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Abstract

Natural human-like human-robot interaction (NHL-HRI)
requires the robot to be skilled both at recognizing and
producing many subtle human behaviors, often taken for
granted by humans. We suggest a rough division of these
requirements for NHL-HRI into three classes of proper-
ties: (1) social behaviors, (2) goal-oriented cognition, and
(3) robust intelligence, and present the novel DIARC ar-
chitecture for complex affective robots for human-robot
interaction, which aims to meet some of those require-
ments. We briefly describe the functional properties of
DIARC and its implementation in our ADE system.
Then we report results from human subject evaluations
in the laboratory as well as our experiences with the robot
running ADE at the 2005 AAAI Robot Competition in
the Open Interaction Event and Robot Exhibition.

1 Introduction

We take the ultimate goal of human robot interaction
(HRI) to be the achievement of natural and human-like
(NHL) robot behavior as it relates to human contact. By
this, we mean that our intention is to establish a robotic
architecture for HRI such that any restrictions on possible
interactions are due to human capacities (i.e., the limita-
tions of human perceptual, motor, or cognitive system),
and not the a priori functionality of the robot. For ex-
ample, an interaction that would require humans to speak
at ten times the normal speech rate would be excluded,
as would interactions that required humans to hear ul-
trasound or communicate in some non-human language.
However, we do want to include interactions that can oc-
cur in any typical human setting, such as the ability to use
language freely in any way, shape, or form; to make ref-
erence to personal, social, and cultural knowledge; or to
involve all aspects of human perception and motor capa-
bilities.

Clearly, NHL-HRI is not an achievable goal for any
robotic system in the foreseeable future; in fact, we are

not even close. Yet, we believe that is not too early to start
a discussion of possible requirements for NHL-HRI, given
current achievements in HRI and knowledge of robotic ar-
chitectures. Specifically, we believe that it will be critical
for future robotic efforts in HRI to investigate architec-
tural structures, principles, and concepts that necessarily
(or even potentially) have a role in robots capable of NHL-
HRI.

In this paper, then, we will start with a modest reflection
on three classes of properties that we deem crucial to suc-
cessful natural HRI, with an eye towards NHL-HRI. We
then present a brief overview of our own attempts at defin-
ing a Distributed Integrated Affect, Reflection, and Cog-
nition architecture (DIARC), as a first step towards ar-
chitectures for NHL-HRI. After discussing the functional
organization of DIARC and the role of affect in the in-
tegration of its various subsystems, we briefly describe
some of the implemented components, and compare re-
sults from testing DIARC in human subject experiments
in the laboratory with our experiences of the robot’s inter-
actions with people in the real-world context of the AAAI
2005 robot competition, specifically the Open Interaction
Event and Robot Exhibition. Finally, we provide a sum-
mary of the current state of DIARC and conclude with
some thoughts on the role of affect in NHL-HRI-capable
robots.

2 The DIARC Architecture

Natural human-like human-robot interaction places many
complex demands on a robotic architecture. As a first
rough cut, we can divide them into three main categories:
(1) social behaviors, (2) goal-oriented cognition, and (3)
robust intelligence. The first category includes all aspects
of human communicative acts, the second is concerned
with all forms human cognition and teleological behavior,
and the third centers around various mechanisms that en-
sure the reliable, long-term, fault-tolerant autonomy and
survival of the robot. We will now briefly expand on each
of these three categories.
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First and foremost, it is immediately clear that robots
must be capable of natural language processing if hu-
mans are to be free to use (spoken) language whenever
and in whatever form they please. In addition to speech
recognition and production, natural language interactions
will require methods for semantic processing of language
structures and natural language understanding. Moreover,
knowledge of dialog structures, dialog progression, and
teleological discourse is required for the robot to be able
to engage in natural communicative interaction patterns
(e.g., Grosz & Sidner, 1990). This also includes the recog-
nition of human affect and the appropriate expression of
affect on the part of the robot (e.g., in response to rec-
ognized affect), as well as mechanisms for recognizing
and producing other non-verbal cues (e.g., gestures, head
movements, gaze, etc.) that accompany human discourse
and social interactions.

Second, genuine natural interactions require the robot
to communicate, instill, and prompt the ascription of in-
tentionality (i.e., the human ability to treat systems as if
they had their own intentions). Human interlocutors will
automatically watch for behaviors that convey intent (e.g.,
as established by non-verbal cues) and assume that the
robot has the ability to recognize and utilize such behav-
iors in others. As part of being able to present itself con-
sistently and over extended periods of time as a purpose-
driven entity, the robot will require genuine purposes, rep-
resented as goals and implemented in internal goal and
task management mechanisms.1 Their absence will have
disruptive effects on the natural flow of conversation and,
eventually, the overall interaction. Ultimately, the robot
has to behave in a way that supports a consistent human
“theory of robot minds,” which is the human ascription of
human-like beliefs, intentions, and desires that make the
robot predictable to humans.

Third, the architecture must include mechanisms to re-
cover both from failures within the system (e.g., acous-
tic, syntactic, semantic misunderstandings, dialog fail-
ures, etc.) as well as failures of the system itself (e.g.,
crashes of components, internal timing problems, faulty
hardware, etc.).

