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Abstract— We present a real-time system for a mobile robot
that can reliably detect and track people in uncontrolled
indoor environments. The system uses a combination of leg
detection based on distance information from a laser range
sensor and visual face detection based on an analogical
algorithm implemented on specialized hardware (the CNN
universal machine). Results from tests in a variety of environ-
ments with different lighting conditions, a different number
of appearing and disappearing people, and different obstacles
are reported to demonstrate that the system can find and
subsequently track several, possibly people simultaneously in
indoor environments. Applications of the system include in
particular service robots for social events.

I. INTRODUCTION

The detection and reliable tracking of people in real time
is a difficult problem in dynamic indoor environments (such
as used for receptions, exhibitions, etc.), where lighting
conditions are not controlled, multiple people are move
at different speeds in different directions, and temporary
occlusions can occur at any time. The problem typically
becomes intractable on mobile robots with limited com-
putational resources, where standard algorithms are not
applicable because of their high computational demands.
Yet, for many service tasks such as those performed by a
waiter offering appetizers to guests at a reception or a tour
guide keeping track of a group of visitors, being able to
track people for a certain time is essential.

Recently, several systems have been proposed for mobile
robots to detect and subsequently track people based on a
combination of distance information obtained from laser
range data and visual information obtained from a camera
[24], [9], [12]. While these systems are capable of detecting
and tracking individual people to varying degrees, none of
them is capable of tracking multiple people at the same
time. And even in the case of single person tracking it
seems that these systems will fail to reliably track a person
moving at a normal speed given that their overall update
rates are very low. Moreover, given that the employed
face detection algorithms are often dependent on skin
color detection alone (as opposed to the detection of other
facial features), they are prone to exhibit high classification
errors (i.e., false positives) in environments that contain
skin-like colors. Finally, the proposed systems typically
cannot track people while the robot is moving, which
effectively excludes the applicability of such systems in
highly dynamic environments (e.g., where the robot has to

move frequently in order to avoid obstacles or to follow
people around).

In this paper, we present a novel bimodal, combined
digital-analog approach that is intended to overcome these
difficulties. Two subsystems use visual information from
a simple web camera for face detection and distance
information from a 2D laser range finder for leg detection,
respectively. Both systems can track people independently,
but use information from the other system to constrain their
set of possible candidates for tracking and to overcome
temporary occlusions of faces or legs dues to obstacles in
the environment or movements of the robot. For the visual
subsystem a parallel processor for fast vision processing
operations on 64 x 64 pixel images, the cellular neural
network (CNN) universal machine [1], [2], [3], [4], was
integrated. This processor runs a sensory pre-processing
analogical algorithm, which in combination with standard
digital algorithms allows for fast, reliable detection of faces
[23].

The paper is organized as follows: after a quick review
of four recent approaches for person detection and tracking,
we present an overview of our proposed system. We de-
scribe both the face-detection and leg-detection subsystems
in more detail, and present results from various evaluation
experiments on a mobile robot, which demonstrate different
capacities of the system, from fast detection of individuals
entering a room, to tracking of multiple individuals with
partial occlusions of faces and legs. The subsequent dis-
cussion briefly addresses how the proposed system could
be integrated into a larger robotic architectures (especially
for service robots).

II. BACKGROUND ON PEOPLE TRACKING IN INDOOR

ENVIRONMENTS USING VISUAL AND DISTANCE

INFORMATION

Much work on detecting and tracking people with mobile
robots has focused on visual methods (e.g., [10], [19], [18],
[13]). However, there are also recent approaches that make
use of laser range finders to detect and track people (e.g.,
[17], [14], [15], [16]). Most recently, a few approaches have
attempted to combine visual and range data information
from laser and sonar sensors to obtain better detection and
tracking (e.g., [24], [9], [12], [20]).

The basic idea common to these “bimodal” systems it to
use distance information to find the legs or the body of a



human person and then subsequently use this information
to confine the visual search for faces or human bodies.
The individual systems differ in how they make use of
distance information and how distance information and
visual information are integrated.

