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ABSTRACT
Recognizing and responding to human affect is important
in collaborative tasks in joint human-robot teams. In this
paper we present an integrated architecture for HRI and re-
port results from an experiment with this architecture that
shows that expressing affect and responding to human af-
fect with affect expressions improves performance in a joint
human-robot task.

1. INTRODUCTION
Social robots that interact with humans have become an im-
portant focus of research in robotics and human-computer
interaction (e.g., see [13] for a comprehensive overview).
As “human-robot interaction” (HRI) is being recognized
as an independent, interdisciplinary field of its own, a va-
riety of technological challenges need to be addressed by
the HRI community, from general communication issues (in-
cluding direct or mediated human-robot communication or
HRI interface), to modeling (e.g., cognitive modeling of hu-
man reasoning), to teamwork (e.g., architectures for joint
human-robot teams), and more (see the final report of the
DARPA/NSF Interdisciplinary Study on Human–Robot In-
teraction [7]). Questions such as how to interpret commands
given by humans, how to derive human intentions, how to
recognize non-verbal cues including affect expressions or ges-
tures, and others will be critical to joint human-robot teams
that have to achieve a task together (e.g., for human-robot
teams as envisioned by NASA for future space missions [14],
but also elsewhere). We believe that understanding human
affect and reacting to it appropriately might not only be es-
sential for robots in some situations (e.g., in order to avoid
misunderstandings or to allow for more natural interactions
between robots and humans), but could potentially also im-
prove the task performance of a joint human-robot team.

In this paper we report results from a study that is intended
to measure and quantify the role of affect in human-robot
interactions and its impact on the task performance in joint
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human-robot teams. Specifically, we investigate the ques-
tion whether expressing affect and responding to human af-
fect with affect expressions in natural language can facilitate
task performance in mixed human-robot teams.

2. BACKGROUND
Affect is deeply intertwined with cognitive processing in hu-
mans and is, consequently, an integral part of human com-
municative situations. Negative affect, for example, can bias
problem solving strategies in humans towards local, bottom-
up processing, whereas positive affect leads in many cases
to global, top-down approaches [2]. Affect is also crucially
involved in social control ranging from signaling emotional
states (e.g., pain) through facial expressions and gestures
[12] to perceptions of affective states that cause approval or
disapproval of one’s own or another agents’ actions (relative
to given norms). Many aspects of natural language commu-
nication cannot properly be understood without taking the
accompanying affect expressions into account.

While affect has been investigated to varying degrees since
the beginning of AI [25], affective computing has become
more prominent only since the publication of Picard’s semi-
nal work on the topic [26]. Since then various architectures
for affective robots have been proposed [37, 24, 20, 6, 22, 31,
29, 21]. These architectures differ in several respects and
can be categorized along several dimensions, for example, in
terms of the architecture schema within which they are de-
fined (e.g., a behavior-based approach like subsumption or
motor schemas vs. other approaches), the employed deliber-
ative components (if present), or whether natural language
processing is integrated.

More importantly in the present context, they also differ
with respect to the notion of affect and how affect is used in
the architecture: (1) how affect is (functionally) defined and
implemented, (2) how it can influence the robot’s behavior,
(3) where and how affect mechanisms are integrated into the
architecture, (4) whether affect in others (e.g., in humans)
can be perceived, (5) whether affect can be expressed (e.g.,
in the voice of the robot), and (6) whether affect can be
internally generated without perceptions.1

1In some cases, for example, affective states like emo-
tions are taken to be discrete and are architecturally rep-
resented by a corresponding number of components (e.g.,
neural network-like units with activations as in [37, 31, 21]),
whereas others construe them as continuous subspaces of
an n-dimensional space determined by some basic variables



3. THE DIARC ARCHITECTURE
We believe that affect can play an important role in HRI on
both the interaction side (i.e., via affect recognition and ex-
pression) as well as the architecture-internal side (e.g., see
[32] for different roles of emotions in agent architectures).
Hence, we have developed a robotic architecture called “DI-
ARC” (for “distributed integrated affect, reflection, and cog-
nition”) for HRI over the last several years that integrates
cognitive and affective mechanisms.2 Figure 1 depicts a par-
tial view of the functional organization of the architecture,
showing only the components relevant to the experiment de-
scribed (see [35] for a more detailed overview). 3

For space reasons, we will only describe the three compo-
nents of the architecture that are relevant to our experiment,
because they are involved in affect processing: the affective
action interpreter, affect recognition in spoken language, and
affective speech production.