2.1 The Utility of Affect for Controlling In-
formation Flow in Agent Architectures

Affective robotic architectures can directly address many
demands for HRI, in addition to providing many bene-
fits for other robot tasks. Affect plays a critical role for

1Note that the emphasis here is on both “consistency” and “extended
time period” as humans can sometimes be tricked into believing that
something has a purpose because it seems to exhibit purposeful behavior
for short periods of time. However, the deception will typically not last
for long (e.g., see the repeatedly failed attempts at convincing humans
that a computer is a human in the Loebner prize competition).

humans in social interactions; for instance, speech recog-
nition, even when perfect, makes up only one part of the
meaning of an utterance. Expressions of affect (e.g., via
gestures, facial expressions, or prosodic characteristics,
see Ekman, 1993) augment or modify the explicit seman-
tic content of statements (e.g., a sarcastic tone might indi-
cate that the speaker’s belief is the opposite of the spoken
content, or emphatic gestures might indicate the strength
of the speaker’s belief). To create accurate representations
of others’ mental states based on conversation, it is nec-
essary to “pick up on” these cues. Moreover, humans ex-
pect and look for these cues when processing the robot’s
speech output, so the inclusion of affect expression capa-
bilities should enhance the degree to which humans feel
they can accurately assess the robot’s belief states (the
utility of affect expression will be demonstrated in Sec-
tion 3.1).

Affect can also be an effective way for higher-level
deliberative mechanisms in an agent architecture to con-
nect to and utilize motivational mechanisms of lower-
level non-deliberative components. Specifically, delib-
erative mechanisms can alter the states of these compo-
nents (e.g., by injecting new “force” into “affective cir-
cuits” or by suppressing output of those circuits) to cre-
ate and modify existing goals, directly influence the con-
trol of action (e.g., by changing the preferences in the
agent’s action selection mechanism), and drive learning
based on internally generated valuations and value sig-
nals (Scheutz, 2000). Thus, affect may serve the purpose
of integration and management of multiple processes re-
quired for the effective functioning of an autonomous sys-
tem (Ortony, Norman, & Revelle, 2005); affect allows for
motivational signals originating not from changes in the
external environment detected via sensors, but from com-
ponents within the architecture itself (e.g., from deliber-
ative subsystems). Such signals can then influence vari-
ous other parts of the architecture and modify goal man-
agement, action selection, and learning (e.g., see Scheutz,
2004, where we isolated 12 functional roles of emotions
in an agent architecture).

Finally, whereas a complex cognitive evaluation of a
situation may provide a more accurate assessment (and
likely a better subsequent action selection) than that pro-
vided by an affective evaluation, it may prove too costly
or time-consuming to be practical for real-time use. For
fast, low-cost approximations, humans seem to use affec-
tive memory (Bless, Schwarz, & Wieland, 1996), which
encodes implicit knowledge about the likelihood of occur-
rence of a positive or negative future event (Clore, Gasper,
& Conway, 2001). Robotic agents can use such affective
states as subjective probabilities in affective evaluations
of potential actions. This can be useful in quickly deter-
mining an appropriate reaction to catastrophic failures in
the system (e.g., the failure of the vision subsystem).
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Figure 1: A high-level view of the functional components in the proposed DIARC architecture for complex human-like robots.
Boxes depict concurrently running components of varying complexity. Solid arrows depict information flow and dashed arrows
depict control flow through the architecture (the latter via different affective processes). Only links pertaining to affect processing
are shown. Labels (black ovals) are included to relate architectural components to their counterparts in the implementation diagram
shown in Figure 2.

2.2 A Brief Overview of DIARC

Figure 1 depicts a partial view of the functional orga-
nization of the proposed affective architecture for com-
plex robots: DIARC, the Distributed Integrated Affect,
Reflection, Cognition architecture. Sensors, effectors,
and perceptual, central, and action processing compo-
nents are separated into columns. All boxes depict au-
tonomous computational units that can operate in paral-
lel and communicate via several types of communication
links. Names of components denote their functional roles
in the overall system.

At a high level, an agent that implements DIARC op-
erates as follows: sensory information is gathered via the
various sensors and passed on the the appropriate per-
ceptual processing components. In perceptual processing,
raw sensory input is (potentially) parsed into meaningful
perceptual data. Much of these data are accessed by el-
ements of the central processing group for goal and task
management. In addition, perceptual data are routed to af-
fective appraisal modules, which make fast evaluations of
the potential (positive or negative) effects they may imply
for the robot. This may lead, in turn, to “reflexive” re-
actions that bypass the entire central processing step (e.g.,
causing the robot to stop immediately in response to a per-

ceived threat, rather than considering the costs and bene-
fits of stopping, comparing those to the costs and ben-
efits of alternative actions, and selecting the best action
overall). The central processing step performs action se-
lection based on the perceptual input, concept memory,
cost-benefit analysis, etc. At the level of action process-
ing, directives from the perceptual and central processing
stages generate commands for the effectors, with conflicts
generally resolved in favor of commands from perceptual
processing (e.g., the reflexive STOP command overrides
movement commands generated by plan execution). This
is accomplished by priority-based action selection mech-
anisms (e.g., Scheutz & Andronache, 2004).