The “robot photographer” in [24], for example, uses
laser range data to verify that skin-colored pixels, which
have been isolated by a color-blob detection algorithm as
possibly belonging to faces, do indeed belong to a face.
By computing the height of people and the size of their
faces based on the distance information, the algorithm
excludes pixels that do not correspond to objects within
given distance and size parameters, while objects that
satisfy the parameters are interpreted as faces.

The system in [12] obtains laser range data first to build
a histogram of the background in order to distinguish
moving from non-moving objects and subsequently to
determine where people (i.e., their legs) are. Then the
position information is used to perform face detection on
the subimage using a neural network-based face detection
algorithm [21].

Visual and laser range information is used to indepen-
dently obtain information about faces and legs in [9].
These individual “percepts” are subsequently combined or
“anchored”: when legs or a face or both are detected in a
particular position, the system counts this as evidence that
a person has been detected.

Finally, sonar and visual information from a 360 degree
camera are fused in [20] to determine the closest person
using a variant of the condensation algorithm in [22] for
vision-based tracking. Samples of the environment that are
only supported by one modality (i.e., either sonar or vision)
are eventually discarded.

While all four approaches have their individual strengths,
they also have their individual shortcomings. The skin
detection algorithm in [24], for example, needs to be
re-trained in each new environment. The system in [12]
will fail to detect people if the laser scan fails to detect
them, and, moreover, only attempt to detect people when
the robot is stationary. Finally, the systems in [9] and
[20] will have difficulties detecting and tracking people in
environments with moving people, where low frame rates
are insufficient to keep track of environmental changes
(especially the system in [20] given its computationally
expensive face and “head-shoulder” detection methods–a
detailed assessment of the system’s potential was unfortu-
nately not possible due to the lack of information about
the frame rate or any experiments that were performed to
evaluate the system).

Independent of these individual challenges, all systems
share three important limitations: (1) they can either not
deal at all or not deal well with a moving robot, (2)
they cannot deal at all with temporary occlusions (e.g.,
with the absence of one of the two modalities), and most
importantly, (3) they can only track one person at a time
(e.g., in the presence of multiple people, some chose to
track the closest person, e.g., [12] and [20]).

In the following, we will present our approach to people

tracking that was designed to overcome all three limita-
tions.

III. AN ARCHITECTURE FOR ADAPTIVE BIMODAL

PEOPLE TRACKING

The basic idea underlying the design of the proposed
solution, which also distinguishes it from the above de-
scribed systems, is that the face detection and leg detection
systems operate asynchronously and are to some extent
capable of tracking faces and legs independently. As will
be seen, this leads to superior performance compared to
previous solutions, as movements of the robot do not
have any significant impact on the performance of each
subsystem. Specifically, the robot might be moving due to
a violation of the “safety zone” defined around it (e.g.,
because a person stepped up too close) and still be able to
track legs and faces, because both the leg tracking system
and the face tracking subsystem will automatically and
independently adjust for any robotic movements. We start
with an overview of the architecture, which is depicted in
Figure 1.

A. Overview of the Architecture

Fig. 1. The basic architecture for people tracking. The dashed areas
indicate separate, concurrently operating subsystems for face detection
(A), leg detection (B), and face and leg tracking, respectively (C).

Three different sensors are employed in current imple-
mentation: a web camera, a 2D laser range sensor, and
three sets of 8 sonar sensors each. Sensory data streams
are processed separately in parallel (i.e., a visual 2D image
stream from the camera, a 1D distance data stream from
the laser, and three sets of 1D distance streams each from
the sonar sensors). For each stream, there is a perceptual
processing module that extracts relevant information from
the stream: a face detection module (A), a leg detection
module (B), and the “safety region detector”, which detects
objects that enter a region of 30 cm around the robot at
two different heights. Perceptual information from both
modules (A) and (B) is then fed into independent face and
leg tracking modules (C), which in turn can constrain each
other’s operation. The functional details of these modules
will be described below.

