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Abstract

Evidence from recent psycholinguistic experiments suggests that humans resolve refer-
ence incrementally in the presence of constraining visual context. In this paper, we present
and evaluate a computational model of human reference resolution that directly builds a se-
mantic interpretation of an utterance without the need for a separate syntactic analysis phase,
which typically involves the construction of parse trees. The model is implemented on a robot
using real audio and video inputs, thus operates in real-time, and is distributed over several
computers, which run in parallel. Results from experiments with the model confirm the viabil-
ity of the algorithm to process semantic interpretations, in particular, reference incrementally,
as demonstrated to be employed by humans.
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A Real-time Robotic Model of Human Reference Res-
olution using Visual Constraints

1 Introduction
The classic view of human language processing started with Chomsky (1957, 1965, 1986) and
was subsequently adopted by the artificial intelligence community, e.g., through Winograd (1972,
1973) and others. It assumes that human language processing proceeds in stages, which include at
least a syntactic and a semantic stage. In particular, at the syntactic stage, parse-tree representations
of the sentence are produced, which provide the syntactic categories of the expected words in
order. If a recognized word violates the expected syntactic category, the current parse tree will be
discarded and a new alternative parse tree will be built. Similarly, a new parse is constructed if the
semantic analysis reveals or suggests that the current parse tree must be incorrect.

Although this approach seems plausible, recent evidence from psycholinguistic studies of hu-
man sentence processing suggests that parse trees may contribute minimally or not at all to com-
prehension in communicative situations in which the referential context is visually co-present with
both the listener and the speaker, and, therefore, highly accessible; i.e., it does not need to be
maintained in working memory (e.g., Chambers, Tanenhaus, Eberhard, Filip, & Carlson, 2002;
Eberhard, Spivey-Knowlton, Sedivy, & Tanenhaus, 1995; Kamide, Altmann, & Haywood, 2003;
Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Sedivy, 2002). As summarized further
in the next section, under these conditions, listeners rapidly and incrementally interpret spoken ut-
terances with respect to the visual context establishing reference as soon as the utterance provides
sufficient information for distinguishing the intended referent from alternatives, even when this
information occurs before the end of the syntactic constituent. The evidence of rapid incremental
integration of linguistic and contextual information is consistent with a constraint-satisfaction view
of human sentence processing (e.g., MacDonald, Pearlmutter, & Seidenberg, 1994; Tanenhaus &
Trueswell, 1995). However, the findings have yet to be explicitly modeled within this theoretical
framework.

In this paper, we present a parallel, distributed, real-time, robotic processing model of human
reference resolution that uses context information to disambiguate referential expressions to deter-
mine the semantic content of natural language sentences without the use of syntax trees. Specifi-
cally, the model operates in a real blocks’ world-like environment and can resolve the reference of
referring expressions when presented with spoken sentences like “Put the red block on the green
block on the blue block” in real-time. More importantly, the model shows the same performance
in the cases where humans can quickly resolve reference, while also exhibiting the same com-
prehension difficulties observed in humans when the referring expressions are ambiguous due to
underspecification or overspecification with respect to a given context.

The paper is organized as follows: first we provide some background on human reference
resolution from a psychological perspective and summarize the findings which suggest that hu-
mans resolve reference incrementally utilizing as much context information as possible. We then
present the functional architecture of our computational model, including its core and marginal
assumptions. After a brief description of the experimental setup, we show the results of several
experimental runs with the model, which follow the same pattern as those of the human subjects.
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We end with a discussion of the implications of the model for natural language processing and with
a prediction that we derive from the model for further psychological experiments.

2 Human Sentence Processing
Studies of human sentence processing show that comprehension occurs incrementally on essen-
tially a word-by-word basis (e.g., Steedman, 1989; Tanenhaus & Trueswell, 1995). One reflec-
tion of this incremental interpretation is the occasional occurrence of misinterpretations–or garden
paths, as illustrated by the sentence, “Joe loaded the boxes on the cart into the van”, in which the
first prepositional phrase (PP) “on the cart” is often initially misinterpreted as specifying the goal
of the loading event rather than specifying the location of the theme (the boxes) or object of the
loading event. Studies in which readers’ eye movements are recorded as they read sentences show
that the misinterpretation is often reflected in long fixation durations on the disambiguating portion
of the sentence (e.g., on the second PP “into the van”, in the example above) as well as occasional
regressive eye-movements, reflecting a re-reading of the misinterpreted portion of the sentence.

Factors that contribute to or attenuate the occurrence of garden paths are a primary emphasis
in much of psycholinguistic research on human sentence comprehension. Specifically, theories
about the underlying processes can be roughly classified as either two-stage or one-stage theories.
Two-stage theories (e.g., Clifton, Speer, & Abney, 1991; Kimball, 1973; Ferreira & Clifton, 1986;
Frazier & Fodor, 1978; Frazier, 1995 assume that the initial or first stage of comprehension occurs
strictly on the basis of the grammatical categories of words, phrase-structure rules for combining
categories into phrases, and a set of parsing principles designating which rule is applied in the event
that more than one is applicable. The second stage, in turn, assigns semantic roles such as agent,
theme, goal, etc. to the phrasal constituents based on their attachment in the parse tree. Thus,
according to this view, encountering “on” in the example sentence above triggers the construction
of a PP constituent, which, according to the phrase-structure rules of English, can be attached
to two possible positions in the parse tree. It can be attached to the noun phrase (NP) node,
corresponding to the theme “the boxes”, in which case it would be assigned the semantic role of
locative (specifying the location of the theme) during the second stage. Alternatively, the PP can be
attached to the higher verb phrase (VP) node, in which case it would be assigned the semantic role
of goal at the second stage. A Minimal Attachment principle, which stipulates building the simplest
parse tree, resolves the ambiguity in favor of attaching the PP to the higher VP node, where it
is initially assigned, and, hence interpreted as the goal. An error in this initial interpretation is
signaled when the second preposition “into” is encountered, which triggers the construction of
another PP that must be attached to the higher VP node. This error triggers a re-analysis process
in which the initial attachment of the first PP is revised so that it is attached to the NP node, where
it is appropriately assigned the locative role.

In contrast, the one-stage theory assumes that the initial incremental interpretation of a sentence
utilizes all sources of information including, syntactic, semantic, pragmatic, etc. Garden-paths oc-
cur because the various sources of information often differ in their relative availability, particularly
as a sentence unfolds. Specifically, bottom-up or local sources of information, such as the syntactic
category of words and their lexical-semantic requirements (e.g., the semantic arguments associated
with verbs) are generally more accessible than top-down or global sources, such as the pragmatic
or discourse context in which a sentence is embedded. Thus, most of the empirical tests of the

3



opposing theoretical views have focused on whether top-down contextual constraints can prevent
the initial occurrence of a garden path (e.g., Frazier, 1995; MacDonald et al., 1994).