2.3 The Vision System
The vision system has two components: a social compo-
nent for detecting and tracking faces and facial features
and a recognition component for object recognition, learn-
ing, and memorization. The social subsystem, for exam-
ple, provides information about detected faces using his-
togram methods from Yang, Kriegman, and Ahuja (2002)
as well as skin color, color of clothes, and the camera
pan and tilt angles, which are used in conjunction with
information about the distance of an object (as reported
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by sonar and laser sensors) to identify and track people in
a room (Scheutz, McRaven, & Cserey, 2004) and deter-
mine some of their salient features such as height, based
on distance and camera tilt angle (Byers, Dixon, Good-
ier, Grimm, & Smart, 2003) for future identification. Fea-
ture extraction of the eyes and mouth is performed using a
swarm-based exploration of a parameter space to find pa-
rameters for a Canny edge detector that produce the best
features within a face region given by the OpenCV Haar
cascade (Middendorff & Scheutz, 2006). Motion of the
tracked features gives insight into emotional changes of
the subject, as seen in Ekman and Friesen (1977). For
example, a sudden raise in the eyebrows can signal hap-
piness or surprise, whereas downward movement can in-
dicate frustration or confusion. The general shapes and
positions of features are maintained in a hash table keyed
by face and leg positions, allowing emotional states to be
tracked simultaneously for several people. The emotion
recognition component currently only classifies faces as
“happy”, “sad” or “neutral”.

Object recognition was implemented using scale-
invariant feature detection (SIFT) points for the extraction
of distinctive features from images (Lowe, 2004). SIFT
keypoints are invariant with respect to image scale, rota-
tion, change in 3D viewpoint and change in illumination,
and can be used to perform a variety of tasks including
reliable object recognition, even in situations where the
scene is cluttered or the object is partially occluded.

Object recognition is a two-phase process for unknown
objects, composed of learning an object and subsequent
memory recall. When learning an object, the SIFT key-
points of an image are translated to an ASCII represen-
tation2 and a distinct identification token is stored in a
database. During recall, the system generates an ASCII
representation of the keypoints in the current scene. This
representation is compared to entries in the database us-
ing a nearest-neighbor algorithm, allowing the system to
answer queries such as “Is object X in the scene?” and
“Which objects in the database are in the scene?” Once
objects have been positively identified, it is possible to
perform additional queries concerning their spatial rela-
tionships (e.g., “Is object X to the left of object Y?” etc.).

SIFT-based object recognition performs most effec-
tively when attempting to identify rigid objects with a dis-
tinctive pattern. It reliably differentiates between the cov-
ers of various textbooks, assorted computer components
and the boxes of various household products. However,
fewer keypoints are detected on curved surfaces, with a
correspondingly lower recognition rate for objects such
as balls or aluminum cans, made worse if the objects lack
distinctive markings and surface features.

2The ASCII representation is generated with the binary program dis-
tributed on Lowe’s website http://www.cs.ubc.ca/∼lowe/keypoints/.

2.4 Natural Language Processing
The natural language processing subsystem integrates and
extends various extant components. Speech recognition is
performed using SONIC (Pellom & Hacioglu, 2003) and
Sphinx (The Sphinx Group at Carnegie Mellon Univer-
sity, 2004); parsing is handled by the link parser (Sleator
& Temperley, 1993). Verbnet (Kipper, Dang, & Palmer,
2005) and Framenet (Fillmore, Baker, & Sato, 2002) are
used for semantic processing, in conjunction with a mod-
ified version of Thought Treasure for natural language
understanding and speech production (Mueller, 1998).
Speech synthesis is handled by the University of Edin-
burgh’s Festival system (Festival, 2004), augmented by
an emotional output filter (Burkhart, 2005). In addition,
our own components are employed for affect expression
in spoken language (e.g., “angry”, “frightened”, “happy”,
“sad”, and their gradations, such as “halfangry”, which
indicates a somewhat elevated state of anger).

2.5 Action Interpretation and Selection
The action control subsystem (Scheutz, Schermerhorn,
Kramer, & Middendorff, 2006) is based on a novel affec-
tive action interpreter, which interprets scripts (Schank
& Abelson, 1977) stored in long-term memory. Scripts
encode the robot’s procedural knowledge of certain con-
versation “templates” as well as complex action se-
quences for task performance. These scripts can be com-
bined in hierarchical and recursive ways, yielding com-
plex behaviors from basic behavioral primitives, which
are grounded in basic skills (Ichise, Shapiro, & Lan-
gley, 2002). Moreover, several spatial maps are used
for the representation of locations of the robot, peo-
ple, and other salient objects in the environment, as
well as for path planning and high-level navigation. As
a trivial example, the following script (activated from
a higher-level script as notify-beverage-done(self,
Jim, coffee, desk3)) instructs the robot to move to lo-
cation desk3 (retrieved from a map in long-term memory)
shift its focus of attention to the human there, and tell the
human that his coffee is ready:

====notify-beverage-ready//serve.V
role01-of=robot|
role02-of=human|
role03-of=beverage|
role04-of=loc|
timeout-of=600sec|
event01-of=[move-to robot loc]|
event02-of=[shiftFOA robot human]|
event03-of=[say-to robot human

[human your beverage is ready.]]|

The action interpreter substitutes the arguments passed for
each of the roles in the script and begins executing the
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first event. A behavioral primitive like move-to(robot,
loc) then has a particular meaning to the robotic system.
In this case, the action interpreter passes the action on to
the navigation system, which interprets it as a command
to move the robot to the coordinates (x,y) of loc (repre-
sented in a discrete, topological map). The high-level nav-
igation system generates a plan which translates the action
into commands for the low-level navigation system, even-
tually causing the robot to move in a particular direction,
if possible (e.g., it will not move there if obstacles block
the location, although it will attempt to move around ob-
stacles that obstruct the path to the final location).

