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Abstract
A recent body of work has demonstrated that the incremen-
tal presentations of linguistic search cues can speed up visual
processing in conjunctive visual search. In this paper, we in-
vestigate different processing configurations using a real-time
embodied computational model and demonstrate that, differ-
ent from previous hypotheses, the same incremental process-
ing configuration can explain all experimental conditions.
Keywords: Incremental interactive processing, embodied
real-time model, natural language and vision interaction

Introduction
A large body of work in cognitive science has demonstrated
that much of human information processing is interactive
and incremental: “interactive” means that information is ex-
changed and shared among multiple processes; “incremen-
tal” means that the received information is integrated as it be-
comes available. Hence, interactive incremental processing
modules can incorporate information from other modules as
constraints in their own processing and thus potentially finish
their processing sooner.

A well-studied case of such interactive incremental pro-
cessing is the interaction between visual and natural language
processes. Converging evidence from studies using, in par-
ticular, the “visual words paradigm” demonstrate that vision
and natural language processing in humans are highly interac-
tive and incremental, being able to utilize constraints from the
other modality to reduce processing effort and improve pro-
cessing performance (Eberhard, Spivey-Knowlton, Sedivy, &
Tanenhaus, 1995). For example, a visual search process at-
tempting to find a target object in a visual scene such as a
particular pen on a cluttered desk can be modulated through
natural language instructions that provide additional informa-
tion about the object (e.g., “small black”), leading to a more
targeted, faster search (Spivey, Tyler, Eberhard, & Tanenhaus,
2001; Krause, Cantrell, Potapova, Zillich, & Scheutz, 2013).
Conversely, visual processing of a scene can influence natu-
ral language processing by helping to disambiguate otherwise
ambiguous referential phrases such as the syntactic ambigu-
ity due to different possible prepositional attachments in “put
the black pen on the book on the table” where the black pen
could be put either on the table or on the book that is on the ta-
ble (Eberhard et al., 1995; Scheutz, Eberhard, & Andronache,
2004; Brick & Scheutz, 2007).

While various theoretically motivated hypotheses have
been proposed about an underlying processing architecture
that could enable such incremental natural language and vi-
sion interaction and information integration, only a few com-
putational models actually demonstrate possible computa-
tional mechanisms (Scheutz et al., 2004; Hamker, 2004;

Brick & Scheutz, 2007; Chiu & Spivey, 2012; Krause et al.,
2013). However, computational models are often necessary
to show that conclusions drawn about the processing archi-
tecture based on experimental evidence or theory alone might
not be warranted.

In this paper, we present an embodied real-time model of
interactive incremental vision and natural language process-
ing that can explain previous experimental findings in a novel
way by showing that divergent results found in different ex-
perimental conditions by Spivey et al. (2001) might not be
due to differences in processing configurations (such as serial
vs. parallel), but rather the specific effects of these experi-
mental manipulations on the same processing configuration.

We start by reviewing some of the empirical evidence for
the hypothesis that natural language can incrementally con-
strain vision processing and describe, in particular, the exper-
iments in (Spivey et al., 2001) which we use for our model
simulations. Next, we introduce the model architecture and
provide a more detailed description of its vision system which
is critical for the replication of the human data. We then spec-
ify the simulation setup, which used the same human stimuli
as Spivey et al. (2001), and report the results from extensive
simulation experiments with different configurations of the
processing system. The analysis of the simulation data con-
firms many of the expected properties, but also shows that the
same configuration can explain different experimental con-
ditions that have been assumed to be the result of different
processing configurations. This point is further elaborated in
the subsequent discussion section and summarized in the con-
clusion which also points to future work.

Background and Motivation
It has long been hypothesized that early stages of bottom-
up visual processing are highly parallel as single-feature vi-
sual search is not affected by the number of co-present dis-
tractors, while later stages must include a “serial bottleneck”
since conjunctive visual search (assumed to tap into later pro-
cessing stages) takes longer as the number of distractors in-
creases (Wolfe, 2007). While various stimuli properties can
affect search speed in conjunctive search, Spivey and col-
leagues demonstrated in a series of experiments that the in-
cremental presentation of linguistic search cues can reduce
the effect of distractors in the visual search process (Spivey
et al., 2001; Reali, Spivey, Tyler, & Terranova, 2006; Chiu &
Spivey, 2011, 2012). They hypothesized that the incremen-
tal presentation of search cues (which is natural in spoken
language) enforced a serialization of the search process, al-
lowing search results based on the first cue to be utilized in



the second search, thus shortening its duration. In contrast,
no such incremental processing was hypothesized in experi-
mental conditions where both search dimensions were simul-
taneously presented.