For example, a study by Ferreira and Clifton (1986) recorded readers’ eye movements as they
read sentences such as, “Joe loaded the boxes on the cart into the van”, which were preceded
by a sentence that established two possible referents in the discourse context for the definite NP
corresponding to the theme in the critical sentence (i.e., two sets of boxes). According to the
one-stage view, this ambiguous reference should prevent a garden path by requiring the initial
interpretation of the first PP as a locative (i.e., specifying which set of boxes was the referent of
the definite NP) rather than as the goal.

The results, however, supported the two-stage view by showing evidence of garden paths de-
spite the presence of a context. Nevertheless, in reading studies such as Ferreira and Clifton’s, the
discourse context must be maintained in working memory, and, therefore, it may not be readily
accessible to bias the initial incremental interpretation of a sentence. A stronger test of whether
a discourse context can be used to avoid a garden path comes from more recent studies that have
examinined the incremental interpretation of spoken sentences that refer to visually co-present
referents.

2.1 Eye-Movements as an Online Measure of Spoken Language Compre-
hension

Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy (Tanenhaus et al., 1995; Eberhard et al., 1995)
developed an eye-movement recording method that provides a sensitive and continuous measure
of listeners’ incremental interpretation of spoken sentences. Specifically, their method involved
recording listeners’ eye-movements as they followed spoken instructions for moving common ob-
jects on a display table (e.g., “Put the napkin in the bowl.”). Eye-movements were recorded via
a light-weight eye-tracking camera that was attached to an adjustable headband worn by the lis-
tener. The headband also contained a small video camera that recorded the visual scene from the
listener’s perspective. The scene image was displayed on a TV monitor along with a record of
the listener’s eye fixations, which were superimposed as cross hairs. Both the image on the TV
monitor and the experimenter’s spoken instructions were recorded by a Hi8 VCR that permitted
frame-by-frame playback of the synchronized audio and visual channels. Analyses of the video
tapes involved logging the location and duration of all fixations that occurred relative to onsets and
offsets of the words in the critical spoken instructions.

The methodology took advantage of the fact that when given an instruction such as “Put the
napkin in the bowl”, a listener will naturally and automatically fixate the to-be-moved object (nap-
kin) before reaching for it because the motor system that programs the reach for the object requires
information from the visual system about the object’s location. Thus, a listener’s fixation on an
object that occurs prior to his or her reach for it is a behavioral index of when he or she has
identified the referent that serves as the “theme” of the putting action. Initial studies using this
technique demonstrated that the listeners’ fixations are remarkably time-locked to the spoken re-
ferring expressions, with the fixation that precedes the reach to an object occurring as soon as
sufficient information has been provided for identifying it as the intended referent, even when that
information occurs before the end of the referring expression.
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2.2 Evidence for the Online Incremental Use of Context to Resolve Refer-
ence

Figure 1: Examples of a one-referent and two-referent display context, respectively.

Tanenhaus et al. (Eberhard et al., 1995; Spivey, Tanenhaus, Eberhard, & Sedivy, 2002) used
the eye-movement recording methodology to test the contrasting predictions of the two-stage ver-
sus one-stage (incremental) views. In particular, on each trial listeners heard a series of spoken
instructions that directed them to put one or more theme objects on the left side of a display table
in or on one or more goal objects on the right side of the table. The trials varied the kinds of
theme and goal objects as well as the kinds of actions that were requested. The critical trials repre-
sented a complete crossing of two linguistic factors with two display context factors. As shown by
the example sentences in (1a) and (1b) below, the two linguistic factors were whether the critical
sentences were syntactically ambiguous (1a) or syntactically unambiguous (1b).

(1a) Syntactically ambiguous: Put the apple on the towel in the box.

(1b) Syntactically unambiguous: Put the apple that is on the towel in the box.

Both types of critical instructions were presented in a one-referent display context condition
(shown on the left in Figure 1), and a two-referent display context (shown on the right in Figure 1).
Specifically, the one-referent context contained only one possible theme referent (i.e., one apple),
whereas the two-referent context contained two possible theme referents (i.e., two apples, one on a
towel and another on a napkin). Both display contexts supported an interpretation of the first PP in
the ambiguous instruction (i.e., “on the towel”) as either a locative specifying the theme (i.e., the
location of the apple that was to be moved) or a goal of the “put” action. The correct interpretation
corresponded to the locative assignment, which was the assignment required by the syntactically
unambiguous instruction.

Of interest was whether the listeners’ initial interpretation of the ambiguous instruction would
differ from their initial interpretation of the unambiguous instruction, as reflected in a difference in
the pattern of their eye fixations and reaches that occurred when the two instructions were presented
in the one-referent versus two-referent conditions.

2.3 Results
Figure 2 shows the typical sequence of fixations on objects in the display when the ambiguous and
unambiguous instructions were given in the one-refernt context (left side) and in the two-referent
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context (right side).

Figure 2: Typical sequence of eye movements to the objects in the one-referent (left) and two-
referent (right) display contexts for the ambiguous and unambiguous instructions. The solid arrows
indicate eye movements that occurred during both the ambiguous and unambiguous instructions.
The dashed arrows indicate the additional eye movements that occurred during the ambiguous
instruction in the two-referent context.

The numbers in the instructions below show the occurrence of the fixations that are indicated
by the corresponding numbered arrows in the one-referent context of Figure 2.

(1a) Syntactically ambiguous: Put the apple on the (1) towel in (2) the box. (3) (4)

(1b) Syntactically unambiguous: Put the apple that is (1) on the towel in the box. (4)

Consistent with both the one- and two-stage views’ predictions, the timing and number of fix-
ations that occurred during the instructions differed for the ambiguous and unambiguous instruc-
tions. In particular, the listeners’ fixations during the ambiguous instruction indicated a significant
tendency to initially misinterpret the first PP as specifying the goal of the putting action as reflected
by a significant number of fixations on the towel on the right side of the display (arrow #2 in Fig-
ure 2) shortly after the PP “on the towel”. This initial interpretation had to be revised after the
second PP, “in the box”, which was reflected in the occurrence of two more fixations: one on the
apple (arrow #3) and then one on the box (arrow #4), which was the correct goal. In contrast, when
the unambiguous instruction was given in the one-referent context only two fixations occurred.
Like the ambiguous instruction, the first fixation (arrow #1) was to the single apple in the display
and occurred shortly after the NP “the apple”. The second and last fixation (arrow #4) was on the
box and occurred shortly after the second PP “in the box”.