In addition to action primitives or references to
other scripts, scripts also support conditional execution
whereby the next step is determined by the outcome of
the present event. In this way, failure recovery actions
can be encoded directly in the scripts. For example, sup-
pose there were no human at desk3 in the above exam-
ple. In that case, the shiftFOA(human) goal cannot be
achieved, so a more appropriate action would be to end
notify-beverage-ready in its failure state (which can
in turn be detected and addressed appropriately by the
calling script), rather than delivering the message to no-
body and indicating successful completion.

A failure such as the one described above causes an ad-
justment to the robot’s affective state, which subsequently
allows for an additional context-based adaptation of goals,
preferences, attitudes, and, ultimately, behavior. Affec-
tive states do not explicitly influence action selection (i.e.,
there is no branching in scripts based on affective states).
Instead, affect influences the priorities assigned to the
goals currently held by agent. For each goal currently
held by the agent, there is an associated script interpreter
that manages the execution of script events to achieve that
goal. These script interpreters execute concurrently, so
multiple goals may be advanced at the same time. How-
ever, when conflicts arise (e.g., when two scripts require
the same physical resource, such as motor control), they
are resolved in favor of the goal with the highest priority.
A goal’s priority is based on its importance (i.e., benefits
minus cost scaled by affective evaluations, see Scheutz et
al., 2006) and its urgency, which reflects the likelihood
that there will be sufficient time remaining to complete
the script. By mediating the importance component of
goal priority, affect can effectively alter the robot’s per-
ception of a goal’s utility. Positive affect leads to more
“optimistic” assessments of utility (and, hence, higher pri-
ority), whereas negative affect leads to more “pessimistic”
assessments of utility.3

3The current implementation of the action interpreter is still some-
what impoverished, as variables for other scripts have not been imple-
mented yet. For example, it is not possible to add “variable actions” to
scripts such as “pick any script that satisfies preconditions Xi and exe-
cute it”, which would cause the action interpreter to search through its

2.6 System Infrastructure
There are certain aspects of a complex robot that are
critical for long-term, safe, and flexible operation. The
computational demands of various sub-systems require
distributing the architecture across hosts, allowing con-
current operation while retaining system reactivity. Fur-
thermore, the importance of monitoring and maintain-
ing system integrity and health (including error detec-
tion, system reconfiguration, and failure recovery) can-
not be overstated. DIARC is implemented within ADE,
the Architecture Development Environment (Andronache
& Scheutz, 2006; Scheutz, 2006), which provides a multi-
agent based infrastructure. ADE is not an architecture it-
self, but a framework for developing, debugging, and de-
ploying complex agent architectures based on the APOC
universal agent architecture formalism (Scheutz & An-
dronache, 2003; Andronache & Scheutz, 2004); ADE in-
corporates various tools and mechanisms that promote re-
liable and flexible system operation (Kramer & Scheutz,
2006b, 2006a).

The basic component in ADE is the ADESERVER,
which is comprised of one or more computational pro-
cesses that serve requests. Accessing the services pro-
vided by an ADESERVER is accomplished by obtaining
a reference to the (possibly remote) server, forming a lo-
cal representation that is referred to as an ADECLIENT.
The ADEREGISTRY, a special type of ADESERVER, me-
diates connections among servers and the processes that
use their services. In particular, it organizes, tracks, and
controls access to servers that register with it, acting in a
role similar to a white-pages service found in multi-agent
systems. The ADEREGISTRY provides the backbone of
an ADE system; all components must register to become
part of the architecture. A set of components may contain
multiple registries that mutually register with one another
to provide both redundancy and the means to maintain dis-
tributed knowledge about the system.

All connected components of an implemented ar-
chitecture (that is, ADESERVERs, ADECLIENTs, and
ADEREGISTRYs) maintain a communication link during
system operation. At a bare minimum, this consists of a
periodic heartbeat signal indicating that a component is
still functioning. A server sends a heartbeat to the registry
with which it is registered, while a client sends a heart-
beat to its originating server. The component receiving
the heartbeat periodically checks for a heartbeat signal;
if none arrives, the sending component receives an error,
while the receiving component times out. An ADEREG-
ISTRY uses this information to determine the status of
servers, which in turn determines their accessibility. An

scripts and match them against the preconditions Xi. Also, the current
implementation only supports detection of failures, but not “recursive”
attempts to recover from them – “recursive”, for recovery actions might
themselves fail and might thus lead to recovery from recovery, etc.
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Figure 2: Three representations of the proposed DIARC architecture for complex human-like robots. The bottom level depicts the
system (or hardware), the middle level depicts the multi-agent system (or ADE components), and the top level depicts a simplified
view of the DIARC agent architecture shown in Figure 1. Note that the ADEREGISTRY and “Logger” components are part of the
infrastructure, not part of DIARC itself.

ADESERVER uses heartbeat signals to determine the sta-
tus of its clients, which can then determine if the server’s
services remain available.

Figure 2 shows a “3-level” view of the architecture; the
top depicts a partial view of the abstract DIARC architec-
ture, while the middle and bottom depict its breakdown
into components in ADE and the hardware on which it
executes, respectively. The robot platform used is an Ac-
tivMedia Peoplebot with an on-board computer and two
additional laptops (all running Linux with a 2.6.x ker-
nel). Available hardware includes a pan-tilt-zoom camera,
a SICK laser range finder, three sonar rings, two micro-
phones, two speakers, a local Ethernet network, and one
wireless link to the “outside world.”