Spivey et al. (2001) used a standard conjunctive visual
search paradigm where the presence or absence of a colored
bar (red or green) in a particular orientation (horizontal or ver-
tical) has to be detected. For the task presentation, they con-
sidered two linguistic conditions: in the “audio first” (A1st)
condition the auditory target cue precedes the onset of the
visual stimulus, while in the the concurrent “audio-vision”
condition (A/V) the auditory cue and visual scene have the
same onset. Consistent with the visual search literature, the
results showed that the slopes of the best fitting lines relating
response times (RTs) to stimulus set size for both target ab-
sent and target present cases were positive, with larger slopes
for target absent compared to target present cases. Critically,
the slopes in the A/V concurrent conditions were smaller than
the slopes in the A1st conditions. The effect persisted when
the cue order was altered and when stimuli were presented
visually in the A/V condition (instead of through a preceding
natural language instruction).

Exploring alternative explanations, Reali et al. (2006)
replicated the findings from Spivey et al. (2001) with mixed
A/V and A1st trials in random order. They also mixed color
first conjunction searches with orientation first conjunction
searches to show that the search improvement in the A/V con-
dition is not due to subjects’ listening strategies, nor does
it disappear as the complexity of the utterances increases.
Moreover, slopes are still smaller for A/V concurrent con-
ditions than in the A1st conditions in triple visual searches.

Finally, Chiu and Spivey (2011) argued that the visual
search utilizes a combination of serial and parallel strategies
as opposed to purely parallel or serial strategies. By manipu-
lating the stimulus onset asynchrony (SOA) between the end
of the first and the onset of the second cue (for 0, 200, 400,
and 600ms SOAs), they found significantly shallower slopes
for the A/V compared to the A1st conditions when the SOA
was equal to 400 or 600 ms. However, when the SOA was 0
or 200 ms, they did not observe significantly shallower slopes
for the A/V compared to A1st conditions, indicating that the
search improvement in the A/V condition is dependent on the
SOA which acts as a “buffer” for the end of first cue search
process.

The overarching question posed by this whole line of re-
search then is why incremental processing should only oc-
cur in the A1st condition and not also in the A/V condition.
To answer this question, we investigated different processing
configurations of a computational model, described next, that
can perform the task from Spivey et al. (2001) to find the con-
figurations that most closely matched the human data in both
A1st and A/V conditions.1

1We will restrict our modeling efforts here on Spivey et al. (2001)
for lack of space, but note that the model generalizes to different
variations of the experiments.
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Figure 1: The processing architecture of the vision system.

The Embodied Real-Time Model
Over the last decade we have developed a complex integrated
embodied cognitive architecture called “DIARC” (Scheutz,
Schermerhorn, Kramer, & Anderson, 2007) which has been
shown to exhibit several qualitative features of human-like
natural language and vision processing (e.g., incremental ref-
erence resolution, Scheutz et al., 2004; incremental infor-
mation integration, Brick & Scheutz, 2007; dialogue-based
constraints on speech recognition, Veale, Briggs, & Scheutz,
2013; visual search constrained by linguistic expressions,
Krause et al., 2013; and others). Here we will use DIARC for
the first time to investigate potential quantitative models of
human performance that differ only in their processing con-
figuration in order to evaluate hypotheses about processing
modes in linguistic-guided visual search. We depart from the
requirement that our computational model be able to use the
same real-world linguistic and visual input as in Spivey et
al. (2001) for two reasons: (1) to be able to model human
performance of real-time incremental interactive information
processing and (2) to avoid complications about subtle tim-
ing effects that can arise with discrete-event simulation mod-
els that only have simulated paralellism.2 Since the focus of
the model is on configurations of visual search, we skip the
overview of the natural language subsystem which has been
described in detail elsewhere (Cantrell et al., 2010; Krause et
al., 2013) and focus on the visual subsystem (only describing
those parts of the natural language subsystem necessary for
understanding the model configurations and runs).