The two-stage view attributes the misinterpretation of the first PP in the ambiguous instruction
to the use of a Minimal Attachment Principle to resolve the syntactic ambiguity during the first
stage of parsing. The error in this resolution, which is signalled by the uncertainty of the semantic
role assignment for the second PP, triggers a reanalysis process that revises the initial assignment
of goal to the first PP. The one-stage view, in contrast, attributes the misinterpretation of the first PP
to the use of pragmatic constraints about the kind of information that a listener expects to receive
from a “cooperative” speaker. Specifically, according to Gricean Maxims (Grice, 1975), speakers
are tacitly expected to provide only the necessary and sufficient information for identifying their
intended referents. Because the definite NP “the apple” provided sufficient information for iden-
tifying the theme, the first PP was initially interpreted as specifying the goal of the putting action,
as opposed to providing (superfluous) information for identifying the theme.
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The numbers in the instructions below summarize the results when the instructions were given
in the two-referent condition (shown on the right in Figure 2). Like the sentences above, the
numbers show the occurrence of the fixations that are indicated by the corresponding numbered
arrows for this condition Figure 2.

(1a) Syntactically ambiguous: Put the apple on the (1) towel (2) in the box. (3)

(1b) Syntactically unambiguous: Put the apple that is (1) on the towel (2) in the box. (3)

The sequences of fixations in this condition supported the one-stage view’s predictions. Specif-
ically, the number and timing of the fixations were the same for the ambiguous and unambiguous
instructions, providing evidence that both instructions were initially interpreted in the same man-
ner. Crucially, for both instructions, there was a negligible number of looks to the towel on the
right side of the display after the first PP “on the towel”. Instead, for both instructions, if the first
fixation after the NP “the apple” was on the incorrect apple (the apple on the napkin), then there
was a second fixation on the correct apple shortly after the PP “on the towel”. The final fixation
(arrow #3) in both instructions occurred on the box shortly after the second PP “in the box”.

Thus, contrary to the previous results from reading comprehension studies, Tanenhaus et al.’s
results showed that when the referential context is visually co-present and does not need to be
maintained in working memory, it is immediately used by the incremental interpretive processes
to resolve reference.

3 A Parallel Distributed Processing Model of Human Refer-
ence Resolution

In this section we develop the details of our model of incremental human reference resolution
and give a functional description of the model. Implementation details (such as how functional
components get mapped onto computer hardware) will be addressed in the next section. We believe
that it is important to separate the functional from the implementation level, for it is possible to
implement any functional specification in different ways using different underlying systems (e.g.,
symbolic algorithms or neural nets) and looking at the underlying system might obscure important
features of a model that do not depend on implementation details.

We start with a description of the domain, in which we will evaluate our model, and give
examples of the kinds of sentences the model can encounter and needs to be able to cope with.

3.1 Reference Resolution in a Blocks World Domain
The domain under consideration is a simple Blocks World Domain, in which blocks of different
color can be stacked (e.g., see the two examples in Figure 3). Blocks can exhibit one of the
following relationships: they can be on, under, or next-to other blocks, or they can be isolated
without any immediately adjacent block. In this domain, it is easily possible to arrange situations,
where referential expressions are ambiguous or overdetermined. For example, the phrase “the red
block” fails to pick out a referent if there are two or more red blocks in a scene (as on the right in
Figure 3). However, if “the red block” is followed by “on the orange block”, and if there is only
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One-Referent Task

Oran. Oran.

Green

Blue
Red

Two-Referent Task

Red

Red

Oran. Oran.

Green

Blue

Figure 3: The overall setup of the experiment for the resolution of referents in instructions like
“Put the red block on the orange block on the blue block.”

one red block on an orange block, the unique reference can be established. Similarly, a phrase like
“the red block on the orange block” is an overdetermination if there is only one red block (on a
orange block) in the scene (as on the left in Figure 3).

In our model we will consider sentences of the form “Put ... on ... on ...”; for example, “Put
the red block on the orange block on the blue block”. Syntactically, the example sentence has two
parses (see Figure 4).

Logically, these two parses correspond to two different semantic interpretations, which can be
expressed as follows (we abbreviate the complex predicate expressions like “RED 
����� BLOCK 
��� ”
by “REDBLOCK 
��� ”):

(I1) PUT 
�
����� ON 
 REDBLOCK 
����� ORANGEBLOCK 
�������
����� BLUEBLOCK 
����
(I2) PUT 
�
����� REDBLOCK 
������
����� ON 
 ORANGEBLOCK 
����� BLUEBLOCK 
�����

If presented with either environment, a classical parser will typically start with the bottom
parse tree in Figure 4, and hence will be forced in both cases to reject its first choice. Consider, for
example, the one-referent condition in Figure 3. Starting with the bottom parse tree, the attempt
to resolve the reference of “the orange block on the blue block” fails, because the semantic inter-
pretation of that phrase, 
����� ON 
 ORANGEBLOCK 
����� BLUEBLOCK 
���� is false in the scenario.
Consequently, in a typical computational approach where new parse trees are generated until they
can be assigned a possible semantic interpretation, this parse tree will be discarded and another
parse tree will be considered (if it exists). In the above case, there is another parse tree (top in
Figure 4), which requires that 
����� ON 
 REDBLOCK 
����� ORANGEBLOCK 
���� be true, which it is
in the given scenario. Thus, the second parse succeeds.

The method of determining the meaning of sentences as described is essentially based on the
idea that parse trees are generated before an interpretation of the involved terms is attempted.
Consequently, when it is not possible to find a consistent interpretation for a generated parse tree
in a given scenario, the syntactic analysis will have to be revisited. In the best case, a backtracking
process will allow the system to isolate the nearest choice point in the generation process of the
current parse tree, where a decision was made regarding a particular way of parsing it (e.g., because
there were two syntax rules with the same left-hand side, but different right-hand sides, which can
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Figure 4: The two parses of the sentence “Put the red block on the orange block on the blue block”.

occur in a non-deterministic context-free grammar). At the choice point, parsing can then resume
applying a different grammar rule. While the backtracking process thus may allow the system
to preserve partially built semantic structures and only rebuild those that caused the failure of
completing the semantic interpretation of the parse tree, in the worst case the root of the parse
tree will be reached and a complete new parse will have to be built. Consequently, any (partial)
semantic interpretation might have to be discarded.