The face tracking module directly controls the motors
of the pan-tilt unit (on which the web camera is mounted),
while the leg tracking module can generate “people inves-
tigation” behavior. This behavior is triggered if a candidate
region for legs of people is too far away to allow for visual



verification about whether the region also has an associated
face. If a set of possible legs is to be further investi-
gated, the robot’s movement towards the potential person
is combined with the ongoing escape route computation
that is based on sonar information about objects entering
the robot’s safety zone. If there is a conflict between the
robot’s safety and investigation of new potential people
(e.g., because they would make the robot move in opposite
directions), the safety routes always take precedence in the
behavior integration module.

B. The Adaptive Face Detection Module

The face detection algorithm was developed for in-
door settings, where faces have to be detected against
backgrounds with varying color and uncontrolled lighting
conditions (e.g., flickering lights). In such an environment,
the variety of background objects makes it often difficult
to distinguish objects based on contours, hence color
information is used for an initial estimation of whether
a face could be located in an image.

Fig. 2. A diagram of the Analogical CNN Algorithm.

First, a 64 x 64 subimage of the larger 160 x 120 image
is selected (step (a) in Figure 2). This region is dependent
on whether a face was detected previously in the region
or whether the face detection module is in search mode
for a face (in which overlapping regions are considered
consecutively). This subimage is then pre-processed with
the CNN processor to detect faces. Specifically, in a first
step the influence of brightness is factored out by taking
the difference between the red and green color channels.
A threshold function with a parameter range between 0-
255 (where 128 is an equal amount of red and green, and
255 is all red and no green) is applied (a typical range
for facial color was determined to be 180-240). To make
the system more robust against sudden changes of lighting,
an adaptation mechanism was integrated that can quickly
adjust the lower boundary of the difference range (steps
(b) and (c) in Figure 2).

To ensure that a given color patch is a face, eye detection
is performed, first based on the color information by
picking out eyes as gaps in the color patch. To make sure
the gaps are inside the face, shadow operators [8] are used
to perform shadow operations independently up, and down,
then left and right for the respective eyes. A logical AND
operation is performed on all shadowed images and the
original color data is subtracted from the result to find the
gaps inside the face. The left and right shadow operators
are then independently combined via an AND operation

with the result, from which a centroid for the two eyes is
obtained (steps (e) and (f) in Figure 2).

A second method of eye detection is also employed,
which uses a horizontal projection of the color information
to determine the distribution of the color data. The hori-
zontal projection is analyzed to find the minima and check
that the results correspond to the eyes found in the earlier
method. This horizontal histogram is also used to find the
height of the face for later use (step (d) in Figure 2).

While information about the possible location of eyes
in a color patch can significantly improve the detection
of faces, background objects with colors similar to facial
colors can still interfere enough to reduce the performance
of face detection based on eye information. To reduce this
interference, edge detection of the area, already determined
to be of the correct color, was used to find more compli-
cated structures. The peak in a vertical histogram of the
edges is determined to be the center of the face, in a method
similar to that used by [7]. The vertical histogram is also
used to find the width of the face. A ratio of the height,
found earlier, to the width of the face is then used as a final
decision making factor (steps (g), (h) and (i) in Figure 2)
to determine the instantaneous probability that a face was
detected, which is computed for every frame (for details
of the whole process, see [23]).

If no face was found, but there is skin-like color in a
region, the color threshold values are adjust and the process
is repeated. This mechanisms helps to eliminate some of
the variations due to different lighting conditions.

C. The Leg Detection Module

The leg detection system is based on 180 distance read-
ings at about 25 cm above ground (one per degree) obtained
from the laser range finder for the area in front of the robot.
Because there are many objects in indoor environments
that might qualify as human legs from this simplistic
perspective (e.g., legs of chairs or tables, protruding door
door frames), objects that are too close to the walls are
discarded (this is determined by subtracting subsequent
sonar readings of the environment) and only objects that are
at some minimum distance away from walls are considered.