3.1 The Affective Action Interpreter
The “affective action interpreter” is a novel interpreter for
scripts that is used for natural language understanding as
well as action selection, action sequencing and action execu-
tion. For this purpose, scripts can be augmented by action
primitives that are grounded in basic skills of the robot (the
bottom layer control structures are implemented as motor
schemas as in [1]). Scripts can be combined in hierarchical
and recursive ways, yielding complex behaviors from basic
behavioral primitives.

Action selection is accomplished via a prioritized goal stack.
The robot has high-level permanent goals that are always
present (e.g., “be polite”). In addition, transient goals can
be put on the goal stack as they are generated by pre- and
post-conditions in scripts. Each transient goal has an ex-
pected time-to-completion and a utility associated with it,
which reflects the benefit of completing the goal in time and
the cost of performing the required actions.

Each script goal can consist of multiple subgoals. A subgoal
may be another script goal or an atomic action. In general,
a script’s subgoals are pushed onto the stack in order; when
one subgoal is accomplished, it is popped and the next is
pushed. Subgoals can also be conditional (e.g., the outcome
of an action can lead to one sequence of subgoals on success
and to another on failure). Unlike a normal stack, the top
of the prioritized goal stack is not always the most recently
pushed goal. Rather, the order of the goal stack depends on
the priority of each goal. A goal’s priority (P ) is essentially
a measure (or function) of the importance (I) of the goal to

such as Mehrabian’s PAD model: “pleasure”, “arousal”, and
“dominance” (e.g., [34, 3]).
2We will not be able to describe the distributed and re-
flective aspects of the architecture here; for the distribution
components see [35].
3The implementation builds on the ADE system available at
http://ade.sourceforge.net/. DIARC also makes heavy
use of pre-defined components developed by other research
teams (e.g., the OpenCV vision library for face detection
and various image processing functions, the SONIC speech
recognizer for spoken word recognition, the link parser for
natural language parsing, VerbNet mappings, and an en-
hanced version of “Thought Treasure” for natural language
understanding and production).

the robot and of the goal’s urgency (U).

Urgency is related to time (similar to [22]). Each goal is
allotted a fixed amount of time (TA) when it is pushed onto
the stack, within which it has to complete.4 The closer a
goal is to timing out (i.e., the smaller its remaining time

TR > 0), the greater its urgency. Specifically, U = TA−TR
TA

.

If reliable estimates of remaining time to completion can be
made for subgoals, TR can be computed as the difference
between the time remaining to complete the task and the
time remaining before it times out. Otherwise, TR is just
the time remaining before timeout.

The importance of the goal is based on the benefit of achiev-
ing the goal (B) and the cost of performing the actions re-
quired (C), along with the current positive and negative af-
fective mood states of the robot (AP and AN , respectively).5

Specifically, I = (B · AP ) − (C · AN ), i.e., the importance
reflects some measure of expected utility if the intensity of
the positive and negative affective mood states are taken to
be self-generated “estimators” of future outlooks (e.g., pos-
itive moods in humans can lead to positive outlooks, top-
down problem solving, welcoming of changes, etc., whereas
negative mood leads to negative outlook, problem-focused
search, avoidance of changes, etc.).6 The mood states AP

and AN themselves are computed based on the failure or
success of computations in various submodules. AN is in-
creased based on failures to recognize words, interruptions
in motor actions, failure to complete goals, etc., while AP is
increased based on successful completion of some computa-
tions (such as successful parses of sentences), completion of
entire action sequences, or achievement of complex goals. In
addition, AN can be increased by successful detection of cer-
tain negative properties (e.g., detection of stress in people’s
voices or detection of threatening stimuli such as rapidly
approaching objects). Conversely, AP can be erroneously
increased due to failures in detection of negative properties
(e.g., the completion of a complex delivery action will result
in an increase in AP if the robot does not notice that the
object to be delivered was lost)–for a detailed exposition of
the (complex) relationships between positive and negative
affective states see [36].

