
SWAGES - An Extendable Distributed Experimentation System for Large-Scale
Agent-Based Alife Simulations

M. Scheutz, P. Schermerhorn, R. Connaughton, A. Dingler
Artificial Intelligence and Robotics Laboratory

Department of Computer Science and Engineering
University of Notre Dame

Notre Dame, IN 46556, USA
mscheutz@cse.nd.edu

Abstract

We introduce SWAGES, a distributed agent-based Alife sim-
ulation and experimentation environment that uses automatic
dynamic parallelization and distribution of simulations in het-
erogeneous computing environments to minimize simulation
times. SWAGES allows for multi-language agent definitions,
uses a general plug-in architecture for external physical and
graphical engines to augment the integrated SimWorld sim-
ulation environment, and includes extensive data collection
and analysis mechanisms, including filters and scripts for ex-
ternal statistics and visualization tools. Moreover, it pro-
vides a very flexible experiment scheduler with a simple,
web-based interface and automatic fault detection and error
recovery mechanisms for running large-scale simulation ex-
periments.

Introduction
Agent-based simulations have become increasingly impor-
tant in the study of complex systems. While many simula-
tion environments for the study of Alife models have been
proposed over the last decade (e.g., (Mössinger et al., 1995;
Collier, 2003; Minar et al., 1996; Minar et al., 1999; Ray,
2001; Ofria and Wilke, 2004)), with their different individ-
ual strengths and weaknesses, there is currently no simula-
tion environment that supports the automatic parallelization
of agent-based simulations and dynamical distribution of
simulations over a set of heterogeneous, dynamically chang-
ing hosts. Moreover, most simulation environments limit
users in the way they can design simulations (either a spe-
cial language is provided, or the programming language the
simulation environment is written in has to be used). Finally,
most simulation environments come with built-in compo-
nents (e.g., simulation and graphics engines, statistics pack-
ages, etc.), which can typically not be replaced.

In this paper, we present our SWAGES environment which
addresses all three problems. First, it implements a novel
algorithm for automatically parallelizing and distributing
agent-based simulations. Second, it allows for agent def-
initions in a variety of programming languages and pro-
vides standard interfaces for calling external functions (ei-
ther directly or via socket connections). Third, it provides

a standard plug-in interface, which can be used to link in
any combination of external physics engines (such as ODE)
and graphical visualization tools (such as OGRE), and sim-
ulation output can either be analyzed and visualized with
SWAGES or saved in formats appropriate for external tools
(e.g., R or Scilab).

A Brief Overview of SWAGES
SWAGES consists of several heterogeneous, distributed com-
ponents that cooperate closely at different levels to achieve
maximum resource utilization in a dynamic computing en-
vironment. It can be generally divided into server-side and
client-side components, where the server-side components
provide the distributed computation infrastructure, and the
client-side components provide the communication compo-
nents and the simulation platform SimWorld. Currently,
all server-side components are run on a single host–the grid
server1–while client-side components run on individual sim-
ulation servers.

Server-side Components
The grid server is the central locus of control of a SWAGES
system, running various server-side components to sched-
ule, distribute, start, and monitor the execution of distributed
simulations and recover from failures.

The experiment server is responsible for setting up ex-
periment sets (possibly consisting of large numbers of indi-
vidual experiments). Important factors here are generation
of initial conditions (unique or identical) across different ex-
periments in a set, priorities of experiments and scheduling
parameters, levels of supervision and recovery parameters,
format of data collection and location for data storage, sta-
tistical analysis of results and output formats, and user noti-
fication of progress.

The scheduler is responsible for taking experiments from
several priority-based queues (in which new experiments are

1Since grid server components are largely autonomous, it is
possible to distribute them as well. We are currently on a proto-
type version with distributed server components to improve perfor-
mance.



submitted by the experiment server) and starting them on
remote hosts. The experiment scheduler will dynamically
create experiment data structures for large-scale experiment
sets (to avoid memory shortage), and only schedule a new
experiment when new hosts are available that are not needed
for other experiments to finish.