Humans can be in two poses from the robot’s perspec-
tive: in the first both legs are distinguishable, because there
is an empty space between them, in the second they appear
as one “column”. The leg detection system searches for
legs of the appropriate with and a possible gap between
legs scaled by the distance. If two legs with a gap of
appropriate size are found, they are marked as detected.
If only one leg is found, there are three cases: it could
be two legs close together without a gap (if it is twice
the width of a human leg at that distance–this typically
happens at greater distances where the 1-degree resolution
is insufficient to pick up the gap between the legs), or one
leg could occlude the other (e.g., the person is standing
sideways), or it is not a human leg after all.

In such circumstances, where legs cannot be identified
right away, they are marked as requiring further confirma-
tion, which subsequently will come from face detection: if



a face is found in the direction of the suspected legs “above
the legs”, then the legs are confirmed (this confirmation
process will involve the tracking modules and might cause
the robot to move towards the leg area if the location of
the legs is too far away from the robot’s current position
to be able to detect faces).

D. The Face and Leg Tracking Modules

The face tracking module attempts to track a detected
face over time to gain confidence, based on the instanta-
neous probability, that a face is actually found. For this,
it implements a simple belief revision mechanism that can
deal with temporary losses of faces due to imperfections of
the detection algorithm (e.g., based on lighting conditions,
background objects, etc.) as well as possible occlusions.
The belief revision mechanisms consists of a certainty
factor C (between 0 and 1), which at any given time
expresses the degree to which the system “believes” that
it is tracking a face. C is initially 0 and subsequently
updated according to the following differential equation:
∆C = G ∗ (1 − C) ∗ (face) − D ∗ (1 − C) ∗ (¬face),
where face is a Boolean value indicating the presence of
a face as determined by the face detection subsystem, and
G and D are constants (determined experimentally), which
influence the increase and decrease of the certainty that a
face has been detected.

The leg tracking module then uses the face tracking
module to verify that non-confirmed legs belong to people,
and more importantly, attempts to track all confirmed pairs
of legs found in the environment. Whenever a new, uncon-
firmed pair of legs appears (e.g., because a person enters
the area observed by the laser sensor), visual confirmation
is sought from the face tracking module, which will move
the camera in the direction of the legs. If there is face in the
area, the confidence C will eventually reach the threshold
value 0.4999 used by the leg tracking module to mark the
legs as confirmed.

Moving legs will be tracked by matching the closest
pair of legs from the previous update cycle to the current
one. Two main problems occur with movements: (1) legs
are about to leave the sensory range, in which case the
robot will either follow them (e.g., moving towards them)
or stop tracking them (e.g., because other legs are being
tracked that the )–the details of this decision making will
very much depend on the particular application. The other
problem (2) is that people’s paths cross and sets of legs
cannot be discriminated because they are occluded. In
this case, the system will wait until motion occurs in the
area, and then subsequently verify that still two people
are present (possibly using face tracking if this cannot be
achieved by leg information alone).

In general, people moving in environments will lead
to temporary occlusions of legs and faces. Temporarily
occluded faces typically are not a problem as long as
legs can still be tracked (in that case, the person could
not have disappeared). Occluded legs, on the other hand,
could mean that the person left the area, and are thus

marked unconfirmed.1 Hence, the face tracking module is
used to investigate the area of the last position of the legs
to confirm that a face is still present. If no face can be
detected, the legs are removed from the tracking list.

IV. EVALUATION EXPERIMENTS ON A MOBILE ROBOT

The evaluation of the proposed architecture was per-
formed on an ActivMedia peoplebot with two PCs. The
robot has an built-in PC with a 500 Mhz K2 processor and
128 MBytes of RAM running LINUX with kernel 2.6.1.
The built-in PC is the main relay station via a serial port
connection for the low-level embedded controller, which is
in charge of the two wheel motors and also the readings
from the three sets of 8 sonars each (two sets forming
a sonar ring at a height of 20 cm, one set is mounted
in the front of the robot at a height of 1.4 m). The PC
is also connected to a SICK 2D laser range finder via
another serial port and controls the pan-tilt zoom unit,
on which a USB web cam is mounted, through a third.
Finally, the built-in PC provides an ethernet connection
through which information can be passed to the other PC, a
Pentium IV 2.4 Ghz Windows XP machine, which contains
a PCI card with the CNN ACE4K chip (which currently is
only supported under Windows). The second PC also has
a frame grabber to which the web camera is connected.