The vision system is consistent with empirically grounded
views on guided visual search in humans (e.g., Wolfe, 2007)
and consists of three main components: saliency operators
that compute different types of saliency maps, object detec-
tors that can use various features (including information from
saliency maps, textures, shapes, etc.) to detect objects, and
object trackers that can track previously detected objects over

2An additional reason, not directly relevant to the effort in this
paper, is our aim to run those models on robots in the context of
human-robot interaction scenarios where robots have to respect hu-
man timing and modes of information processing in natural language
dialogues (Scheutz et al., 2007; Cantrell, Scheutz, Schermerhorn, &
Wu, 2010).
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Figure 2: Four saliency operator configurations for conjunc-
tive visual search and their relative times to completion.

time (a function not required for the current paper).3

Saliency operators. Saliency operators are massively par-
allel, computationally cheap bottom-up processes that oper-
ate directly on regions of the input image, thus constituting
the first visual processing stage. They are used to extract ba-
sic visual features such as color, size, orientation, and motion
(analogous to the system in Itti & Koch, 2001). The result of
applying a saliency operator to a region in the input image is
a (partial) saliency map with values between 0 (no salience)
and 1 (maximal salience) for each pixel. Multiple saliency
operators can be configured to perform computations either in
parallel (P) or serially (S) (i.e., one map at a time, or multiple
maps simultaneously even though they might take different
times to compute). Different from other bottom-up saliency
models where computations for individual maps are modular,
it is possible in both cases for saliency operators to interact by
using values from existing saliency maps (generated by other
operators) to modulate the saliency computation in their own
map – this incremental (I) mode of operation is contrasted
with the non-incremental (N) mode of only performing cal-
culations based on the input image. Hence, saliency operators
can interact in four ways based on their configuration in as-
cending order of processing efficiency: PI, PN, SI, SN (see
Figure 2).

Object detection. Objects are detected by segmenting re-
gions in the input image based on their saliency as deter-
mined in (possibly combined) saliency maps. Different from
saliency computations, this is a serial process where regions
with the highest saliency are considered first. Segmentation
is performed using a simple background model to distinguish

3Note that the vision system does not realize biologically plau-
sible computations “all the way down to individual neurons”, but
allows for different sequencing and interactions of processing mod-
ules, which is necessary for investigating human processing config-
urations.

background pixels from object pixels (i.e., modeling back-
ground pixels as a particular RGB value), and Euclidean clus-
tering to grow an “object pixel cluster” (from a single pixel)
corresponding to the most salient image region. Once a can-
didate object has been segmented, it is checked against the
individual saliency maps in order to confirm that it has all nec-
essary salient features. Thus, the most salient objects are de-
tected first and are immediately available as “target objects”
in the search, while less salient objects follow later. In tar-
get detection search it is thus possible to terminate the visual
search early (compared to a search requiring a count of all
target objects, say).

Simulation Results
The goal of the model simulations was to find the model con-
figuration that most closely matched the data from Experi-
ment 1 in Spivey et al. (2001), i.e., the differences in response
times over stimuli sets with an increasing number of items
in the target absence vs. target presence conditions in both
the audio first vs. audio-vision conditions. We thus defined
four different processing configurations based on two pro-
cessing dimensions: incremental (I) vs. non-incremental (N),
and serial (S) vs. parallel (P). We used the four sets of 32
image stimuli from (Spivey et al., 2001) which contain 5, 10,
15, and 20 vertical/horizontal and red/green bars, respectively
(see Figure 3).

Figure 3: Examples of stimulus images for each of the four
item set sizes.

We ran 100 replications of each visual stimulus with color
terms followed by orientation terms for the four combinations
of color (“red” vs. “green”) and orientation (“vertical” vs.
“horizontal”) for a total of 100 · 32 · 4 = 12800 runs for each
of the four model configurations (i.e., over 50000 runs total)
in the “audio first” condition. 4 For each run, we measured

4For the large evaluation, we did not run the complete archi-
tecture but only the vision subsystem because we were only inter-
ested in the response time from the onset of the visual stimulus in
this condition. Otherwise, the model can perform the whole exper-
iment in the same setup as human would (with real-time audio and
video). Note that replications are important because computational



the processing duration for each feature (color and orienta-
tion) as well as the time required for information integration
and decision-making in the object detector (the vision system
was especially instrumented with time measurement code for
that purpose). Since we were not interested in examining per-
formance errors (such as false starts and wrong outputs), we
set parameters in the vision system in a way that the model
had perfect performance in all runs.