3 DIARC Applications
Over the last two years, DIARC has been used in vari-
ous applications, from informal laboratory evaluations, to
human subject experiments, to public demonstrations and
robot competitions to evaluate the functionality of differ-

ent subsystems of DIARC as well as the viability of the
overall architecture. For example, the robot was prepared
to perform an object recognition task (Section 3.2) which
tested the vision system and its short- and long-term mem-
ories in conjunction with natural language processing .
The robot was asked questions about objects in its visual
field (e.g., “What is this?”, “How many coke cans do you
see?”); if an object was unknown, the robot was told what
it was and could successfully re-identify it at a later time.
Another relatively basic task demonstrated on the robot
was the take orders task, where the robot was able to per-
form a limited set of actions to confirm operability of the
natural language processing, localization, and motor con-
trol (e.g., “Move forward 2 meters”, “Turn left”).

More ambitious was the Open Interaction task (also de-
scribed in Section 3.2), which tested system cohesion and
performance. In this task, the robot wandered an open
area, detected nearby people, approached them, and initi-
ated conversations.

The waiter task further explored the functionality of the
entire system, with a focus on high-level task and envi-
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ronment knowledge, in addition to cognitive scripting ca-
pabilities. In particular, a set of scripts encoding typical
interactions in a waiter/patron scenario were defined and
carried out successfully by the robot (e.g., approaching a
patron, taking a drink order, going to the “bar” to get the
drink, and delivering the drink to the patron).

A final example, which has been evaluated formally in
human subject experiments in our laboratory, is the extra-
planetary exploration task (Scheutz et al., 2006), where
a human and a robot must act jointly as a team in a ficti-
tious planetary surface exploration scenario to accomplish
the goal of finding an appropriate location on the planet
from which to transmit geological data back to an orbit-
ing spacecraft. This team task not only demonstrated that
DIARC can be successfully employed in natural human-
robot interactions, but also showed that affect expression
– if employed correctly – can improve the performance of
human-robot teams.

We will start with a brief summary of our findings
about the utility of affect for NHL-HRI in the laboratory
and then report the results from running DIARC on the
robot in the unconstrained environment of the AAAI 2005
Robot Competition.

3.1 The Utility of Affect for NHL-HRI

Over the last decade, the potential of “affective comput-
ing” (Picard, 1997) prompted sub-communities in HCI,
AI, and robotics to investigate useful roles of affect in
artificial systems. There was already some early recog-
nition of the potential utility of affective control for in-
fluencing the behavior of people (e.g., Breazeal & Scas-
sellati, 1999). Moreover, studies with robots and simu-
lated agents showed that emotional mechanisms can im-
prove the performance of agents and may be cheaper
than other, more complex non-emotional control mech-
anisms (e.g., Murphy, Lisetti, Tardif, Irish, & Gage, 2002;
Scheutz & Logan, 2001). Even though many important
advances have been made in our understanding of how to
make machines recognize or signal different kinds of af-
fect in interactions with people (e.g., see Rani, Sarkar, ,
& Smith, 2003; Lisetti, Brown, Alvarez, , & Marpaung,
2004; Kanda, Iwase, Shiomi, & Ishiguro, 2005), there
is currently only one study (Scheutz et al., 2006) that
investigated the effect of the robot’s affect expression
on team performance in a joint human-robot team task
based on an objective performance measure (“time-to-
task-completion”).

In this study, human subjects were told that they had
to find an appropriate transmission location (by directing
the robot using natural language commands like “go for-
ward”, “turn right”, “now take a reading”) in the environ-
ment where the robot could transmit the “geological data”
already stored in its memory. After one minute, stress was

induced in subjects by virtue of a warning message ut-
tered by the robot: “I just noticed that my battery level is
somewhat low, <name>, we have to hurry up.” A similar
message was repeated after the second minute and, if the
transmission site had not been located, the task ended af-
ter three minutes (“My batteries are dying, <name>. We
have failed!”). Performance was measured in terms of the
time-to-task-competition, and pre- and post-experiment
surveys were conducted to ask subjects various questions
about their perceptions of the robot.

Experiments were conducted with 50 subjects in two
conditions: an affect condition where the robot’s voice
was modulated to express elevated stress starting with
the first battery warning, and again to express even more
stress at the second battery warning, and a no-affect con-
trol condition in which the robot’s voice remained the
same (see Scheutz et al., 2006 for details about the ex-
perimental setup). The results reported in Scheutz et al.
(2006) show that subjects in the affect condition are over-
all faster in finishing the task than subjects in the no-affect
condition, thus supporting the view that affect expres-
sion can have an objectively measurable, facilitatory ef-
fect. Here we extend the analysis in Scheutz et al. (2006)
and examine both the subjects’ own self-reported stress
as well as the subjects’ perceptions of robot stress based
on their answers to questions on the post-experiment sur-
vey. First and foremost, we found a highly significant dif-
ference between pre- and post-announcement stress lev-
els in all subjects (t(98) = 5.59, p < .0001), indicating a
strong tendency for increased levels of stress in subjects
after the first battery warning. While there was no differ-
ence among subjects in the two conditions with respect to
pre-announcement stress (t(48) = .74, p = .46), the affect
groups became more stressed than the no-affect groups af-
ter the battery warning, as indicated by a marginally sig-
nificant difference in post-announcement stress (t(48) =
1.82, p = .075). Moreover, subjects in the affect condi-
tion are on average in agreement that the robot’s stress
levels had increased after it had issued the battery an-
nouncement, while subjects in the no-affect condition did
not think that the robot was stressed, as indicated by a
significant difference in perceived robot stress (t(46) =
2.76, p = .008). We also found a significant positive cor-
relation of r = .6 between post-announcement stress and
perceived robot stress (t(1,19) = 3.33, p < .005), which
thus explains over a third of the variance in the no-affect
groups (R2 = .37). In contrast, no significant correlation
was found in the affect groups. This suggests that the ex-
tent to which subjects in the no-affect groups perceived
the robot as being stressed or not stressed depended in
part on their own self-perceived stress (projected onto the
robot), while in the affect groups the robot’s perceived
stress level likely depended (at least in part) on the robot’s
affective voice modulation.
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The results then suggest that the content of the mes-
sage was insufficient, in itself, to trigger in the no-affect
subjects the belief that the robot might be “stressed,” even
though the robot was in exactly the same internal (stress)
state with respect to its goal priorities and deadlines as
in the affect conditions (the only architectural difference
between the two conditions was that affective modulation
of the robot’s voice based on its internal states was sup-
pressed in the no-affective condition). Rather, the affect
modulation of the robot’s voice seems to have contributed
to the attribution of stress to the robot by subjects in the
affect condition.