The implementation of the architecture was split over
both PCs: the PC with the CNN chip implemented parts
A, B, and C in Figure 1 using the CNN development
environment Aladdin [8] and the Borland C++ development
environment, while the built-in PC performed the rest using
the JAVA-based ADE development environment [25].

For the experimental evaluation, the system was placed
in a indoor environment with uncontrolled lighting con-
ditions (flickering neon lights of different intensity). We
conducted four different experiments to evaluate different
aspects of the system. Experiment 1 tested simple tracking
of one moving person. Experiment 2 tested detection of a
moving person at a distance, which involves the “people
investigation” module. Experiment 3 tested tracking of a
moving person with temporary occlusions. Finally, exper-
iment 4 tested tracking of multiple moving people. For
each experiment, we show a figure containing three rows.
On the first row, four snapshot images from the robot’s
camera depict important events from the experimental run
(they are referred to by their frame numbers). The big
white box drawn on the picture is the 64x64 frame that
was processed by the CNN. A small white box is drawn
to indicate where the system believes the face is if the
instantaneous probability is high enough. In the row below
the images the laser distance data from -90 to +90 degrees
from the robot’s heading can be seen, mapped onto a
straight horizontal line (the longer the vertical line in a
given horizontal position, the shorter the distance of the
corresponding object detected by the laser beam from the
robot). Dark parts show the objects that are considered

1Note that this approach to leg tracking will not work if the legs of a
person are permanently occluded, e.g., because the person is wearing a
long skirt.



“leg-like” (in some of the experiments the blue objects
shows that the leg is confirmed by the face). The chart at
the bottom of each figure shows the temporal evolution of
the certainty factor of the face tracking system (as well as
the instantaneous probability–individual dots–of the face
detection system) for each frame during the experiment
run.

A. Experiment 1: Tracking one moving person

In this baseline experiment, we tested whether the sys-
tem could detect a person entering the room and sub-
sequently track the moving person. Figure 3 depicts the
results. The first image shows the person entering the sen-
sory range of the laser, where legs are found immediately
(while the camera is facing a different direction–Frame 4).
Subsequently, the leg tracking module caused the camera
to move to the angle at which legs were found and quickly
obtained a high C value about the face detected there
(Frame 68). The person was subsequently tracked by both
tracking modules in different lighting conditions (in this
case, the camera also followed the person since it did not
have any other face to track–Frames 88 and 323).

Fig. 3. Experiment 1: Tracking a moving person.

B. Experiment 2: Detecting and tracking at a distance

The second experiment tested whether the robot could
find a person at a distance. Figure 4 depicts the results.
Again, after the persons enters the sensory range of the
laser, the face tracking module attempt to identify a face
(Frame 143). Since the robot was not close enough for face
tracking to obtain enough certainty, the leg tracking module
caused the robot to investigate, i.e., to move towards the
suspected area (Frames 446 and 586). Eventually, it came
close enough for face tracking to obtain a high C value
(Frame 700).

C. Experiment 3: Tracking with temporary occlusions

The third experiment tested whether the robot could
track a moving person with temporary occlusions of the
legs. Figure 5 shows the results. After detecting and
tracking a person with both tracking modules (Frame 280),
the person moved behind an obstacle (the location of which

Fig. 4. Experiment 2: Detecting and tracking a person at a distance.

can be seen from the indentation of the distance readings in
the laser data). The face tracking module immediately took
over (Frame 324) and leg tracking resumed when the legs
reappeared (Frame 479). As can be seen in the last picture
(Frame 545), tracking continues even if the person’s legs
cannot be separated (as happens when one leg temporary
occlusion the other leg when a person is walking).