Both affective states are updated according to the following
equation (based on [30]): ∆act/∆t = trig−act ·(trig+dec),
where trig ∈ 0, 1 reflects the infusion of affect (i.e., 1 for
success for AP or failure for AN , 0 otherwise)7, act ∈ [0, 1] is
the level of activation, and dec ∈ (0, 1) is a decay value that

4TA is typically the “time-to-completion” associated with
the goal in the script, but can be modified by the action
interpreter based on context.
5The decision to model positive and negative affective states
repeatedly was based on psychological (e.g., [10]) and neu-
ropsychological (e.g., [9]) evidence indicating the represen-
tational independence of positive and negative affect.
6We are in the process of demonstrating the different effects
of positive and negative mood influence on action selection,
and thus behavior, in an independent study.
7Note that AP and AN are not complements. There are
actions that can be accomplished without positive affect be-
ing triggered (e.g., recognizing words). Similarly, there may
be action failures that do not trigger negative affect right
away (e.g., when the robot interrupts itself while speaking
to produce another more urgent sentence).



Figure 1: A partial view of the proposed DIARC robotic architecture for HRI consisting of only those components

that were used in the experiment described in this paper. Boxes depict concurrently running components of varying

complexity and arrows indicate the information flow through the architecture. Dashed items are related to the

simulated field sensor, and are not part of the architecture per se (see the experiment description).

will reduce the activation level over time (in the absence of
any triggerings). Priority, then, is the product of urgency
and importance (P = U · I). The goal stack is resorted
periodically according to the priorities of its goals, and the
goal on the top is executed. This priority mechanism allows
the robot to focus on goals that are of importance to its well-
being (as determined by the affective evaluation of the goals
utilities and costs), while being able to keep multiple other
goals around and adapt their priority dynamically based on
environmental and internal changes.

3.2 Affect Detection in Spoken Language
We only describe the extraction of “stress” in a speaker’s
voice from the auditory stream (even though the algorithm
can be extended to detect other affective features), which
was used in the experiment. In [16], empirical studies show
that stress in the voice is marked by an increase in the mean
of the fundamental frequency (F0) mean and intensity. Be-
cause the fundamental frequency is inversely proportional
to the pitch period, this means stress can be determined by
a decrease in the pitch period. For pitch period estimation,
the algorithm implemented in [11] was followed with slight
modifications. First, segments of 20 msec sampled at 16
KHz (320 samples) are selected and filtered using a lowpass
filter. After that, each speech sample x passes through a
three-level clipper f(x), which is defined as 1 if x > CL, -1
if x < −CL, and 0 otherwise. CL is the clipping level of
the speech segment. Given the first 100 samples (x1) and
the last 100 samples (x2) of the segment, CL is defined as
0.68 ∗ min(max(x1), max(x2). The autocorrelation of the
clipped result is used to determine the pitch period [28].
The energy of the raw speech signal is calculated and if it

falls below an experimentally-determined threshold, the seg-
ment is considered “unvoiced” and no further action is taken.
Otherwise, if the end of the word is reached (as marked by
silence, or after 600 msec), the average frequency of that
word is computed and the word is marked as “stressed” if
the pitch is higher than the cumulative average pitch.8

While this method’s stress detection will be speaker-dependent
(because the average will be determined by the speaker’s
voice), the stressed/unstressed state of the speaker will ac-
tually be independent of the voice; an external system uses
the ratio of stressed words to total words detected over a
period of time, and compares it to a threshold. If the ra-
tio exceeds the threshold , then the speaker is classified as
“stressed”, or “not stressed” otherwise.

This thresholding method is different from methods dis-
cussed in [27], because those methods are focused on learn-
ing schemes. Rather, it is similar to earlier systems (e.g.,
[23, 38]), which use general comparisons of properties of the
input speech signal to those of a “calm” state (in our case,
an increase in pitch correlating to stress). The advantage of
the employed system is that it is speaker-independent and
requires no training corpus nor specific underlying train-
ing algorithm (e.g., statistical learning algorithms as in [6],
[19], [27]). It only requires the speaker to speak naturally
(i.e. without stress) at the beginning of the program, so the
baseline can converge to a true representation of the user’s

8While word lengths of 600 milliseconds may not generalize
to English as a whole, the chosen boundary is acceptable
for most current interactions with the robot–a more general
system would depend solely on word boundaries.



neutral state. Afterwards, this baseline is locked so further
utterances can be measured for affect.