As argued in Section 2, algorithms that separate syntactic and semantic analysis by first build-
ing a parse tree and then attempting to assign a consistent interpretation to its lexical constituent
parts do not seem to capture the processes used by humans to resolve reference, at least not in
the context of visual constraints. Rather than always using parse trees, humans seem to be able to
resolve reference sometimes incrementally without having to construct explicit parse trees and use
backtracking to produce alternative parse trees only if the incremental parse fails.

We would, therefore, like to propose the following alternative picture. Consider again the
phrase “the red block on the orange block”. Upon hearing “red” in the above sentence and scenario,
we hypothesize that humans construct a set of representations of possible referents PR(RED),
which at this point contains representations of the two red blocks. Since the set is not a singleton,
the subsequent words will be taken to specify constraints on PR and thus to belong to the same ref-
erential phrase. Hence, upon hearing “on” a constraint will be instantiated that limits the referents
in PR(RED) based on the set PR(ORANGE), which will be formed upon hearing “orange”. Since
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the newly formed set PR(ORANGE) is a singleton, the referent, which is the argument for “put”
has been established to be the single element in PR(ORANGE). Hence, subsequent words are not
taken to be part of the definite description anymore.

The above example demonstrates that the referents of definite descriptions can be determined
incrementally using visual constraints without constructing parse trees. According to the incremen-
tal approach, the syntactic ambiguity does not affect the semantic process of establishing reference
because the semantic process does not rely on the syntactic structure of the sentence. Rather, the
semantic process simply interprets each word as it is encountered with respect to the context in
which it occurs and uses that interpretation to further reduce the set of possible referents to a single
unique one. When a unique referent is identified it is assigned the appropriate thematic role (e.g.,
theme) and the semantic process moves on to identify the next referent that needs to be assigned a
thematic role, where the assignment of thematic roles is, in large part, determined by the semantics
of the verb (e.g., “Put” is a 2-place predicate that requires a theme argument and a goal argument).
Essentially, this approach is based on the following

Minimal Information Processing Principle: A human speaker will typically produce sen-
tences in such a way as to provide the minimum information necessary to identify his or
her intended referent. To do this, the speaker must take into account the domain of refer-
ence or set of entities that are likeky to be considered as possible referents by the listener.
This domain of reference is part of the mutual or shared knowledge, also called “common
ground”, that is used by speakers and listeners to communicate messages efficiently, e.g.,
(Clark, 1996; Karttunen & Peters, 1975; Stalnaker, 1978).

By the same token, listeners expect only the minimum information necessary given the domain
of reference to identify the intended referent.

From a pragmatic perspective, the Minimal Information Processing Principle can be thought
of as a “communication protocol” that tacitly underwrites human communicative interactions (see
Grice’s maxims, in particular, the “Maxims on Quantity”, Grice, 1975 as well as the Principle of
Relevance by Sperber & Wilson, 1995). Hence, sentences that violate this principle, either by over-
specifying reference or underspecifying reference are likely to increase comprehension difficulty
for the listener. Yet, they might not cause problems for a classic approach to parsing and language
understanding as outline above. Specifically, humans will have comprehension difficulties in some
cases of referential overdetermination, whereas the classic approach will (eventually) find the right
parse and thus the appropriate interpretation.

To see this, consider the situation depicted on the left in Figure 3, where the referent of “the
red block” is uniquely specified. Taking again the above sentence “Put the red block on the orange
block on the blue block”, a classic parser would eventually produce the only parse consistent with
the context (i.e., on the top in Figure 4), and thus interpretation (I1). Hence, there is no ambiguity
in the semantic interpretation of the sentence. Yet, for human subjects this sentence together with
the given setup of blocks causes problems, because it violates the Minimal Information Principle,
which underwrites, as we would like to suggest, the method by which humans determine reference
(cf. again to Section 2). For according to the above-described, hypothesized algorithm for human
reference resolution the reference to a unique object is established upon hearing “red”, at which
point the term “on” is not taken to belong to the same phrase as “the red block” anymore, but rather
is assumed to be associated with “put” (as an indicator that the goal of the put action will now be
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specified). Consequently, the second argument of “put”, which is the goal argument, is taken to be
the referent of “orange block”. Although this is a set with two possible referents, the precondition
of “put”–that no block can be on top of a target of the put action–eliminates the orange block
underneath the red block as a possible referent, and thus reduces the set of possible referents for
“orange” to a singleton (namely, the orange block on the right).1 Hence, at this point, the minimal
information is present that allows human subjects to carry out the put action. However, the sentence
continues with the phase “on the blue block”, of which the human subjects attempt to make sense.
This requires them them to revise their semantic interpretation so that it either corresponds to the
intended interpretation in (I1), or that is corresponds to the unintended interpretation in (I2). The
latter requires them to further alter the context by placing the red block on the organge block
together on the blue block (several subjects in the experiments in Tanenhaus et al. (1995) resortet
to this latter strategy).

3.2 The High-Level Functional Architecture
We are now ready to sketch the high-level functional architecture of a model, which is intended
to capture the above-described idea of incrementally restricting the sets of possible referents of an
expression until the set only contains one member, the referent of the expression. The model is a
hybrid symbolic-connectionist model based on the idea of parallel distributed processing, where
multiple processing units are concurrently active, exchange information via communication links,
and constrain each others’ activations.2 At a high level of description the model architecture can
be broken down into twelve functional components, some of which are connected to visual and
auditory sensors and to the camera motor effector (see Figure 5).

Each rectangle indicates a component type, whose function is indicated by its label. While
some types only have one instance in the running virtual machine (e.g., speech recognition), others
can have multiple ones (e.g., blob tracking). Auditory and visual sensory information is trans-
formed by transducers (not shown) and enters into the architecture in the perceptual processing
components (i.e., the speech recognition and color/shape recognition modules). Lexical represen-
tations are then analyzed as individual words (as opposed to syllables or morpho-syntactic units,
say). Each recognized word is looked up in a dictionary to obtain its semantic form (if there is one),
and a corresponding processing unit is instantiated for further processing. For example, if the word
“put” is encountered, then processing unit for “put” is instantiated, which subsequently processes
its argument types (i.e., the object and location of the “put” action). If a referent is needed at any
given time (e.g., as part of the processing of an action term unit), then a visual search process is
initiated to find the referent in the visual scene (e.g., the referent of “the blue block”).3 Visual
search involves looking through a list of already tracked objects as well as trying to find new ob-
jects using color blobs and shape detection. It may also involve camera movements if the objects
are not entirely within visual range. For each simple object that meets the requirement, a tracker is

1This precondition could viewed as being derived from the semantics of “put”, which requires a change of location
to take place, which would not occur with the orange block below the red block being construed as the goal.