Fig. 5. Experiment 3: Tracking with temporary occlusions.

D. Experiment 4: Tracking multiple persons

The fourth experiment tested the system’s ability to
track multiple people.2 The results are shown in Figure
6. Once the first person was confirmed (Frame 178), the
camera moved to the left, where the leg tracking system
detected a single leg (the left black bar in the sonar
range image) in order to check whether it belongs to
a person. However, since the face tracking system was
unable to corroborate the evidence (Frame 199), the leg was
subsequently ignored. As soon as new legs were detected
(Frame 282), the camera moved to check for a face and
subsequently confirmed the presence of a person (Frame
627).

2For lack of space the two charts with the certainty factors have been
omitted.



Fig. 6. Experiment 4: Tracking multiple persons.

V. DISCUSSION

The experimental results demonstrate that the proposed
system is capable of tracking multiple moving people,
even when the robot is itself in motion, different from
the other systems discussed in the background section.
This is possible because we employ two tracking systems
that work together in parallel, rather than sequentially. By
using the CNN chip, we are able to achieve a very high
update frequency of the visual tracking module of 30 Hz,
which is the maximum frame rate of the frame grabber
board. It is expected that even higher frame rates could
be obtained with faster frame grabbers, while increasing
the size of images in the visual stream. The leg tracking
system currently operates at approximately 3 Hz, which
has been found to be lowest update rate sufficient for leg
tracking when people are moving at normal speeds (note
that there is still room for an increased update rate for
people moving quickly). We are currently evaluating the
system in different indoor settings with larger numbers of
concurrently present people (from 5 to 20).

The current system can easily be integrated into archi-
tectures for service robots, for example, a robotic waiter
for receptions that attempts to serve appetizers and drinks
to people. For such an application it is sufficient to only
approximately keep track of where people are in the
environment and move to all of them at regular intervals.
This can be done in with the current system by using the
confirmed leg information in the leg tracking module as
a basis for a simple person identification mechanisms that
attempts to keep track of how many times a person has
been served and makes the robot move towards people
who have been served least–we are currently working on
an implementation of this application. Finally, we also see
much room for improvement of the leg tracking modules,
especially the determination of the confidence that partially
or wholly occluded people are still present.

ACKNOWLEDGMENT

Partial support for this project was provided by the
Office of Naval Research through a MURI grant.

REFERENCES

[1] L. O. Chua and L. Yang, “Cellular neural networks: Theory,” IEEE
Trans. on Circuits and Systems, Vol.35, pp. 1273-1290, 1988.

[2] L. O. Chua & T. Roska, Cellular neural networks and visual com-
puting, Foundations and applications, Cambridge University Press,
2002.

[3] A. Zarandy, Cs. Rekeczky, I. Szatmari, and P. Foldesy, “Aladdin
Visual Computer,” IEEE Journal on Circuits, Systems and Computers,
Vol. 12(6), 2003.

[4] G. Linan, S. Espejo, R. Dominguez-Castro and Rodriguez-Vazquez,
“ACE4k: An analog I/O 64 x 64 Visual Microprocessor Chip With
7-bit Analog Accuracy,” Intl. Journal Of Circuit Theory and Appli-
cations, Vol. 30, May-June 2002, pp. 89-116.

[5] M.-H. Yand, D.J. Kriegman and N. Ahuja, “Detecting Faces in
Images: A Survey,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 24. pp. 34-58, 2002.

[6] D. Balya and T. Roska, “Face and Eye Detection by CNN Algo-
rithms,” Journal of VLSI Signal Processing, Vol. 23., pp. 497-511,
1999.

[7] Z. Szlavik and T. Sziranyi, “Face Identification with CNN-UM,” in
Proc. ECCTD ’03, Krakow 2003.