3.3 Affect Modulation of Speech
A modified version of the University of Edinburgh’s Fes-
tival system was used for speech synthesis. Based on [8],
an emotion filter was applied to the speech output of Fes-
tival, altering various speech parameters based on affective
state. In particular, we defined various degrees of inten-
sities of emotions for the four categories “sad”, “angry”,
“frightened”, and “happy”. For example, to give the robot
a “frightened” voice, F0 and speech rate were increased, as
was the range of F0, and jitter was added to give the voice
a quivering sound. These match the results of [16], which
states that in fear/panic, F0 mean and range will increase
from the normal, as will the speech rate.

4. AFFECT-INDUCTION EXPERIMENT
While it seemed clear from the beginning that expressing af-
fect (e.g., via facial expressions, voice, gestures, etc.) would
make robots more believable to human observers, there was
already some early recognition of the potential utility of af-
fective control for influencing the behavior of people (e.g.,
[5]). Moreover, studies with robots and simulated agents
showed that affect mechanisms can facilitate task perfor-
mance of artificial agents and may be cheaper than other,
more complex non-affective mechanisms (e.g., [22, 33]).

Encouraged by recent findings from usability studies in HRI
about facilitatory effects of affect recognition (e.g., that rec-
ognizing affect can help to improve speech recognition re-
sults [17]), we set out to test the main hypothesis that affect
expression based on internally generated affect or affect gen-
erated in response to affect in humans can help improve the
performance of mixed human-robot teams on tasks that have
to be performed together.

To be able to test the hypothesis, a task with (at least) the
following characteristics is required:

• at least one robot and one human are needed for the
task and neither robot nor human can accomplish the
task alone

• robot and human have to exchange information in or-
der to accomplish the task (in our case via spoken nat-
ural language)9

• there is a performance measure (in our case time-to-
task-completion) that can be evaluated objectively on
task performance alone rather than being dependent
on subjective ratings

• the task must include aspects of human affect, which
can be influenced by the robot (in our case affective
modulation of robot speech output)

9This is necessary to exclude trivial “team tasks” such as
situations where the robot has to find a target while the
human has to solve a mathematical problem and the “joint
task” is accomplished if each individual subtask is accom-
plished.

• these aspects of human affect (in our case stress) must
be triggerable (e.g., via cognitive tasks, time pressure,
etc.) before or during the task (in our case we induce
stress as described below via time pressure)

• a control condition is needed where the same aspects
of human affect are not influenced by the robot (in our
case no affective modulation of robot speech output)

Note that while the first three items are common to many
joint human-robot tasks, the second three are specific to
testing the utility of affect for task performance.

To keep the interaction as natural as possible (e.g., no hand-
held microphones or tethering to the robot), we let subjects
freely interact with the robot (even during training phase we
only suggested to them the kinds of commands the system
would understand without actually pointing to limitations
about what it would not understand). We also forfeit any
speaker-dependent adaptation of the employed voice recog-
nition system (at the expense of the overall recognition rate)
to keep training phase to a minimum.10 This was partly pos-
sible because the task-specific vocabulary was very small and
thus the speaker-independent recognition rate acceptable.

4.1 The Task
We decided on a task that is relevant to NASA’s envisioned
future space explorations with joint robot-human teams [14].
The task takes place against the backdrop of a hypotheti-
cal space scenario. A mixed human-robot team on a remote
planet needs to determine the best location in the vicinity of
the base station for transmitting information to the orbiting
space craft. Unfortunately, the electromagnetic field of the
planet interferes with the transmitted signal and, moreover,
the interference changes over time. The goal of the human-
robot team is to find an appropriate position as quickly as
possible from which the data can be transmitted. The spe-
cific goal of the human is to steer the robot using natural
language commands until it has found a viable transmission
location.