Instead of running separate simulations for the audio-
vision conditions, we were able to reuse the data from the
audio-first condition. Recall that in the audio-first condition,
both visual search features have been already determined be-
fore the onset of the image and thus the visual search can
either be carried out in parallel or serially. In contrast, in the
audio-vision condition the visual features are given sequen-
tially while the target image is already present. Since the
vision system always completes the color processing of any
stimuli in less time than it takes to pronounce the correspond-
ing color terms, processing in the audio-vision condition is
always be serial regardless of the model configuration (serial
or parallel). Therefore, instead of running separate simula-
tions for the “audio-vision” conditions, we were able to reuse
the data from the audio-first condition by taking the duration
from the onset of the image (which is also that of the first
linguistic cue) and the onset of the second linguistic cue, and
then adding the model’s response time measured from the on-
set of the second cue until the decision (target or no-target) is
reached.

Figure 4: The three-way interaction between data size, incre-
mental processing and target presence/absence conditions.

processes, even though specified by deterministic programs, have
stochastic run-times given the many concurrently running processes
in the Ubuntu Linux operating system on the employed quadcore PC
with Intel i7-3820 CPU at 3.60GHz.

We performed a 2x2x2x4 ANOVA with target condition
(present vs. absent), integration mode (incremental vs. non-
incremental), processing mode (parallel vs. serial), and item
set size (5, 10, 15, or 20 items) as independent, and total
time (to processing completion from visual stimulus onset)
as dependent variables. We found highly significant main
effects (all F(1,12784) > 100, p < .001) on all four inde-
pendent variables as expected: the absence of the target,
non-incremental processing, serial processing, and increase
in item set size all lead to longer RTs. In addition, we found
significant two-way interactions (all F(1,12784) > 100, p <
.001 except for the first with F(1,12784) > 5, p = .024):
between processing mode and target presence/absence in-
dicating that the difference in RTs between target absence
and presence are increasing when processing is serial; be-
tween item set size and incremental processing indicating
that as item size increases the advantage of incremental pro-
cessing increases too; between item set size and target pres-
ence/absence indicating that item set size increases in the
target absence condition increase the RTs massively while
RTs in the target presence conditions show only a moder-
ate increase; between incremental processing and target pres-
ence/absence indicating that the advantage of incremental
processing in the target presence condition is greater than in
the target absence condition. The last three two-way inter-
actions are explained by a significant three-way interaction
(F(1,12784) > 100, p < .001) between item set size, incre-
mental processing and target presence/absence which corrob-
orates the human data: increases in item set size lead to larger
increases in RTs in the non-incremental compared to the in-
cremental processing configuration thus closing the initially
wider gap between the target presence vs. target absence con-
ditions relative to the overall differences between incremental
and non-incremental processing (see Figure 4).

Figure 5 then shows the best fitting lines for the four model
configurations and Table 1 shows the intercepts and slopes for
the models compared to the linear fits from the human data in
the A1st vs. A/V conditions in (Spivey et al., 2001). The dif-
ferent intercepts and slopes are indicative of both differences
in processing style but also differences in the duration of in-
dividual subcomponent processes (e.g., the time it takes to
compute a saliency map). Overall, the fit lines confirm the
results from the previous analysis (in part shown in Figure 4)
that parallel processing is faster than serial, that incremental
processing is much faster than non-incremental processing,
and that the target-presence conditions scale much better over
item set size compared to the target-absence conditions, all of
which is in line with the human data.

To be able to directly compare these linear fits while taking
into account the differences in processing times in individual
human and model subsystems (as we were not attempting to
model the details of human vision and natural language pro-
cessing, but rather the overall processing configuration), we
use a relational comparison. Following Spivey et al. (2001),
we consider the ratio of slopes in the human target-absent to



Figure 5: The best fit lines for all four models.

Cond. target present target absent
intercept slope intercept slope

I-P 48.409 0.173 42.690 2.058
I-S 60.549 0.264 58.397 1.941
N-P 202.056 0.045 195.379 4.797
N-S 215.726 0.039 211.851 4.706
A1st 830.000 19.800 911.000 31.400
A/V 1539.000 7.700 1628.000 22.700

Table 1: Summary of the regression lines from four sets of
model simulations and the data from Experiment 1 (A/V vs.
A1st) in Spivey et al. (2001) (see text for explanation).

target-present conditions Sh,p/Sh,a and now compare it to the
same ratio for the model Sm,p/Sm,a, which – in the ideal case
– should be identical.5 Table 2 shows the calculated “model
proximity values” Sh,p·Sm,a

Sh,a·Sm,p
(closer to 1 is better) for each of the

four models in the “audio first” (A1st) and the two models in
the “audio-vision” (A/V) conditions.