The client server represent a remote simulation and
maintains an open communication channel with the simu-
lation instance, keeping track of the simulation’s progress,
state, update, and degree of parallelization. It is critical
for error detection and recovery: when a simulation crashes
(e.g., due to OS problems on its host), is not responding
(e.g., due to network problems), or cannot be continued
(e.g., because its current host does not meet user-defined cri-
teria for running simulations anymore), the client server can
resume the simulation elsewhere based on saved state.

The watchdog implements a second level of supervision
which is particularly important for dynamic computing envi-
ronments where hosts can “disappear” from a pool of usable
machines. It regularly checks all clients for progress, termi-
nates clients that are stuck or not responsive, and reschedules
simulations either from scratch or from saved states.

The web server provides a simple web-based interface to
SWAGES that can be used to submit experiments, check their
status, perform simple statistics and view the results.

The simhost is the server-side representation of a remote
simulation host. It keeps track of the simulations running on
it, and is responsible for monitoring the availability of the
host computer for simulations based on user-defined criteria
(e.g., a restriction might be that simulations can only be run
if no console user is logged on).

Client-side Components
The client-side components are responsible for running the
actual simulation and communicating its state to the server-
side components.

The simclient represents the simulation to the (server-
side) client server to which it communicates updates about
the simulation. It is responsible for saving the state of the
simulation and checking the host it is running on for avail-
ability according to user-defined criteria.
SimWorld is the default simulation environment used in

SWAGES. It interacts with the simclient to report simulation
statistics and agent data that client servers can use to paral-
lelize simulations (based on host availability).
SWAGES works in homogeneous fixed clusters (e.g., Be-

owulf clusters) and heterogeneous ad-hoc clusters (e.g., in-
dividual workstations that can only be used if nobody is
logged in) alike. Moreover, it requires no set-up procedures
on the host participating in simulation experiments (other
than the standardly installed secure shell tools for secure,
remote login and file transfer) and will run on all operat-
ing systems that support the JAVA virtual machine and the
Poplog environment (for SimWorld). Note that it is possi-
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Figure 1: Average time to completion for 1, 2, 4, 8, and 16
nodes for a swarm task, where agents must find and gather at
the nearest checkpoint as quickly as possible (see (Scheutz
and Schermerhorn, 2006) for details). Error bars denote con-
fidence intervals for α = 0.05.

ble to use simulation environments other than SimWorld in
SWAGES by simply adapting the simclient to the new sim-
ulation engine (the server-side interaction stays the same).
That way SWAGES is not tied to SimWorld (and Poplog),
but can be used with a variety of simulation environments
and thus improve their usability.

The SimWorld Environment
SimWorld is built on top of the SimAgent agent toolkit,
a general purpose agent toolkit based on the Poplog en-
vironment with the built-in OPS5-style rule interpreter
poprulebase. It can run in “GUI mode” (an interac-
tive mode for agent development and testing that provides
a 2D graphical user interface) and “batch mode” (a non-
interactive mode for large-scale simulations) and be used
for simulations of any kind of agent in any kind of envi-
ronment, from simple, grid-based cellular automata to com-
plex environments with deliberative agents, including evolu-
tionary investigations. SimWorld provides extensive sup-
port for periodic or event-driven data collection (virtually
any system parameter can be recorded via a simple spec-
ification language, see Step 2 in the next Section). Over
the last five years, it has been used successfully in several
diverse projects, ranging from the study of the utility of
affect for agent control (e.g., (Scheutz and Schermerhorn,
2002)), to various evolutionary investigations (e.g., (Scheutz
and Schermerhorn, 2005)), to the study of conflict resolu-
tion strategies (Scheutz and Schermerhorn, 2004), and oth-
ers (e.g., UAV swarms (Schermerhorn and Scheutz, 2005)).