Experimental Setup: This envisioned space scenario is
simulated in a room of approximately 5m x 6m (see Figure
2). During the experiment, the robot maintains an internal
map of the area, with a set of six fixed points representing
locations of local peaks for potential transmissions.11 Each
peak has a strength SP ranging between 200 and 500, de-
creasing proportionally with the distance of the robot from
the peak at a rate of one unit per cm. For overlapping
fields, the maximum is chosen. The location of these points
is unknown to the subjects, but the same across all subjects
(similarly, the initial location of the robot is the same across
all runs). Only two locations have sufficient SP for trans-
mission. To learn about the field strength at the current
location (SC), subjects request a reading from the robot.

10In retrospect, we believe that our results might have been
even more pronounced had we used online speaker adapta-
tion during the training phase to improve the recognition.
Moreover, a wireless microphone could be attached to the
subject to reduce noise and further improve recognition.

11Note that the map in this experiment is not a proper part
of the robot’s architecture.



The robot checks a “simulated field sensor,” which effec-
tively returns SC for the current location. To successfully
transmit, SC must be greater than 400 units.

Equipment: The robotic platform for the experiment is
a Pioneer ActivMedia Peoplebot (P2DXE) with a pan-tilt-
zoom camera, a SICK laser range finder, two microphones,
two speakers, three sonar rings, and an onboard 850 MHz
Pentium III. In addition, it is equipped with two PC lap-
tops with 1.3 GHz and 2.0 GHz Pentium M processors. All
three run Linux with a 2.6.x kernel and are connected via
an internal wired ethernet; a single wireless interface on the
robot enables system access from outside the robot for the
purpose of starting and stopping operation. Obstacle detec-
tion and avoidance is performed on the onboard computer,
while speech recognition and production, action selection,
and subject affect recognition are performed on the laptops.

Method: For the purposes of this experiment, we employ
three test conditions: control, self, and other. The control
condition utilizes no affect expression. The robot’s voice re-
mains neutral throughout the task. In the self condition,
voice affect is modulated by the robot’s inner affect states.
Specifically, the stress internally generated by the urgency
of the top-most goal on the goal stack is expressed by in-
creasing the “fearfulness” of the robot’s voice as time passes.
In the other condition, voice affect is modulated whenever
stress is detected in the subject’s voice (i.e., negative af-
fect is triggered, leading to an increase in the activation
level of AN , which, in turn, causes a modulation of the af-
fective speech output). Since our current affective speech
production system can only produce discrete modification
to voice output, the continuous affective states are mapped
onto discrete affective voices (depending on the intensity
levels of AN ), e.g., “half-frightened” and “frightened” to in-
dicate stress levels.

Procedure: Subjects are first asked to fill out a pre-survey
with five basic questions about their views on different as-
pects of robots used for HRI (see Table 1). The same five
questions are also included on the post-survey to test whether
the experiment would have any influence on their percep-
tions of interactive robots (similar to [18]). Then an exper-
imenter reads the “background story” (summarized in the
above task description). The subjects are told that their
goal is to control the robot to find a transmission location
as quickly as possible. Before attempting the actual task,
subjects go through a practice period during which they be-
come acquainted with the robot by interacting with it in
natural language. In particular, they are asked to help the
robot explore its environment using commands such as “go
forward”, “turn right”, “take a reading”, etc. During prac-
tice, the robot does not employ affective speech modulation.
This practice phase lasts at most ten minutes.

To ensure that subjects’ affective states will be altered dur-
ing the experiment, we artificially induce stress in subjects
by having the robot issue a battery warning: “I just no-
ticed that my battery level is somewhat low, <name>, we
have to hurry up.” After another minute, the robot issues
another warning: “<name>, my battery level is very low,
we have only one minute left.” When a total of three min-
utes has elapsed, the robot indicates that its battery has

died and the task has failed. Subjects may not reach all of
these interaction points if they achieve transmission early
enough. In both affective conditions, the robot’s voice re-
mains neutral for the first minute of the task. Thereafter,
the voice is modulated to express elevated stress starting
with the first battery warning in the self condition, and again
to express even more stress at the second battery warning.
Voice modulation remains elevated for all interactions (e.g.,
field strength reports). In the other condition, the robot’s
voice only changes temporarily after the first minute, when
the affect recognition module detects stress in the subject’s
voice (otherwise the voice remains neutral). Note that it
is, therefore, possible that some subjects in this condition
will never hear a modulated voice if the robot never detects
stress (such subjects are classified as “control”, see also foot-
note 12). The performance of the team is measured in in
terms of the time it takes the team to find a valid trans-
mission location and transmit the data. Throughout the
experiment, the robot’s motion trajectory, speech produced
and detected, and the state of the affect recognition module
were recorded.