2While neural networks have come to be viewed as prototypical simple instances of such systems (McClelland &
Rumelhart, 1988), we believe that the notion of “parallel distributed processing” should not be restricted to simple
processing units with numeric data, but should be applied more generally to any kind of processing architecture, in
which multiple, possibly heterogeneous units process information in parallel in a distributed fashion.

3To simplify perceptual processing, we do not use 3D blocks, but use a possible 2D projection, i.e., a square.
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Figure 5: A high-level view of the components employed in the architecture used in the reference
resolution task.

instantiated that encapsulates its basic properties (e.g., color and shape) and automatically tracks
the object (e.g., if they should move or the camera should move).

Processing complex objects is more involved. For example, finding the referent of “the blue
block on the red block” will involve finding blue squares first, then finding all red squares and per-
forming a spatial relation analysis on each of the red squares to see if the “on” relation holds (i.e., if
a red square is below the blue square). As part of this process, compound trackers will be instanti-
ated that form and maintain representations of spatial relationships. Compound trackers track their
individual parts by virtue of other compound or simple trackers. For example, a compound tracker
corresponding to “the red block on the green block to the left of the red sphere” might consist of a
compound tracker for “to the left of”, which takes as its first argument another compound tracker
(for “the red block on the green block”) and as its second argument simple tracker (for “the red
sphere”). At any time, visual attention will be directed at uniquely identified objects (as denoted by
definite descriptions) or will focus on one of multiple possible referents (typically, the one closest
in visual space to the previous focus).

The model, as described above, makes several assumptions about information processing in
humans. While some of these assumptions are based on psychological evidence (e.g., assumptions
about eye movements and focus of attention), most of them are of hypothetical nature and can
only be indirectly verified by comparing the model’s behavior to that of humans. Specifically,
we distinguish two classes of assumptions: core assumptions that are essential to how the model
works, and marginal assumptions that can be modified without invalidating the model.
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3.3 Core Assumptions
We start with the eight core assumptions:

1. Default incremental sentence processing: Sentences are by default processed incrementally
based on the input stream of lexical items, i.e., for each recognized lexical item a direct
semantic interpretation is attempted without first analyzing the overall syntactic structure of
the sentence.

2. Lexical input stream: The lexical input stream will be continuously monitored by a lexicon
processing unit that maps lexical items to semantic types and automatically instantiates the
corresponding processing units unless other units take control of the input stream.

3. Control flow: Each processing unit that obtains control of the lexical input stream processes
lexical items specific to its function from the stream until a final processing state is reached
or temporarily passes control to other processing units (e.g., an action term processing unit
passes control to a definite description processing unit to get its arguments).

4. Default incremental reference resolution: The reference relation between terms and an (in-
tended) objects is established incrementally by a computational unit checking for definite
descriptions, which will get invoked by processing units that require referents, keep con-
trol until reference is established or a parsing error is encountered, and return control to the
invoking unit.4

5. Set of possible referents: The extension of a simple or complex term � at any time � is a set of
objects or “possible referents” PR that the term could denote given the information available
to the system up to time � (e.g., the set of all red blocks for the term “block”).

6. Establishment of reference: The reference of a simple or complex term � (to an object) is
established when the term’s set of referents PR has only one member.

7. “That”-clauses: An action processing will return control to the unit processing definite
descriptions if a “that”-clause is encountered after a referring expression was successfully
processed and a referent was determined assuming that the “that”-clause will further specify
the previously determined referent (e.g., it could “overspecify” a referent as in “the red block
that is on the orange block” on the right in Figure 3).

8. Action term processing: An action term � will instantiate directly an action processing unit
(whose processing details will depend on the semantics of � ), which subsequently will in-
stantiate definite description processing units to determine its argument token(s) (e.g., the
object(s) to be manipulated or the location(s) at which an action should occur).

4In the case of a parsing error, the involved unit will signal an error to its invoking instance. Local error recovery
will be attempted, and if it does not succeed, the error will be propagated further up the instantiation hierarchy until
it reaches supervisory control–a detailed account of error processing and recovery from parsing failures will have to
await another occasion.
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The first three assumptions are about the overall processing architecture and how distributed
processing occurs in the system, the next five assumptions concern the details of processing ref-
erential expressions, and the last assumption deals with the direct semantic processing of verbs
denoting actions. Changes to any of these assumptions might (partially) invalidate the model, and
may or may not yield the predicted results.

3.4 Marginal Assumptions
The seven marginal assumptions are:

1. Incremental lexical processing: Incremental processing of referents occurs at the word level
(if words denoting possible referents have no initial syllables is common).

2. Focus of attention: Whenever a new set of referents � (with � ���! " ) is transferred to
the attention module, the eye will fixate referent # such that ��� #%$'&(�)�+* ��� �,$-&.��� for all
�0/1 #324� (where & denotes the current fixation of the eye in the visual scene and �)�65����
denotes the Euclidean distance in the image plane).

3. Overdetermination: The focus of attention is lost if reference is overspecified.

4. Ambiguous reference: If reference is ambiguous, a referent is chosen at random (typically,
the one “closest” to the current focus of attention).

5. Common workspace: All processing units and representations created as part of the lexical
processing are instantiated in a common workspace that can be accessed by all units that
require access (as fixed by the architecture description).

6. Visual processing: For each (possible) referent of a term from the lexical input stream a
simple tracking unit is instantiated that attempts to track the object in the visual image and
a complex tracking unit is instantiated to track simple trackers whose tracked objects are
arranged in particular spatial relations (e.g., the complex “on” tracker can track an object as
long as it is on another object).

The difference between the core and marginal assumptions is that the marginal assumptions
can be changed in different ways without affecting the validity of the model, although changes
may affect the way the model is tested. For example, if assumptions about the focus of attention
are changed, then it may not be possible to determine based on focus of attention alone, whether
the model has successfully processed a sentence.

4 Model Evaluation
The experimental evaluation of the model is intended to test the model’s ability to replicate the
findings in the human case: that overdetermination causes comprehension difficulties which are
assumed to be due to the particular way in which humans resolve reference incrementally in the
presence of constraining visual contexts. Specifically, the model should be able to “comprehend”
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the same set of sentences that humans comprehend and show comprehension difficulty where hu-
mans have problems. “Comprehension” as well as “comprehension difficulty” are measured using
the model’s visual attention mechanism: analogous to the human case, where eye movements are
observed in line with the processed lexical items–the eyes move from possible referent to possible
referent based on the state of processing–the focus of attention module determines what item is
processed at any given time and reflects the (partial) internal representation of the sentence at any
given point.