In sum, we believe that the results based on objective
and subject evaluations demonstrate that appropriate af-
fect expression (that is congruent with people’s own affec-
tive states) can help humans in construing a mental model
of a robot, which makes the robot’s “mental states” trans-
parent to the human and its behavior predictable. Such
mental models might motivate subjects to help the robot
(e.g., if they think it is stressed and maybe overwhelmed)
or to try harder at achieving a task. Moreover, they might
become more aware of the way they interact with the robot
and automatically adapt their interaction patterns so as to
facilitate interactions and performance, as suggested by
our results.

3.2 The Robot at AAAI in 2005

The experiments above demonstrate the robot’s compe-
tence under controlled laboratory conditions, in particular
with respect to category (1). However, this competence
does not necessarily translate directly to competence in
the real world, where it is impossible to control all po-
tentially confounding variables. Hence, it is important to
verify the robot’s performance in unstructured environ-
ments, such as the AAAI 2005 robot competition. Our
entry (ND-Rudy) was prepared for two competition cat-
egories: the Open Interaction Event and the Robot Exhi-
bition. The Open Interaction configuration would cause
the robot to approach people and attempt to initiate sim-
ple template-based conversations (e.g., “Hello, my name
is Rudy. Would you like to chat?”). A limit was placed on
the length of a conversation, although the robot could ter-
minate the conversation early if it noticed the human had
not responded in a while.

Several demonstrations of the robot’s abilities were pre-
pared for the Robot Exhibition. To demonstrate visual
short-term memory, the robot was asked to recall (with-
out looking) how many faces were immediately surround-
ing it. The ability to identify objects visually was demon-
strated, including the ability to learn the names of pre-
viously unknown object types and subsequently identify
them correctly.

Each of these capabilities was implemented and tested

in the lab prior to the competition. Although not perfect,
the robot performed reasonably well in that controlled en-
vironment. It would wander and find people, engage in
conversation, and then move on, and it would execute
its demonstration tasks fairly consistently. However, the
practical realities of the conference site proved more trou-
blesome than anticipated.

Open Interaction. The large crowd (and attendant con-
versational hubbub) was problematic for the system, as
were many physical features of the exhibition area (e.g.,
mirrors and tablecloths). The robot traversed the open in-
teraction environment fairly well, but was unable to con-
sistently engage people in conversations.

The lack of automatic failure recovery mechanisms in
the infrastructure led at times to extended periods of in-
activity while manual recovery was performed. Although
ADE did include facilities to allow the user to restart in-
dividual components without bringing the entire system
down, the lack of reliable wireless access in the competi-
tion area made it impossible to connect remotely, necessi-
tating time-consuming system restarts.4

During the open interaction, the vision system was
challenged by several factors. While the vision sys-
tem worked well if run alone, running other concurrent
compute-intensive processes negatively impacted perfor-
mance. Lighting conditions were also problematic. One
aim of the employed swarm mechanisms as part of the
vision system was to adapt gracefully to changing light,
however, the swarm system was in its early stages at the
time of the competition. As such, feature extraction was
less reliable than anticipated, leading to sometimes spo-
radic performance by components dependent on this out-
put.

The robot was able to detect legs using the laser, and
used them as a first pass in detecting humans during
the open interaction; however, it was often the case that
other “leg-like” structures (e.g., the ruffles of a tablecloth)
would be identified as legs. Moreover, the leg detection
did not distinguish the fronts of legs from the backs of
legs, leading the robot to “initiate a conversation” with a
human’s back at times. Overall, we found that the people
detection system placed too much weight on the laser evi-
dence relative to face detection in concluding that a person
was present and facing the robot.

The difficulties experienced in natural language pro-
cessing were attributable mostly to the ambient noise level
in the exhibition hall. Although Sonic performed reason-
ably well in the controlled environment of the lab, it was
probably not optimally configured. Given the noise of the
crowd at the competition, therefore, speech recognition
was very limited. Attempts to improve performance by

4Automatic failure recovery procedures have since been added to the
infrastructure to address this problem; see also Section 4.
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reducing the size of the dictionary had only limited effect
and were insufficient to allow Sonic to reliably recognize
speech. Because all interactions were designed to be con-
ducted via spoken natural language, this was clearly the
most significant limitation of the robot. In the open inter-
action, the robot often seemed confused, responding inap-
propriately to what was said and sometimes prematurely
ending a conversation because it mistakenly took the lack
of intelligible output from Sonic as silence (and disinter-
est) on the part of the person.