Automatic parallelization is now included in
SimWorld based on a novel algorithm that distributes
simulations over a set of available hosts (Scheutz and
Schermerhorn, 2006). The algorithm can either run in
lock-step mode (i.e., updating all parallel simulations one
cycle at a time), or in asynchronous mode where individual



Figure 2: Simple reactive ant-like agents on their hunt
for food in OGRE and in the simple 2D SimWorld GUI
(brown circles with black dots) superimposed on the upper
right.

simulations update independently for as many cycles as
possible until information from other simulations is needed.
The asynchronous algorithm utilizes spatial information
available about the “sphere of influence” of agents in spatial
agent-based models such as SWARMS, ANTS, and many
others, where agents can affect their environment only
within a given range. By exploiting the information about
the “potential impact” an agent can have on its environment,
the algorithm can automatically split a given simulation
S with n agents into k parallel simulations S1,S2, . . . ,Sk
with n1,n2, . . . ,nk agents, distribute them over k hosts (via
the SWAGES server-side components) and update them
asynchronously.2 In the current implementation, each
parallel simulation Si will send updates of the states of
its agents to the client server, which stores them in a data
structure shared by all client servers that belong to the same
parallelized simulation. The time-savings of the algorithm
in cases of SWARM simulations where good splits of agents
can be computed (e.g., because different groups of swarms
are located far apart, so that they cannot influence each
other) are shown in Fig. 1. The results reported are averages
over 20 simulation runs of 100 cycles each. Each of the
20 initial conditions was simulated using 1, 2, 4, 8, and 16
nodes in a dedicated Linux cluster of dual 2.4GHz Xeons
with 1GB RAM. The times reported include all overhead of
starting and finishing SWAGES, as well as distributing the
simulations when more than one node is used.

2For space reasons, we cannot elaborate on the details of deter-
mining the split of n agents into n1,n2, . . . ,nk agents, which ideally
will take overlaps of their sphere of influence into account, com-
pute the transitive closures of the respective overlaps, and attempt
to distribute each transitive closure onto a separate host.

Support for external “plug-ins” (e.g., to link in exter-
nal simulation and visualization components such as exter-
nal physics and graphics engines) is supported via an open
“plug-in architecture”. We briefly mention two engines that
have been connected to SimWorld: the Open Dynamics
Engine (ODE), a physics engine used to provide efficient
collision and friction detection as well as realistic rigid-body
motion, and the Object-Oriented Graphics Rendering En-
gine (OGRE), a three-dimensional graphics rendering pack-
age. The integration of external engines is achieved via seg-
ments of shared memory (together with inter-process syn-
chronization mechanisms) that allow SimWorld and exter-
nal engines to share basic agent features. In the case of a
physics engine, for example, the information passed to the
engine at each cycle are force vectors representing the forces
generated by the agent’s controller (via its body); the physics
engine then simply returns the updated position and orienta-
tion of the agent based on the newly generated force and all
other forces that apply. For a graphics engine, location and
orientation of each agent (plus additional information about
the appearance of the agent, etc.) are shared (see Fig. 2 for a
comparison of SimWorld and OGRE visualization). Both
physics and graphics engines can be included at the same
time, and moreover, designers can selectively choose which
agent to update and render via the external engines (thus al-
lowing for non-physical information gathering agents that
might not need to be displayed).

Simulation Experiments in SWAGES
We briefly demonstrate the utility of the SWAGES environ-
ment by stepping through the process of defining, running,
and analyzing a large-scale set of simulation experiments.

Step 1: Developing an agent model. Agents can be de-
fined in any of the available programming languages in
Poplog (i.e., Pop11, Prolog, ML, Scheme, C-Lisp) or via
condition-action rules in poprulebase. Additional sup-
port for external function calls to code written in other pro-
gramming languages is provided via a C-function call inter-
face as well as JAVA socket serialization mechanisms that
can serialize and de-serialize Pop11 and JAVA objects, to
the extent that they are similar in nature.

Fig. 3 shows an example of parts of the code for a sim-
ple reactive agent that can obtain energy from food items.
SimWorld supports interactive development of agent code
by virtue of the incremental Pop11 compiler that allows for
dynamic code modifications while the simulation is run-
ning. For example, it is possible to replace the above “eating
method” with an “empty method” at cycle 34 in “GUI mode”
(e.g., to study the effects of refusing to eat):

34 ? pop11 ’define :method eating(a:simple agent); enddefine’

Similarly, it is possible to define new agent types, add
and remove agents from a running simulation, and track



define :class thing; is sim_object; /* base class */
slot geometry == undef;
slot position = undef;
slot heading = undef;
slot mass = undef;

enddefine;

define :class simple_agent; is thing; /* derived class */
slot speed = 3;
slot energy = 1000;
slot maxenergy = 2000;
slot food = undef;
slot intake = 50;

enddefine;

define :ruleset eating_ruleset; /* rules for eating */
RULE start_eating

[ingest food] [NOT halting_for eating]
==>

[do halting_for eating]
[do eating]
[STOP]