Beyond replicating the results from human findings, the model can also be evaluated with
respect to three practical features that distinguish it from many other cognitive models:

7 Embodiment: whether it can process information reliably under different real-world con-
ditions (e.g., different lighting or background noise conditions, different speaker, different
angle to display, etc.)

7 Real-time: whether it can perform the parsing and building of semantic representations for
different sentence types in real-time

7 Distributed parallel processing: whether it can run distributed on multiple computers in real
parallelism (i.e., on different CPUs rather than in “simulated parallelism” on one CPU)

While the aim of the model in the context of this paper is to replicate aspects of human refer-
ence resolution, which per se do not require particular assumptions about embodiment, real-time
performance, and distributed, parallel processing, we believe that these three aspects will become
critical in future extensions and most importantly in practical applications of the model (e.g., in
situations where robots have to interact with humans in uncontrolled, natural environments.)5

4.1 Experiments
We conducted four experiments with the model (based on the experiments reported in (Tanenhaus
et al., 1995; Eberhard et al., 1995)). As robotic agent we used an ActivMedia Pioneer Peoplebot
robot equipped with an onboard PC104 board running LINUX, a Sony color camera on a pan-
tilt unit, a BT848 video framegrabber, and SoundBlaster-compatible sound card. Specifically, the
robot was placed about two yards in front of a whiteboard, on which colored squares where placed
in two different arrangement according to the two-referent and one-referent condition depicted in
Figure 3. For each condition, two sentences were read out loud to the model:

1. “Put the red square on the orange square on the blue square”

2. “Put the red square that is on the orange square on the blue square”

The predictions are (analogous to the human case) that the model should without difficulty be
capable of processing the first sentence in the “two-referent condition” and the second sentence
in both conditions, while it should fail to process the first sentence in the “one-referent condition”
due to overspecification of the referent.

5We have conducted several preliminary experiments that vary some of the three dimensions in order to test the
robustness of the model (e.g., different lighting conditions and speakers). Systematic experiments that establish the
limits of perceptual and internal real-time processing are currently under way. These include, in particular, a richer
conceptual processing basis together with an extended vocabulary.
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4.2 The Model Implementation
The model was entirely implemented in the ADE system under development in our lab (An-
dronache & Scheutz, 2004, 2005) and distributed over four computers.6 ADE is a JAVA-based
agent development environment that builds on the general agent architecture framework APOC,
which views agent architectures as networks of connected components with different levels of ac-
tivation that communicate via four types of communication links (for more details on APOC, see
Scheutz, 2004; Scheutz & Andronache, 2004). Since the focus in this paper is on the incremental
construction of interpretations of sentences, we have modeled the semantic representation in great
detail. For example, there are separate APOC components for conceptual frames corresponding
to actions denoted by verbs, spatial relationships denoted prepositions, and individual terms corre-
sponding to objects in the environment (such as the blocks). In contrast, we abstracted over details
of sensory processes at the level of the APOC architecture and implemented all constituent parts
in a single APOC component (i.e., the auditory and visual modules in one APOC component
each). Moreover, for efficiency reasons, we have not attempted a one-to-one implementation of all
functional modules of the model (in terms of individual APOC components), but rather merged
functional modules whenever possible to obtain a better run-time performance, which is critical
for real-time processing (e.g., the speech recognition and the color-shape detection modules are
implemented together in one APOC components). It should be noted, however, that this is only an
implementation choice (at the level of the APOC architecture) that does not change the functional
architecture of the model. Figure 6 shows the mapping from the high-level functional architecture
(in Figure 5) onto APOC components.

At the APOC level, the functional organziation of the implemented architecture consists of
eight concurrently operating APOC components:

7 The SPEECHINPUT component wraps around the Sphinx II decoder7, which performs word
recognition with Hidden-Markov Models based on the Fourier-transformed auditory signal.
The SPEECHINPUT represents the Speech Recognition component of the architecture, pro-
viding lexical representations of spoken words to other APOC components.

7 The WORDANDSYNTAXANALYSIS component receives data from the SPEECHINPUT com-
ponent, analyzes the words and instantiates other components based on input. The speech
input is then forwarded to the newly instantiated components. Word Analysis is implemented
in this APOC component, which also performs some high-level Syntax Analysis (e.g., phrase
structure identification associated with verbs).

7 PUT components are representations of the verb “put” as architectural components and are
therefore Conceptual Frames. Whenever a PUT component is created, it automatically in-
stantiates a REFERENTANALYSIS component.

7 REFERENTANALYSIS components perform some Syntax Analysis/Lexicon in that they in-
crementally parse descriptions trying to determine unique referents that correspond to them.

6The particular setup of the model reported here was demonstrated at the AAAI 2004 Intelligent Systems Demon-
stration (Scheutz, Andronache, & Eberhard, 2004). The specific details of the implementation of the model and the
runtime environment ADE are described elsewhere (Scheutz & Andronache, n.d.).

7See HTTP://CMUSPHINX.SOURCEFORGE.NET/HTML/CMUSPHINX.PHP
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Figure 6: The mapping of high-level functional components onto APOC components indicated by
dashed lines.

They also instantiate relational Conceptual Frames (such as ON components). Thus, REF-
ERENTANALYSIS components perform the functions of Referent Analysis and Spatial Rela-
tion Analysis.

7 The VISUALPROCESSING component combines several visual functions, which it can per-
form on the pixel image it obtains as input from the camera via the framegrabber. It also
receives color and/or shape and position data from the REFERENTANALYSIS component.
This data specifies the color currenly being sought and the region of the image in relation
to objects of the previously sought color (‘no relation’ can be specified). This component
corresponds to Color Blob and Shape Detection, Visual Attention, and Visual Search in the
functional architecture.

7 Each TRACKER component receives upon instantiation a blob from the VISUAL PROCESS-
ING. Subsequently, the tracker receives information about all blobs of the same color and/or
shape with the original blob and attempts to determine which of the current blobs corre-
sponds to the tracked blob. A TRACKER can also send commands to the camera, although
that feature was not used in this experiment. Thus, a TRACKER performs Blob Tracking and
Camera Control.