After the experimental run, subjects are asked to fill out the
post-survey, which, in addition to the 5 pre-survey questions,
also has questions about whether subjects felt “stressed” at
the beginning of the experiment and after the robot an-
nounced that it was running low on battery power.

Participants: 24 male subjects were recruited from the
pool of Computer Science and Engineering students and ran-
domly assigned to the three groups.12

4.2 Results
First, we compared the results of two questions on the sur-
vey related to the stress that subjects experienced during
the experiment to make sure that affect induction in sub-
jects worked as expected: “How stressed did you feel at the
beginning of the task?” and “How stressed did you feel after
the robot announced for the first time that its batteries were
running low?” We found a high statistical difference in sub-
jects’ self-assessed stress levels before (µ = 3.70, σ = 2.01)
and after (µ = 5.67, σ = 1.74) the robot had announced that
its battery was running low (F(1,22)=17.773,p<0.001). We
conducted an additional ANOVA to confirm that there was
no difference among the three groups with respect to the
change in self-reported stress levels (F(2,21)=0.8,p=0.451).

A 3-way ANOVA with affect (“control”, “self”, and “other”)
as independent and time (to task completion) as dependent
variable shows only a slight trend towards significance, but
no significant effect (F(2,21)=2.508, p=0.106). This is due
to (1) the relatively small number of subjects and (2) the
fact that the performance time of subjects who were not able
to complete the task is taken to be the time when the ex-
periment was ended (i.e., slightly over 180 sec.) rather than

12 Originally, seven subjects were assigned to each group, but
since some subjects in the “other” group ended up finishing
the task either before the robot was allowed to express affect
or without the robot having detected any stress, they were
added to the “control” category and 3 additional subjects
were recruited to be able to have about the same number of
“self” and “other” subjects without having too many “con-
trol” subjects.
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Figure 2: The robot used in the experiment (left) and a typical trajectory of the robot in an run (right–green circles

indicate transmission regions with sufficient field strength, blue crosses indicate indicate local peaks of the field, red

boxes indicate “rocks”, i.e., obstacles).

including a “time penalty” for failing the task. With regard
to (1), we get a significant effect if we compare the combined
affective to non-affective groups (F(1,22)=4.882,p=0.038).
With regard to (2), we get a significant difference between
all three groups if we use success as dependent variable in-
stead of time (F(2,21)=5.958,p<0.01). Hence, the results
confirm our main hypothesis that the expression of affect
(at the right time) both based on internally generated affect
as well as affect generated in response to affect in humans
can improve the performance of mixed human-robot teams
on tasks that have to be performed together.

We also compared the five identical pre- and post-survey
questions in order to determine whether the experience and
interaction with the robot had any influence on the sub-
ject’s views on basic questions about HRI (Table 1). We
conducted ANOVAs for all five questions with pre and af-
fect as independent, and post as dependent variable. In all
cases we found a significant effect of pre, but no significant
effects of affect. However, for questions 2 and 5 we found sig-
nificant interactions between pre and affect indicating that
subjects in the “self” affect group changed their ratings more
so than the other groups. While the difference between pre-
and post-survey ratings is not significant in either case for
the “self” group (µ = 5.00, σ = 1.73 vs. µ = 6.72, σ = 0.95
for question 2, and µ = 4.71, σ = 2.36 vs. µ = 6.57, σ = 1.52
for question 5), this is only due to the small number of sub-
jects in that group (N=7) and we expect this difference to
become significant with a larger number of subjects. Inter-
estingly, subjects’ views on question 4 did not change based
on the experiment, which suggests that for them “detecting
human emotions and to reacting to them” is separate from
“having emotions and expressing them”.