RULE end_eating
[NOT ingest food] [halting_for eating]

==>
[NOT halting_for eating]
[STOP]

RULE continue_eating
[ingest food] [halting_for eating]

==>
[do eating]

enddefine;

define :method eating(agent:simple_agent);
if energy(agent) >= maxenergy(agent) then

remove([halting_for eating]); /* sated, stop eating */
else /* add energy to agent, remove from source */

energy(agent) + intake(agent) -> energy(agent);
energy(food(agent)) - intake(agent)

-> energy(food(agent));
endif;

enddefine;

Figure 3: The object-oriented structure of agents in SimWorld:
a base class for “things” and a derived class for a simple agent,
together with a rule set for “eating behavior” and a method that
implements the “eating” action (defined in Pop11).

[[ /*** set up simulation environment ***/
[initfile ’reactive.p’] /* include user definitions */
[quitif 10000] /* stop after 10000 cycles */
[world WIDTH 1000 HEIGHT 1000]/* limited world */
[ /*** set up agents ***/
[simple_agent /* use this entity */

[startup [variate AGENT from 1 to 10 step 1]]
[record [at death [sim_x][sim_y]]

[at end [energy]]]
[food /* use this entity */

[startup [variate FOOD from 10 to 200 step 10]]]]
[ /*** schedule events ***/
[random [[variate PROB from 0.1 to 0.5 step 0.05] [food]]]]
[ /*** swages setup ***/
[name ’simple’ ’resultsdir’] /* where to store */
[user ’airolab’] /* run as this user */
[priority 5] /* run at medium priority */
[parallelize] /* allow parallelization */
[ranseed 29187] /* same initial conditions */
[replicates 40] /* across all replicates */
[watch 120 30] /* supervise execution */
[email ’mscheutz@cse.nd.edu’] /* notify user when done */
[copyimages ’/tmp/’] /* temp space for sim state */
[copystats ’statsdir’]]] /* where to store stats */

Figure 4: The four-part setup of an experiment set.

and record the values of their slots (e.g., their energy lev-
els throughout a run).

Step 2: Defining and running experiments. Once a sim-
ulation (with its agent models) is ready for experimenta-
tion, large-scale experiments that systematically investigate

Figure 5: A scheduled experiment set and simulations run-
ning concurrently on several hosts.

multi-dimensional parameter spaces can be defined quickly
in a simple experiment definition language and scheduled in
SWAGES via a web-based interface. Fig. 4 shows the setup
for an experiment set that investigates the survivability of
agents. The “variate” keywords specifies the variations of
setup parameters (the number of initial agents “AGENT”,
food items “FOOD”, and the probability “PROB” with
which new food items are placed in random locations within
a 1000 x 1000 area in the environment), for a total of
10 · 20 · 10 · 40 = 80000 individual experiments based on
the three-dimensional parameter space AGENT x FOOD x
PROB and the number replicates with different random ini-
tal placements of agents and food items (as specified by
“startup” and “replicate” keywords). The “record” keyword
is used to specify the variables that should be recorded (and
when), in this case the location of agents when they run out
of energy and the energy level of agents at the end of the
simulation (i.e., after 10000 cycles as given by the “quitif”
keyword). Experiment definitions can be entered in a web-
based interface to schedule experiments in SWAGES (Fig. 5
shows the interface depicting scheduled and running experi-
ments).

Step 3: Analyzing the resultant data. SWAGES provides
basic built-in statistical analysis tools (e.g., for performing
simple significance tests), and libraries for data extraction
and combination (in various formats including HTML, TeX,
and plain text, see Fig. 6 for typical statistical operations
that can be performed within the SWAGES web-interface).
SWAGES also provides various export filters and scripts to



Figure 6: Various result parameters of an experiment with a
single agent A0 (left) and summary results comparison (p-
values) of the average number of survivors among several
agents kinds (right), where bold numbers depict significant
differences.

interface common open-source statistics, visualization, and
scientific computing software (Fig. 7 shows output files for
R, results from dynamically generated scripts for gnuplot,
and data files for Scilab).