7 Each COMPOUNDOBJECTTRACKER component is connected to two other components (track-
ers or compound trackers, such as a “Left of”). The functions are performed by COMPOUN-
TOBJECTTRACKER components is Compound Object Tracking.
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4.3 Results
In the following we report and discuss the results from all four experimental runs. For both condi-
tions of sentence (1), we also show screen shots of the display of the running model (in Figure 4.3
and Figure 4.3, respectively). The left part of each figure depicts the state of the model after pro-
cessing the phrase shown below the figure, the right part of each figure shows the image taken from
the robot’s camera at that point. Squares on the left with names on top depict active components
in the running model that run in their own computational process (possibly on different machines).
Links depict information flow. A black frame around a colored square on the right depicts the
model’s focus of attention (if attention is focused on a particular object).8

S0: initial state S1: PUT

S2: THE RED SQUARE S3: ON THE ORANGE SQUARE

S4: S5: ON THE BLUE SQUARE

Figure 7: Various states of the model during the experimental run for sentence (1) in the two-
referent condition.

We first consider six main states of the model in the two-referent condition with sentence (1)

8Since the arrangement of squares on the whiteboard is the same as the one depicted in Figure 3, the color of each
object in the grayscale reproduction of the screen shots can be inferred from its relative location.
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(corresponding to the screen shots in Figure 4.3):

S0 The SPEECHINPUT component is listening of auditory input, the VISUALPROCESSING com-
ponent is acquiring images from the framegrabber at a rate of about 10 Hz. Focus of attention
is the center of the image.

S1 The WORDANDSYNTAXANALYSIS component recognize the term “put” and instantiates a
conceptual representation of “put”. Speech input processing control is passed to the PUT

component, which in turn creates a REFERENTANALYSIS component.

S2 The VISUALPROCESSING component searches the image for red squares. It finds two red
squares in the image and thus instantiates two TRACKER components, one for each square,
which are added the set of possible referent PR. The focus of attention is shifted to object
closest to the previous focus of attention (i.e., the upper most red square).

S3 The VISUALPROCESSING component restricts its search area to those regions directly below
the red objects previously identified and searches for yellow objects. A single object is
identified, and a TRACKER component is created for that object, which causes the focus of
attention to shift to the newly created tracker.

S4 A COMPOUNDOBJECTTRACKER component is instantiated and connected to the trackers
of the respective red and orange squares. The set of possible referent PR is updated (i.e.,
the red square that is not on an orange square is removed as is does not meet the condition
for membership at this point). Since PR only one object at this point, the REFERENTANAL-
YSIS component indicates to the is returned to the PUT component, which after receiving
“on” immediately returns control to the referent analysis component in order to determine a
second unique object as the target of the “put” action.

S5 A new, unrestricted visual search is started to find a blue object with empty space above
(which is required for the target location of the “put” action).9 Since there is only one
blue object (with empty space on top) in the picture, the target location is identified, a new
TRACKER component is instantiated, and the focus of attention is again shifted to the newly
created tracker. At this point, speech input processing control is passed to the PUT compo-
nent, which has finished processing its two constituent parts (the object of the “put” action
and the target location). Hence, the semantic interpretation of the sentence is complete and
control is returned to WORDANDSYNTAXANALYSIS component.

The model also exhibits the same sequence of states for sentence (2) in the two-referent condi-
tion, the only difference being that the REFERENTANALYSIS component also parses the interjected
phrase “that is” in S3, which is simply taken to further restrict PR.

Now, consider the main states of the model in the one-referent condition (corresponding to the
screenshots in Figure 4.3):

S0 Same as in two-referent condition.

9The constraint of space on “top” is passed from the PUT component, to the REFERENCEANALYSIS component,
to the VISUALPROCESSING component.
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S0: initial state S1: PUT

S2: THE RED SQUARE S3: ON THE ORANGE SQUARE

S4: ON S5: THE BLUE SQUARE

Figure 8: Various states of the model during the experimental run for sentence (1) in the one-
referent condition.
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S1 Same as in two-referent condition.

S2 The VISUALPROCESSING component searches the image for red squares. It finds only one
red square in the image and thus instantiates only one TRACKER component, which is added
the set of possible referent PR. The focus of attention is shifted to object closest to the
previous focus of attention (i.e., the upper most red square). Since PR has only one object at
this point, control is returned to the PUT component, which after receiving “on” immediately
returns control to the referent analysis component in order to determine a second unique
object as the target of the “put” action.

S3 A new, unrestricted visual search is started to find an orange object with empty space above
(which is required for the target location of the “put” action).10 While two orange squares
are found in the image, the constraint of having “empty space on top” eliminates one of
them, hence no TRACKER component is instantiated for it. For the other orange square, a
new TRACKER component is instantiated, and the focus of attention is again shifted to the
newly created tracker. At this point, speech input processing control is passed to the PUT
component, which has finished processing its two constituent parts (the object of the “put”
action and the target location). Hence, the semantic interpretation of the sentence is complete
and control is returned to WORDANDSYNTAXANALYSIS component.

S4 The WORDANDSYNTAXANALYSIS components receives the lexical input “on”, which is
taken to belong to a new sentence.11

S5 Since the model has only representations of sentence forms that start with verbs, the WOR-
DANDSYNTAXANALYSIS cannot parse the prepositional phrase “on the blue block” and as
a result the focus of attention is lost. Note that in an extended model, in which WOR-
DANDSYNTAXANALYSIS component can deal with sentence forms that start with preposi-
tional phrases, a new REFERENCEANALYSIS component would have been instantiated at
this time together with a TRACKER component tracking the blue square, and control of the
speech input would have been passed back to the WORDANDSYNTAXANALYSIS component
since PR had only one element, the blue square.

If, however, the phrase “that is” is added (as in sentence (2)), then in states S3 through S5 will
look exactly like in the 2-sentence condition as the WORDANDSYNTAXANALYSIS component
will return speech input control to the REFERENTANALYSIS component upon receiving “that”,
which will the subordinate clause. Note that the result of processing the subordinate clause does
not modify PR as PR had only one member to begin with. This is different from the above two-
referent condition, where processing of the subordinate clauses does restrict PR.

In sum, the model exhibits the predicted outcome and, moreover, shows the same shift in focus
of attention as found in the human experiments. The main difference between the model and the

10The constraint of space on “top” is passed from the PUT component, to the REFERENTANALYSIS component, to
the VISUALPROCESSING component.

11Note that the model might deviate from the human case here in that the prosodic information provided by the
speaker does not indicate the end of a sentence, while the semantic interpretation does. This conflict between seman-
tic and prosodic (i.e., in this case syntactic) information might cause humans to reanalyze the interpretation of the
sentence. The model, however, does not process and therefore does not take into account prosodic information.
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human in the one-referent condition is that humans, by virtue of carrying out the “put” action, have
to reach a decision of what to do, while the model does not actually perform any action (out of lack
of appropriate effectors on the robot).