Exhibition Demonstrations. Although some demon-
strations completed successfully during the exhibition,
there was insufficient time to perform others because of
delays due to software failures. Moreover, the crowd
noise was often so high that judges were unable to hear
the robot’s speech.

The ADE framework proved highly successful for dis-
tributing components across hosts; at the competition,
various components were relocated to different comput-
ers in an effort to optimize overall performance. How-
ever, the uncontrolled environment exposed limitations in
the visual object recognition system. The SIFT mecha-
nism is susceptible to “pollution” by keypoints that are
actually part of the background instead of the object be-
ing identified. It proved virtually impossible to avoid this
pollution in real world scenarios, resulting in a number of
misidentifications.5

Given the language understanding subsystem’s inabil-
ity to cope with the noise, it is unsurprising that the robot
had trouble in many cases responding with correct behav-
ior. Moreover, the ambient noise level also impacted the
other side of language processing—speech production—
often making it impossible to understand the speech out-
put due to underpowered speakers. At one point during
the exhibition judging we were forced to fall back to us-
ing the keyboard of an attached laptop for (typed) natural
language input and its LCD for (printed) natural language
output.

4 Discussion and Related Work

In the laboratory environment, at least, DIARC addresses
the first and the third requirements set forth in Section 2,
although the performance of many components could be
improved. The robot is – to some extent – able to interact
via natural language, detect emotions, and produce non-
verbal cues, such as shifting gaze to indicate focus of at-
tention. Moreover, the action interpreter allows the script

5This problem has since been addressed by applying a stereo vision
algorithm to isolate an object in the foreground. Preprocessing the stereo
image increases the likelihood that any of the determined keypoints ac-
tually belong to the object held to the camera.

designer to specify failure recovery mechanisms for a va-
riety of contingencies, ranging from the very generic to
the specific. The ADE framework provides mechanisms
to allow multiple disparate components to be combined
into a functional robotic system, and its failure recovery
capabilities, although somewhat lacking at the time of the
competition, have been greatly improved, thereby signifi-
cantly increasing the system’s robustness.

The problems experienced when moving from the con-
trolled environment of the laboratory to the real-world
environment of the robot competition were primarily in
three areas: infrastructure, vision, and language process-
ing. The main limitation of the infrastructure was the lack
of automatic failure recovery. This has been addressed in
the meantime via the inclusion of failure detection mech-
anisms that allow ADE to notice when a component has
failed, a resource specification scheme by which it can
determine whether there is a target machine matching the
resource needs of the failed component, and a recovery
mechanism that allows ADE to restart the failed compo-
nent. The system has been expanded to include mecha-
nisms for reasoning about the state of the system, allowing
ADE to make intelligent decisions concerning the place-
ment of system components (Kramer & Scheutz, 2006a).

The vision subsystem lacked the robustness required
for effective operation in uncontrolled environments,
making feature detection unreliable. The system’s perfor-
mance has since been enhanced substantially by extending
the swarm systems to allow for hierarchical swarms that
can track features at different levels of granularity and in
different parameter spaces.

Language processing was by far the biggest problem
encountered at the competition, because it comprises the
main interface between the robot and the humans in its
environment. Sonic has been replaced by Sphinx 4 as
the main speech recognition platform used by the sys-
tem, improving recognition rates somewhat. Moreover,
new techniques for dynamically narrowing the dictionary
to the target task when the domain is sufficiently limited
have also improved performance. However, these mecha-
nisms are not practical for tasks like the open interaction,
where it can be difficult to predict the subject of conversa-
tion. We are exploring different hardware configurations
to improve performance (e.g., a noise cancelling micro-
phone array and a wireless microphone headset). How-
ever, speech recognition remains a major bottleneck for
overall system performance.

Other competition participants are also pursuing goals
that relate directly to the requirements above. The
UML Robotics Lab, in investigating HRI for teleoper-
ated robotics, have developed a robust infrastructure us-
ing sliding scale autonomy by which the robot can ac-
cede some control to the remote user when it does not
know how to proceed; the robot continues to operate in
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some reduced capacity instead of stopping and waiting
for human intervention (Desai & Yanco, 2005). Hansen
Robotics is developing a realistic animated face that is
capable of generating subtle visual cues (Hanson et al.,
2005). The LABORIUS project confronts a substantial
portion of the requirements in various subprojects. For
natural language processing, they have developed a sys-
tem for separating voices in order to understand multiple
sentences simultaneously (Yamamoto et al., 2005). Their
architecture for socially interactive robots includes moti-
vational (although not explicitly affective) states that in-
fluence behavior (Michaud et al., 2005). And their Tito
project implements nonverbal communication through the
use of arm gestures, head shaking, and affect expression
via smiling and raising eyebrows, and has the ability to
recognize nonverbal cues, such as gaze detection, in hu-
mans (Michaud, Duquette, & Nadeau, 2003).