[8] Aladdin Professional, Reference Manual, Version 2.5, Budapest 2003.
[9] M. Kleinehagenbrock, S. Lang, J. Fritsch, F. L¨omker, G. A. Fink and

G. Sagerer, “Person Tracking with a Mobile Robot based on Multi-
Modal Anchoring”, Proc. IEEE Int. Workshop on Robot and Human
Interactive Communication (ROMAN), Berlin, Germany, September
2002. IEEE.

[10] D. Beymer and Konolige K. Tracking people from a mobile plat-
form. In IJCAI-2001 Workshop on Reasoning with Uncertainty in
Robotics, 2001.

[11] W. Burgard, A.B. Cremers, D. Fox, D.Hähnel, G. Lakemeyer, D.
Schulz, W. Steiner, and S. Thrun. Experiences with an interactive
museum tour-guide robot. Artificial Intelligence, 114(1-2), 1999.

[12] J. Blanco, W. Burgard, R. Sanz, J.L. Fernandez. Fast Face Detection
for Mobile Robots by Integrating Laser Range Data with Vision. In
Proc. of the International Conference on Advanced Robotics (ICAR),
2003.

[13] I. Horswill. Polly: A vision-based artificial agent. In Proc. of the
National Conference on Artificial Intelligence (AAAI), 1993.

[14] A. Fod, A. Howard, and M. J. aMataric . Laser-based people
tracking. In Proc. of the IEEE International Conference on Robotics
& Automation (ICRA), 2002.

[15] B. Kluge, C. Koehler, and E. Prassler. Fast and robust tracking of
multiple moving objects with a laser range finder. In Proc. of the
IEEE International Conference on Robotics & Automation (ICRA),
2001.

[16] M. Montemerlo, S. Thun, and W. Whittaker. Conditional particle
filters for simultaneous mobile robot localization and people-tracking.
In Proc. of the IEEE International Conference on Robotics & Au-
tomation (ICRA), 2002.

[17] D. Schulz, W. Burgard, D. Fox, and A.B. Cremers. Tracking multiple
moving objects with a mobile robot. In Proc. of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

[18] John A. Perrone, Tony Voyle, Margaret E. Jefferies “Towards a
Human Tracking System for a Mobile Robot Using Neural-Based
Motion Detectors”, Image and Vision Computing New Zealand, 2003,
24–29

[19] Vision Based Person Tracking with a Mobile Robot C. Schlegel, J.
Illmann, H. Jaberg, M. Schuster, R. Worz Proceedings of the Ninth
British Machine Vision, 1998

[20] Wilhelm, T., Boehme H.-J., Gross, H.-M.: Sensor Fusion for Vision
and Sonar Based People Tracking on a Mobile Service Robot. in:
Proc. Int.Workshop on Dynamic Perception 2002, Bochum, 315-320,
IOS Press.

[21] H.A. Rowley, S. Baluja, and T. Kanade. Neural networkbased
face detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20(1), 1998.

[22] Isard, M. and Blake, A. CONDENSATION conditional density prop-
agation for visual tracking. International Journal on Computer Vision,
29(1):5 28, 1998. B. Jähne. Digitale Bildverarbeitung. Springer-
Verlag, Berlin Heidelberg, 3. Auflage.

[23] Raven, J., Scheutz, M., Gy. Cserey, Andronache, V., and Porod, W.
“Fast Detection and Tracking of Faces in Uncontrolled Environments
for Autonomous Robots Using the CNN-UM”. In the 8th IEEE
International Biannual Workshop on Cellular Neural Networks and
their Applications. (forthcoming)

[24] Zachary Byers, Michael Dixon, Kevin Goodier, Cindy M. Grimm,
and William D. Smart. “An Autonomous Robot Photographer”. In
Proceedings of the International Conference on Robots and Systems
(IROS 2003), Las Vegas, NV, October 2003.

[25] Andronache, Virgil and Scheutz, Matthias “ADE - A Tool for the
Development of Distributed Architectures for Virtual and Robotic
Agents”. In International Journal of Artificial Intelligence Tools.
(forthcoming)