Related Work
Many software environments have been proposed for agent-
based and artificial life simulations within the last decade.
Here, we can only selectively name a few to show that there
is no system like SWAGES that combines (1) the flexibil-
ity of designing agents and recording any data in the course
of simulation runs in flexible ways, (2) the open plug-in
architecture (that allows to link in external simulation and
graphical engines and produce output for a variety of open-
source statistical analysis and graphical visualization pack-
ets), with (3) the automatic parallelization and distribution
of large-scale simulations that can be easily defined, sched-
uled, and observed through a simple web-based interface.
General toolkits that support distributed computing (e.g.,
MACE3J (Gasser and Kakugawa, 2002) and Hive (Minar
et al., 1999)) do not typically provide a readily usable sim-
ulation environment that supports easy definitions of agents
and events, data collection, statistical analysis. On the other
hand, agent-based and Alife simulation environments with
such support (e.g. XRaptor (Mössinger et al., 1995) do not
provide support for distributed computing and/or paralleliza-
tion of simulations.

And while some extensions to existing simula-
tions add support for distributed computing (e.g.,
HLA REPAST (Minson and Theodoropoulos, 2004),
which uses HLA to distribute simulations based on the
RePast toolkit (Collier, 2003)), the distribution is not
automatic and proceeds in lock-step, whereas in SWAGES
agent designers do not have to include any provisions for
parallelization in their code (simply adding the experiment
setup keyword “parallelize” (as in Fig. 4) is sufficient for
SWAGES to parallelize simulations whenever possible based

"N" "Repl" "Spread" "Females" "Time" "Males" "Distance"
1 1 0.8 1 147.83 0.00000 274.512
1 2 0.8 1 175.15 0.05000 276.763
1 3 0.8 1 201.63 0.13333 281.357
1 1 0.8 2 226.10 0.21250 290.448
1 2 0.8 2 245.87 0.25200 300.530
...
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Figure 7: R output file (top), comparison of two agent kinds
in terms of causes of death (upper middle), including 95%
confidence intervals, population dynamics of an evolution-
ary experiment showing numbers of all entities at each sim-
ulation cycle (lower middle)–both middle graphs were gen-
erated via gnuplot–and a performance space in Scilab (bot-
tom) comparing two agent kinds (green and blue) along sev-
eral dimensions.

on available computational resources).
While most simulation environments provide mecha-

nisms for recording and filters for exporting data (e.g.,
Swarm (Minar et al., 1996), Hive (Minar et al., 1999),



Repast (Collier, 2003)), they do not reach the flexibil-
ity of SWAGES where any simulation variable defined in
SimWorld (all slots of agents, global SimWorld vari-
ables, etc.) and all of the underlying Poplog and OS vari-
ables (e.g., memory consumption or system time) can be
recorded in multiple ways, possibly performing operations
on the data before recording it (e.g., as part of the recording
process by virtue of dynamically compiled Pop11 functions
specified as part of the experiment start parameters). More-
over, these environments do not provide easy mechanisms
for defining, scheduling, and running large-scale experiment
sets, with mechanisms for fault-detection and automatic re-
covery from errors, statistical analysis and data visualiza-
tion, and export filters for various open source software tools
(all of which is supported in SWAGES), nor do they provide
an architecture for linking in and utilizing external physics
or graphics engines.

Finally, agents designers are limited in the ways in which
they can specify agents (typically in the underlying pro-
gramming language of a toolkit, e.g. C in Tierra (Ray, 2001),
C++ in Avida (Ofria and Wilke, 2004), and Java in Hive (Mi-
nar et al., 1999), or some interpreted meta-language, e.g., as
in Mozart (Peter Van Roy, 1999)), while SimWorld pro-
vides many different ways of defining agents (from any of
the languages supported by Poplog, to external function calls
via libraries or sockets).

Conclusion
We presented a brief overview of our SWAGES system,
which provides a flexible, integrated platform for system-
atic, large-scale agent-based Alife simulation experiments.
SWAGES has been successfully employed in at least two
dozen research projects over the last five years and has
reached a level of maturity which we believe will make it
a useful research tool for the Alife community.3
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