuating these

states temporally, one could slightly modify the switch system by adding “a clock”,

19

which reliably goes through a fixed cycle of physical states in a given amount of time

(12×60×60 states per 12 hours, say). Then one can form the same “slices” that were used

in the switch system to implement arbitrarily complex computations, except that the

temporal individuation (the temporal slices) is now replaced by “spatial individuation”

(of the clock hands, for example). By forming combined states such as “the switch at

5h34’33’ ” (where the time expression is used to fix a spatial position on the clock), the

clock-switch system can implement very complex CSAs according to Chalmers’

definition of implementation using the construction of the Slicing (i.e., to be exact a one-

switch system with one clock will implement any computation with up to 12×60×60 state

transitions, and by adding additional clocks and/or increasing the number of distinct

clock states, this number can be increased significantly). Yet, it is intuitively very clear

that the system does not do any computational work.

Discussion and Conclusion

The analysis of Chalmers’ definitions of implementation for FSAs and CSAs showed that

they do not view computation as an abstract way of specifying the causal structure of a

physical system such that “the formal state-transitional structure of the computation

mirrors the causal state-transitional structure of the physical system” (Chalmers 1994, p.

393). For according to these definitions, physical systems do not implement only

isomorphic computations for a given set of physical states and their causal relations, but

rather many different (simpler) computations, which is what Chalmers must have

intended when he wrote that “any system implementing some complex computation will

simultaneously be implementing many simpler computations—not just 1-state and 2-state

FSAs, but computations of some complexity” (Chalmers 1994, p. 397). Unfortunately,

one cannot have it both ways: either “the relation between an implemented computation

and an implementing system is one of isomorphism between the formal structure of the

former and the causal structure of the latter” (Chalmers 1994, p. 396) or it is not

(allowing for “simpler computations to be simultaneously implemented”).

If one were to go with the first alternative, then isomporphism might still be too

strong a requirement, because there are infinitely many equivalent redundant

computational descriptions of any given computational system that should all legitimately

count as being isomorphic to the causal structure of the physical system. Hence, physical

systems in that case would have to be viewed as implementing all computations that are

bisimilar to their isomorphic computations (see Scheutz 2001 for details).

And if one were to go with the second alternative, it should not be the case that

simpler computations which fail to capture and may even violate important parts of the

causal structure of a physical system can be viewed as being implemented by that

physical system (as is the case with Chalmers' definitions as shown by the switch system

where the switch could be pressed only once). Moreover, the fact that even very simple

physical systems can be viewed as implementing very complex computations (normally

exhibited by very complex physical systems) under Chalmers' definitions, contrary to

what one would intuitively expect, points to a main deficiency in the Chalmers' account:

the lack of any constraints on physical state type formation. By replacing spatial

20

complexity of physical states (in “complex” physical systems) with temporal complexity

of physical states (in “simple” physical systems such as the switch systems), the two

Slicing Theorems compensated lack of spatial structure by temporal structure and turned

spatially structured causal patterns into temporally extended causal patterns. And using

Chalmers' own suggestion of adding a clock to a physical system in order to generate new

physical states, one could turn non-effective temporal properties such as “the state of x on

Monday” into effective spatial properties such as “the state of the all hands” on a certain

clock (that way simple switch systems augmented by clocks could be even used for real

computations). And if there were to be a worry about using the same clock state for

individuating input, output and internal physical states, then one could add three clocks to

the system for each state category.8

It is important to note that the Slicing Theorems do not only pose a threat to

Chalmers’ definitions of implementation, but to any “(state-to-state) correspondence view

of implementation” (CVI) as well as any “semantic view of implementation” (SVI) (e.g.,

Copeland 1996, Rappaport 1999), for that matter (just substitute “part of the system” for

“state of the system”), precisely because both views crucially depend on a notion of

“physical state” and/or “physical part”. CVI/SVIs need this notion to set up a

correspondence between the physical and the abstract, yet the question of what counts as

a legitimate physical state is not answered by any of them. CVI/SVIs can only provide

an answer to the implementation problem for systems for which a set of physical states is

given. If physical states are not given, CVI/SVIs run into insurmountable difficulties:

following the construction of the Slicing Theorems, physical states supporting

counterfactuals can be defined, for which the system implements almost any

computation.

Two possible, non-exclusive conclusions are implied: computation is not the right

kind of explanatory device for causal organizations of physical systems (and as a

consequence for theories of mind), and/or CVI/SVIs are not the right kind of approach to

a general theory of implementation (as they will fail as soon as a physical theory does not

provide a well-defined notion of physical state). Note that CVI/SVIs are certainly

applicable if physical states are given, which in real-world hardware design, for example,

is obviously the case. Yet, the success of CVI/SVIs with systems that have been

purposefully designed so as to allow for an easy state-to-state correspondence between

physical states (which are given) and more abstract states should not distract from their

failure in the general case (e.g., analog computers are a good example of designed

devices that do not provide a clear-cut notion of physical state). Because computations

have to be linked to concrete systems (which are described at a certain level) in order to

be computations, the implementation relation must hold between computations and levels

of descriptions of systems.

We are left with various questions unanswered: which (lower) level is the right one?

Which level supplies the right kinds of states to be linked to the computational ones? Is

there a systematic way to find the right level and find the right states/state types at this

level? A theory of implementation should be able to answer all these questions in a

systematic way for all possible levels of description. Any state-to-state correspondence

8 This worry was pointed out by an anonymous reviewer.

21

or semantic view, however, is naturally limited to a level of description and a notion of

state/part at that level and can, therefore, not provide any criterion for particular choices

of levels. Furthermore, a theory of implementation should provide necessary and

sufficient criteria to determine whether a class of computations is implemented by a class

of physical systems (described at a given level), otherwise the term “implementation” is

not appropriate. As long as these problems are not solved, we are back to square one

(e.g., Kripke's objections to the standard account of implementation) and constructions

like the ones in the Slicing Theorems will continue to pose a threat to any CVI/SVIs.

References

Chalmers, D. J. (1994) �On Implementing a Computation�, Minds and Machines 4, 391�

402.

Chalmers, D. J. (1996) �Does a Rock Implement Every Finite-State Automaton?�,

Synthese 108, 310�333.

Chrisley, R. L. (1994) �Why Everything Doesn�t Realize Every Computations�, Minds

and Machines 4, 391�402.

Copeland, B. J. (1996) �What is Computation?�, Synthese 108, 403�420.

Kripke, S.A. (1981). Wittgenstein on Rules and Private Language. Oxford: Blackwell.

Melnyk, A (1996) �Searle�s Abstract Argument Against Strong AI�, Synthese 108, 391�

419.

Putnam, H. (1988) Representation and Reality. Cambridge: MIT Press.

Rapaport, W.J. (1999) �Implementation is Semantic Interpretation�, The Monist 82, 109

�130.

Scheutz, M. (1999) �When Physical Systems Realize Functions...�. Minds and Machines

9,2, 161�196.

Scheutz, M. (2001) �Causal vs. Computational Complexity?�. Minds and Machines 11,

534�566.

Searle, J. (1990) �Is the Brain a Digital Computer?�, Proceedings and Addresses of the

American Philosophical Association 64, p. 21-36.

Searle, J. (1992) The Rediscovery of Mind. Cambridge, Massachusetts: MIT Press.

Stabler (1987), �Kripke on Functionalism and Automata�, Synthese 70, 1�22.

22