As can be seen from the model proximity values, the serial
incremental models fare best in both instruction conditions.
While it is premature to draw conclusions about the differ-
ence between sequential and parallel search given the close

5Note that comparing slope ratios between target absent and tar-
get present conditions addresses the data comparison problem raised
by the fact that intercepts and slopes are different. If we had at-
tempted an individual comparison of best fitting lines from model
and human data, we would have had to scale the model intercept Im
to the human level Ih by the factor λ = Im/Ih and then adjust the
model slope Sm accordingly: Sm ·λ. Note that scaling factors cancel
out in a ratio comparison, hence no scaling is necessary for compar-
ing ratios of human and model data.

Instr./ A/V A1st
Mode incr. non-incr. incr. non-incr.
serial 2.492462 40.87944 4.633394 75.99336

parallel 4.036554 36.40101 N/A N/A

Table 2: Model proximity values for the six model conditions
(see text for explanation).

numeric results in both configurations, it is clear that incre-
mental processing reflects the human data much better com-
pared to non-incremental processing.

Discussion
The fact that both instruction conditions seem to utilize
the same processing configuration is quite surprising at first
glance, because it seems that at the very least in the A1st
condition the parallelism of the feature search should be ex-
ploitable. And, indeed, the results in Table 1 confirm that par-
allel incremental search is the fastest in this condition. Spivey
et al. (2001) argue that “in the auditory-first condition, the
search process may employ a conjunction template to find the
target, thus forcing a serial-like process akin to sequentially
comparing each object with the target template. However, in
the A/V-concurrent condition, it appears that the incremental
nature of the speech input allows the search process to be-
gin when only a single feature of the target identity has been
heard [which then] proceeds in a more parallel fashion (with
the second-mentioned target feature being used to find the
target amidst an attended subset).” Based on our modeling
results, we would like to propose an alternative explanation
that is consistent with the experimental differences observed
by Spivey et al. (2001) and does not require the stipulation of
a different processing configuration.

The explanation rests on the assumption that with none of
the visual stimuli it took humans longer to process the color
cue than the time it took to pronounce the color word in the
A/V condition, see Figure 6 for an illustration which shows
the time course for processing the two visual cues in the A/V
and A1st conditions for parallel and serial configurations (cue
integration time is absorbed in the second cue processing for
simplicity). Note that there is no chance to exploit parallelism
at any point in the A/V condition precisely because the vision
system will have finished processing the color of the items
before the orientation cue occurs (although those processes
take increasingly longer as the set size increases, hence there
will be a set size where visual processing will exceed the du-
ration of the spoken color cue). Thus, both serial and parallel
processing configurations require the same overall process-
ing time in the A/V condition, different from the A1st condi-
tions, where parallel and serial yield different results. More-
over, if the vision system used a parallel configuration in the
A1st condition, then the slopes in that condition would be the
same as in the A/V. However, Spivey et al. (2001) found a
steeper slope in the A1st condition suggesting that the sys-
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Figure 6: The influence on fixed color word duration on the
overall RTs in the A/V compared to the A1st serial and paral-
lel conditions (see text for details).

tem was configured serially. While it is possible that process-
ing is configured in parallel in the A/V condition, this seems
implausible given that the parallelism has no effect in that
condition and that the system was not configured in a paral-
lel fashion in the A1st condition where the parallelism could
have been exploited. Additional evidence comes from our
model simulations where serial (incremental) configurations
have the best fit to the human data. Notice that the above
argument does not rely on the incremental/non-incremental
distinction, hence the argument holds for both incremental
and non-incremental configurations.

Conclusion
We introduced a real-time embodied computational model
that was used to investigate different processing configu-
rations of a cognitive system that can perform conjunc-
tive visual searches based on spoken natural language cues.
We replicated the empirical findings from Experiment 1 in
(Spivey et al., 2001) that show a significant difference be-
tween audio-visual concurrent instruction compared to audio-
first instruction, which has been hypothesized to be due to a
difference in processing configuration of the visual system
in the two conditions. Based on our modeling results, we
conclude that the same processing configuration is responsi-
ble for both conditions and that the differences in the exper-
imental data in the two conditions are fully explained by the
way the experimental manipulations impose processing con-
straints on the system. Future work will extend the model
to the different published variations of the experiment in an
attempt to show that the same underlying processing config-
uration can explain the results in all of these conditions.
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