5. RELATED WORK
The two closest affective robotic architectures in terms of
using emotions for internal state changes and action selec-
tion are [22, 18] and [4]. [22] implement emotional states
with fixed associated action tendencies in a service robot
as a function of two time parameters (“time-to-refill” and
“time-to-empty” plus two constants). Effectively, emotion
labels are associated with different intervals and cause state
transitions in a Moore machine, which produces behaviors
directly based on perceptions and emotional states. This is
similar to the way urgency is calculated in our action in-
terpreter, but different from the explicit goal representation
used in our architecture, which allows for the explicit com-
putation of the importance of a goal to the robot (based on
positive and negative affective state), which in turn influ-
ences action selection (e.g., urgency alone may or may not
result in reprioritization of goals and thus changes in affec-
tive state). Moreover, none of the robots in [22, 18] use
(spoken) natural language to interact with humans nor do
they detect human affect.

The architecture in [4] extends prior work [6] to include nat-
ural language processing and some higher level deliberative
functions, most importantly, an implementation of “joint
intention theory” (e.g., that allows the robot to respond to
human commands with gestures indicating a new focus of
attention, etc.). The system is intended to study collabora-
tion and learning of joint tasks. One difference is that our
robot lacks the ability to produce gestures beyond simple
nodding and shaking by the pan-tilt unit (although it is mo-
bile and fully autonomous as opposed to the robot in [4]).
More importantly, the mechanisms for selecting subgoals,
subscripts, and updating priorities of goals seem different in
our affective action interpreter, which uses a dual represen-
tation of positive and negative affect that is influenced by



Table 1: Comparison of pre- and post-survey questions for all three groups (from 1=strongly disagree to
9=strongly agree).

Question Pre µ(σ) Post µ(σ)
Would you prefer robots that understand natural language over robots that can be
controlled via the keyboard? 6.21 (1.96) 6.46 (1.72)
Do you think it will be useful for robots to detect and react to emotions in humans? 5.54 (1.59) 6.25 (1.45)
Do you think it is a good idea for robots to have their own personality? 5.42 (1.91) 5.08 (1.77)
Do you think it will be useful for robots to have emotions and express them? 4.58 (1.82) 4.67 (1.76)
Do you think it is a good idea for robots to have their own goals and be somewhat
autonomous rather than fully controlled by people? 5.42 (2.41) 6.17 (2.36)

various components in the architecture and used for the cal-
culation of the importance, and consequently the priority,
of goals.13

The experiment closest to ours in spirit is that of [29], where
physiological sensors are attached to subjects to measure
cardiac, electrodermal, and electromyographic responses. They
are combined via a fuzzy logic system to obtain an over-
all “anxiety level” in real-time, which is then fed as in-
put into a simple subsumption-based robotic control archi-
tecture, where it can cause the robot to interrupt its ex-
ploratory wandering behavior if it reaches a certain thresh-
old. The results demonstrate that anxiety levels of hu-
mans (performing cognitive tasks of varying difficulty) can
be detected in real-time. Different from our experiment, the
robotic system–except for detecting human affect–seems de-
coupled from the human and the two tasks performed by
the robot and the human are unrelated.

6. CONCLUSIONS
In this paper, we have proposed an architecture for HRI
tasks involving joint human-robot teams, which can detect,
generate, and express affect in novel ways. Since we share
the belief of [15] that “peer-to-peer HRI will enable more
effective and productive human-robot teams for space ex-
ploration”, our research attempts to elucidate the poten-
tially facilitatory roles of affect recognition and expression
for task performance in joint human-robot teams. As we
have demonstrated in the HRI experiment, in which success
critically depended on collaboration between human and
robot, it is not only critical to recognize human non-verbal,
affective cues to improve the interaction between robots
and people, but affect generated by mechanisms within the
robot’s architecture can actually improve the task perfor-
mance of joint human-robot teams. And while these are
clearly early results, we believe that they nevertheless point
towards the potential of affect-aware and affect-generating
architectures for HRI as an important direction for future
research in human-robot collaboration.

7. ADDITIONAL AUTHORS
Additional authors: Christopher Middendorff (A.I. & Robotics
Lab, Notre Dame), email: cmidden1@cse.nd.edu.

13The details for reprioritization of goals were not provided
in [4].
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