5 Discussion
The experimental results suggest that the model can capture important aspects of the processes in-
volved in human reference resolution. Different from most cognitive models, which are simulated,
the proposed model is intrinsically a robotic model that has to cope with real-world inputs with all
the associated problems. Moreover, it processes information in real-time given the real-time na-
ture of the auditory input. Both properties are important for applications of the model, for example,
in mixed human-robot teams, where robots need to communicate with humans using natural lan-
guage. Finally, the model implementation exhibits real parallel processing given that it is running
on multiple computers. The last point is critical for extended versions of the model as the model’s
distributed nature makes it more likely that the model will “scale up” (i.e., will work the same way
for much larger vocabularies and conceptual knowledge bases).

While there are some recent robotic models in AI to resolving references to objects in visual
scences, which are related in spirit to the model proposed here, most notably Deb Roy’s work (e.g.,
Roy, 2002; Roy, Gorniak, Mukherjee, & Juster, 2002), these approaches typically either employ
parse trees and grammars (as in the Bishop system of Gorniak & Roy, 2004), or they are not aimed
at trying to model human processes of incremental language processing (but rather at showing, for
example, how word meanings emerge and can be used to refer to objects in a shared scence, e.g.,
Steels & Kaplan, 2002, or how reference can be resolved with minimal computational effort in a
behavior-based robotic system , e.g., Horswill, 2001).

The model also illustrates other aspects of language understanding systems that are situated
in an environment and have to interact in real-time. For example, it hints at ways of anchoring
meanings of symbols through its interactions with the environment: primitive terms like “red” or
“square” are grounded in perceptions by virtue of trackers that establish a causal loop with the
objects in the world that have these visual properties. Hence, trackers can be viewed as architec-
tural representations of the objects they track. Similarly, relation terms like “on” and “next-to” are
grounded in complex trackers that do not track objects themselves, but the representations of those
objects that are the relationship they are supposed to track. Consequently, instantiated complex
trackers are architectural representations of tuple instances of relations, whereas their types at the
architecture level correspond to the relations themselves. As such, complex trackers can be used
both to represent facts (“A blue block is on a red block”) as well as to ground the meaning of
referential expressions with relation terms (e.g., “the blue block on the red block”).12

On a speculative note, the model suggests that humans in general and by default may not
obligatorily construct or use syntactic parse trees to establish reference. This claim does not imply
that humans are incapable of constructing parse trees because evidence from the processing of
‘garden path” sentences in the psycholinguistic literature clearly shows that they can. Our proposal

12Note that under this construal, perceptual facts are always positive, i.e., it is not possible to represent the “absence
of a perception” such as that the blue block is not on the red block (which is in line with psychological assumptions
about the nature of cognition, see, for example, Hearst, 1991).
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is consistent with recent studies by Ferreira (Ferreira, Bailey, & Ferraro, 2002; Ferreira, 2003)
showing that comprehenders use heuristics to arrive at a “good enough” semantic interpretation
(see also Sanford & Sturt, 2002). Our model suggests that parse trees may be used by higher-level
supervisory control to reanalyze sentences in which the initial interpretation fails.

The current implementation of the model has several limitations, the most obvious one of
which is its minimal vocabulary and conceptual knowledge (e.g., it consists of a few color terms
with their associated Gaussian distributions in RGB space, some preposition terms together with
the procedural knowledge about their geometric meaning, and a handful of verbs together with
their phrase structure). Moreover, since thematic roles are currently only assigned in the context
of commands (where the agent is implicitly taken to be the listener and does not require explicit
representation), the current implementation of the model cannot parse other sentence types without
a modification of the WORDANDSYNTAXANALYSIS, which allows it to instantiate a REFERENT-
ANALYSIS component before instantiating a conceptual frame.13 Also, the model currently does
not employ any learning, hence cannot answer any questions about how humans can learn how to
resolve references from experience. Rather, the core assumptions giving rise to the reference reso-
lution algorithm in Section 3.3 are hard-coded into the model. While the model was not intended to
be a model of “learning to resolve reference”, it would still be interesting to see what the necessary
architectural constraints are that would allow the model to learn the proposed algorithm (e.g., as
a natural step in the process of acquiring compositional semantics, cp. to Schoenemann, 1999).
Finally, the model only incorporates automatic processing mechanisms, which in humans are en-
trained through repeated language usage. While these mechanisms can to some extent recover
from errors as could be seen from the examples with “that”-clauses, where control was returned to
the REFERENTANALYSIS component even after a unique referent had already been determined for
further referent parsing, the model cannot deal with and recover from many other parsing errors
that humans can handle. Extensions to the model will be needed to account for the various ways
in which humans reanalyze sentences syntactically (with or without explicit knowledge grammar
rules) in order to find alternative semantic interpretations, possibly involving supervisory control.

6 Conclusion
In this paper we have proposed an model for incremental resolutions in humans, which is built on
and thus incorporates as part of its processing architecture the pragmatic assumption about human
communication we called Minimal Information Processing Principle: Speakers aim to provide the
minimal amount of information necessary to distinguish their intended referent(s) from alternatives
in the domain of reference that is shared with their listeners. By the same token, listeners expect
speakers to adhere to this principle. Violations of this principle, which may be in the form of
underspecification (ambiguous reference) or overspecification (superfluous reference), can cause
confusion or comprehension difficulty as demonstrated by the eye-tracking experiments discussed
in the introduction.

The model showed the same performance as humans, suggesting that it was capable of captur-

13We are currently testing a preliminary version of an augmented WORDANDSYNTAXANALYSIS. Note, however,
that this modification does not require changes to the REFERENTANALYSIS component, which implements the incre-
mental resolution of reference.
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ing some important aspects of human incremental language processing. It can, therefore, not only
be of use for further cognitive modeling, but also as an alternative to standard language process-
ing approaches in AI. For one, language processing in the model takes place in parallel and the
semantic interpretation of the meaning of the sentence is completed when the last lexical item is
processed, which facilitates real-time processing as the complexity of reference resolution is linear
in the length of the phrase. This is different from many AI systems, which build explicit parse
trees as part of their interpretation of a sentence, where the effort can be exponential in the worst
case. The current implementation of the model has its limitations (such as the limited vocabulary
and conceptual knowledge) that need to be overcome before it can be applied in a practical system.
However, we believe that its functional architecture provides the foundations for very general lan-
guage processing systems that interact with humans via language and therefore will need to adhere
to the pragmatic assumptions underlying natural language discourse.
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