There are also other groups not represented at AAAI
2005 that are working on HRI projects similar to ours,
using affect mechanisms to improve interactions. Here
we can only review the two closest architectures in terms
of using emotions for internal state changes and action
selection. Murphy et al. (2002) implement emotional
states with fixed associated action tendencies in a ser-
vice robot as a function of two time parameters (“time-
to-refill” and “time-to-empty”) plus two constants. Ef-
fectively, emotion labels are associated with different in-
tervals and cause state transitions in a Moore machine,
which produces behaviors directly based on perceptions
and emotional states. This is similar to the way urgency
is calculated in our action manager, but different from
the explicit goal representation used in our architecture,
which allows for the explicit computation of the impor-
tance of a goal to the robot (based on positive and negative
affective state), which in turn influences action selection
(e.g., urgency alone may or may not result in reprioritiza-
tion of goals and thus changes in affective state). More-
over, the robots in Murphy et al., 2002 do not use (spoken)
natural language to interact with humans nor do they de-
tect human affect.

The architecture in Breazeal, Hoffman, and Lockerd
(2004) extends prior work (Breazeal, 2002) to include nat-
ural language processing and some higher level deliber-
ative functions, most importantly, an implementation of
“joint intention theory” that allows the robot to respond to
human commands with gestures indicating a new focus of
attention, etc. The system is intended to study collabora-
tion and learning of joint tasks. One difference is that our
robot lacks the ability to produce gestures beyond simple
nodding and shaking by the pan-tilt unit (although it is
mobile and fully autonomous as opposed to the robot in
Breazeal et al., 2004). More importantly, the mechanisms
for selecting subgoals, subscripts, and updating priorities
of goals seem different in our affective action interpreter,

which uses a dual representation of positive and negative
affect that is influenced by various components in the ar-
chitecture and used for the calculation of the importance,
and consequently the priority, of goals.6

Despite significant advances in several areas of HRI,
none of the systems that competed in 2005 (including
ours) has demonstrated the second requirement for natural
interaction with humans in real-world environments: the
ability to demonstrate and recognize intent. It is in this
general area that human-robot interaction is most lack-
ing. As humans, we take for granted many of the subtle
(even subliminal) cues present in any human-human in-
teraction. The ability to integrate non-verbal information
with explicitly communicated information (such as sar-
casm or impatience) comes very naturally for humans; it
can, in fact, be very difficult to specify what led one to
a particular conclusion regarding another person’s intent
when it was not explicit in the spoken word. Similarly,
humans instantly and often subconsciously make infer-
ences of others’ private mental states based on external
clues. When one member of a group shares information,
we infer immediately that all group members now have
that new knowledge. Also, we are often able to make use-
ful inferences based on what someone does not say (e.g.,
when the situation clearly requires some comment, but
none is offered). These are only a few simple examples
of an array of “rules of thumb” that humans use and ex-
pect their interlocutors to use to infer intent in the course
of normal conversations. Without a systematic approach
that exposes and incorporates this type of implicit knowl-
edge, robots will continue to miss critical, if not constitu-
tive, parts of human social interactions; hence, the second
requirement will remain a road block to NHL-HRI, even
if all the other problems are solved.

We believe that affect will play a pivotal role in remov-
ing this road block. The intentionality requirement is the
furthest from fulfillment in part because of the tremen-
dous complexity of goal-driven cognitive architectures.
However, as we argue above, one function of affect is to
integrate and manage many diverse cognitive processes,
eliminating the need for complex centralized control. The
result is an architecture in which multiple states (both in-
ternal and external) influence the prioritization and selec-
tion of goals, leading to predictable intentional behavior
that humans can use to develop a “theory of mind” for
the robot. DIARC is novel in this regard; affective states
reflective of past experiences influence the operation of
the goal-based control system. The system responds to
events in a more “human-like” manner than non-affective
systems, allowing humans to “relate” better and making
them more likely to ascribe the property of intentional-
ity to the robot. As such, DIARC is the among the most

6The details for reprioritization of goals were not provided in
Breazeal et al. (2004).
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advanced architectures available for NHL-HRI.

5 Conclusion

In this paper, we have proposed three main cate-
gories of requirements for natural human-like human-
robot interaction: (1) social interaction abilities, such
as natural-language production and understanding, situ-
ational knowledge, and expression and recognition of af-
fect and other non-verbal cues; (2) goal-oriented cogni-
tion, which requires the robot to act in a purpose-driven
manner, allowing humans to predict the robot’s behav-
iors based on ascribed beliefs, intentions, and desires; and
(3) robust intelligence, the ability to recover from failures
within the system as well as failures of the system itself.
The DIARC architecture introduced in the AAAI 2005
robot competition is a first attempt at meeting some of
these requirements. While DIARC– and every other cur-
rent robotic system – fails at achieving, even in part, the
second requirement for NHL-HRI (intentionality) in nat-
ural environments, it does make substantial progress to-
ward integrated social behaviors and fault tolerant cogni-
tion; it is able to recognize and express affect at a coarse-
grained level, in addition to its natural language under-
standing and production capabilities, and ADE’s auto-
mated failure recovery mechanisms greatly enhance the
autonomy of the robotic system. Although the system
proved too fragile to demonstrate these abilities in the
real-world environment of the 2005 AAAI Robot Com-
petition, its performance in experiments conducted with
human subjects in a controlled laboratory setting is very
promising for categories (1) and (3). Moreover, the degree
to which affect is integrated into the architecture makes
DIARC also a promising platform towards meeting the
intentionality requirement (2) for NHL-HRI as the results
from human subject experiments demonstrate.
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Moisan, P., Ponchon, A., Ra ievsky, C., Valin, J.,
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